2013高考数学试题_立体j几何直线与圆 (高一下用)
- 格式:doc
- 大小:342.95 KB
- 文档页数:2
图 2俯视图侧视图正视图2013年全国各地高考数学试题及解答分类汇编大全(13立体几何 )一、选择题:1.(2013安徽理)在下列命题中,不是公理..的是( ) (A )平行于同一个平面的两个平面相互平行(B )过不在同一条直线上的三点,有且只有一个平面(C )如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内 (D )如果两个不重合的平面有一个公共点, 那么他们有且只有一条过该点的公共直线【答案】A【解析】B,C,D 说法均不需证明,也无法证明,是公理;A 选项可以推导证明,故是定理。
所以选A2. (2013北京文)如图,在正方体ABCDA 1B 1C 1D 1中,P 为对角线BD 1的三等分点,P 到各顶点的距离的不同取值有( ). A .3个 B .4个 C .5个 D .6个答案 B解析 设正方体边长为1,不同取值为P A =PC =PB 1=63,P A 1=PD =PC 1=1,PB =33,PD 1=233共有4个.3.(2013广东理) 某四棱台的三视图如图所示,则该四棱台的体积是 ( ) A . 4 B .143 C .163D .6 【解析】B ;由三视图可知,该四棱台的上下底面边长分别为1和2的正方形,高为2,故()2211412233V =+⨯=,故选B .4.(2013广东文) 某三棱锥的三视图如图2所示,则该三棱锥的体积是A .16B .13C .23D .1【解析】由三视图判断底面为等腰直角三角形, 三棱锥的高为2,则111=112=323V ⋅⋅⋅⋅,选B.5.(2013广东文) 设l 为直线,,αβ是两个不同的平面,下列命题中正确的是 A .若//l α,//l β,则//αβ B .若l α⊥,l β⊥,则//αβC .若l α⊥,//l β,则//αβD .若αβ⊥,//l α,则l β⊥ 【解析】基础题,在脑海里把线面可能性一想,就知道选B 了.6.(2013广东理) 设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是( ) A . 若αβ⊥,m α⊂,n β⊂,则m n ⊥ B .若//αβ,m α⊂,n β⊂,则//m n C .若m n ⊥,m α⊂,n β⊂,则αβ⊥ D .若m α⊥,//m n ,//n β,则αβ⊥ 【解析】D ;ABC 是典型错误命题,选D .A1A正视图侧视图7、(2013湖北理) 一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为1V ,2V ,3V ,4V ,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有( ) A. 1243V V V V <<< B. 1324V V V V <<<C. 2134V V V V <<<D. 2314V V V V <<<【解析与答案】C 由柱体和台体的体积公式可知选C 【相关知识点】三视图,简单几何体体积8. (2013湖南文) 已知正方体的棱长为1,其俯视图是一个面积为1的矩形,则该正方体的正视图的面积等于____ D ____ A .B.1【答案】 D【解析】 正方体的侧视图面积为.2..2212同,所以面积也为正视图和侧视图完全相为,所以侧视图的底边长⋅=9.(2013湖南理) 已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能...等于 A .1 BCD 【答案】 C【解析】 由题知,正方体的棱长为1,121-2.]2,1[]2,1[1<而上也在区间上,所以正视图的面积,宽在区间正视图的高为。
2013年全国各地高考文科数学试题分类汇编7:立体几何一、选择题错误!未指定书签。
.(2013年高考重庆卷 )某几何体的三视图如题(8)所示,则该几何体的表面积为( )A .180B .200C .220D .240错误!未指定书签。
.(2013年高考大纲卷)已知正四棱锥1111112,ABCD A B C D AA AB CD BDC -=中,则与平面所成角的正弦值等于( )A .23BCD .13【答案】A错误!未指定书签。
.(2013年高考浙江卷 )已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是A .108cm 3B .100 cm 3C .92cm 3D .84cm 3错误!未指定书签。
.(2013年高考北京卷 )如图,在正方体1111ABCD A B C D -中,P 为对角线1BD 的三等分点,则P 到各顶点的距离的不同取值有 ( ) A .3个B .4个C .5个D .6个错误!未指定书签。
.(2013年高考湖南 )已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个的矩形,则该正方体的正视图的面积等于______ ( )A B .1 C D错误!未指定书签。
.(2013年高考浙江卷 )设m.n 是两条不同的直线,α.β是两个不同的平面, ( )A .若m ∥α,n ∥α,则m ∥nB .若m ∥α,m ∥β,则α∥βC .若m ∥n,m ⊥α,则n ⊥αD .若m ∥α,α⊥β,则m ⊥β错误!未指定书签。
.(2013年高考辽宁卷 )已知三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若34AB AC ==,,AB AC ⊥,112AA =,则球O 的半径为( )A B .C .132D .错误!未指定书签。
.(2013年高考广东卷 )设l 为直线,,αβ是两个不同的平面,下列命题中正确的是 ( )1A .若//l α,//l β,则//αβB .若l α⊥,l β⊥,则//αβC .若l α⊥,//l β,则//αβD .若αβ⊥,//l α,则l β⊥错误!未指定书签。
立体几何知识点及典型例题一、平面的基本性质两点一线、三点共面、两面交于一线。
练习1、已知直线,且直线与都相交,求证:直线共面。
二、空间线面的位置关系共面 平行—没有公共点(1)直线与直线 相交—有且只有一个公共点异面(既不平行,又不相交)直线在平面内—有无数个公共点 (2)直线和平面 直线不在平面内 平行—没有公共点 (直线在平面外) 相交—有且只有一公共点 (3)平面与平面 相交—有一条公共直线(无数个公共点)平行—没有公共点三、异面直线的判定证明两条直线是异面直线通常采用反证法.有时也可用定理“平面内一点与平面外一点的连线,与平面内不经过该点的直线是异面直线”.练习2、求证:两条异面直线不能同时和一个平面垂直练习3、四面体中,各个侧面都是边长为的正三角形,分别是和的中点,则异面直线与所成的角是多少?四、空间中的平行问题(1)直线与平面平行的判定及其性质①线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。
(线线平行→线面平行)②线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
(线面平行→线线平行)(2)平面与平面平行的判定及其性质两个平面平行的判定定理://b c a ,b c ,,a b c S A B C a ,E F S C A B E F S AC①如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行(线面平行→面面平行)②如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。
(线线平行→面面平行)③垂直于同一条直线的两个平面平行 两个平面平行的性质定理:①如果两个平面平行,那么某一个平面内的直线与另一个平面平行。
(面面平行→线面平行)②如果两个平行平面都和第三个平面相交,那么它们的交线平行。
(面面平行→线线平行)练习4、如图:是平行四边形平面外一点,分别是上的点,且=,求证:平面练习5、两个全等的正方形ABCD 和ABEF 所在平面相交于AB ,M ∈AC ,N ∈FB ,且AM=FN ,求证 MN ∥平面BCE五、空间中的垂直问题(1)线线、面面、线面垂直的定义①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。
一.基础题组1.【2013年普通高等学校招生全国统一考试(四川卷)文科】抛物线28y x =的焦点到直线0x -=的距离是( )(A )(B )2(C (D )12.【2013年普通高等学校招生全国统一考试(广东卷)文科】垂直于直线1y x =+且与圆221x y +=相切于第一象限的直线方程是( )A .0x y +-=B .10x y ++=C .10x y +-=D .0x y ++=3.【2013年普通高等学校招生全国统一考试(陕西卷) 文科】 已知点(,)M a b 在圆221:O x y +=外, 则直线1ax by +=与圆O 的位置关系是( )(A) 相切(B) 相交 (C) 相离 (D) 不确定4.【2013年普通高等学校招生全国统一考试(江西卷)文科】若圆C 经过坐标原点和点(4,0),且与直线y=1相切,则圆C 的方程是 .5.【2013年普通高等学校招生全国统一考试(山东卷)文科】过点(3,1)作圆22(2)(2)4x y -+-=的弦,其中最短的弦长为__________.6.【2013年普通高等学校招生全国统一考试(浙江卷)文科】直线23y x =+被圆22680x y x y +--=所截得的弦长等于__________.二.能力题组7.【2013年全国高考统一考试天津数学(文)卷】 已知过点P (2,2) 的直线与圆225(1)x y +=-相切, 且与直线10ax y -+=垂直, 则a =( )(A) 12- (B) 1 (C) 2 (D) 128.【2013年高考新课标Ⅱ数学(文)卷】 设抛物线C:y 2=4x 的焦点为F ,直线l 过F 且与C 交于A, B 两点.若|AF|=3|BF|,则l 的方程为( )(A ) y=x-1或y=-x+1 (B )X-1)或y=(x-1)(C )y=x-1)或y=x-1) (D )x-1)或y=(x-1) 【答案】C(A )1 (B )2三.拔高题组10.【2013年普通高等学校招生全国统一考试(四川卷)文科】在平面直角坐标系内,到点(1,2)A ,(1,5)B ,(3,6)C ,(7,1)D -的距离之和最小的点的坐标是_______.11.【2013年普通高等学校招生全国统一考试(湖北卷)文科】已知圆O :225x y +=,直线l : cos sin 1x y θθ+=(π02θ<<).设圆O 上到直线l 的距离等于1的点的个数为k ,则k = .12.【2013年普通高等学校统一考试江苏卷】在平面直角坐标系xoy 中,设定点(,)A a a ,P 是函数1(0)y x x=>图象上一动点. 若点P ,A 之间的最短距离为,则满足条件的实数a 的所有值为 .质、二次函数的最值. 较难题.13.【2013年普通高等学校统一考试江苏卷】如图,在平面直角坐标系xoy 中,点(0,3)A ,直线:24l y x =-,设圆C 的半径为1, 圆心在l 上.(1)若圆心C 也在直线1y x =-上,过点A 作圆C 的切线,求切线方程;(2)若圆C 上存在点M ,使2MA MO =,求圆心C 的横坐标a 的取值范围.【2013年普通高等学校招生全国统一考试(四川卷)文科】已知圆C 的方程为22(4)4x y +-=,点O 是坐标原点.直线:l y kx =与圆C 交于M 、N 两点.(Ⅰ)求k 的取值范围;(Ⅱ)设(,)Q m n 是线段MN 上的点,且222211||||||OQ OM ON =+.请将n 表示为m 的函数.。
2013年普通高考文科数学试题汇编-立体几何解答题三、解答题1. (2013年高考辽宁卷 (文如图 , . AB O PA O C O 是圆的直径, 垂直圆所在的平面, 是圆上的点 (I求证 :BC PAC ⊥平面 ;(II设//. Q PA G AOC QG PBC ∆为的中点, 为的重心,求证:平面【答案】(I 由 AB 式圆 O 的直径,得 AC ⊥ BC.由 PA ⊥平面 ABC , BC ⊂平面 ABC ,得 PA ⊥ BC,又PA ∩ AC=A,P A⊂平面 PAC , AC ⊂平面 PAC,所以 BC ⊥平面 PAC.(II 连 OG 并延长交 AC 与 M ,链接 QM , QO.由 G 为∆ AOC 的重心,得 M 为 AC 中点,由 G 为 PA 中点,得 QM//PC.又 O 为 AB 中点,得 OM//BC.因为QM ∩ MO=M,QM⊂平面 QMO.所以 QG//平面 PBC.2. (2013年高考浙江卷 (文如图 , 在在四棱锥 P-ABCD 中 ,PA⊥面 3, ∠ABC=120°,G为线段 PC 上的点 .(Ⅰ证明:BD⊥面 PAC ;(Ⅱ若 G 是 PC 的中点 , 求DG 与 APC 所成的角的正切值 ;(Ⅲ若 G 满足 PC⊥面 BGD, 求 PG GC的值 .【答案】解 :证明 :(Ⅰ由已知得三角形 ABC 是等腰三角形 , 且底角等于 30°,且 6030AB CB AD CD ABD CBD ABD CBD BAC BD DB=⎫⎪=⇒∆≅∆⇒∠=∠=∠=⎬⎪=⎭且 , 所以 ; 、BD AC ⊥, 又因为 PA ABCD BD PA BD PAC BD AC ⊥⇒⊥⎫⇒⊥⎬⊥⎭; (Ⅱ设 AC BD O = , 由 (1知 DO PAC ⊥, 连接 GO , 所以 DG 与面 APC 所成的角是 DGO ∠, 由已知及 (1知 :1, 2BO AO CO DO =====,12tan 2OD GO PA DGO GO ==⇒∠===所以 DG 与面 APC 所成的角 (Ⅲ由已知得到 :PC===因为 PC BGD PC GD ⊥∴⊥, 在PDC ∆中 , PD CD PC ====, 设223107 2PG PG x CG x x x PG x GC GC =∴=-∴-=--∴====3. (2013年高考陕西卷 (文如图 , 四棱柱 ABCD -A 1B 1C 1D 1的底面 ABCD 是正方形 , O 为底面中心 , A 1O ⊥平面 ABCD, 1AB AA ==1A(Ⅰ证明 : A 1BD // 平面 CD 1B 1;(Ⅱ求三棱柱 ABD -A 1B 1D 1的体积 .【答案】解: (Ⅰ设 111O D B 线段的中点为 .11111111//D B BD D C B A ABCD D B BD ∴-的对应棱是和 . 的对应线段是棱柱和同理, 111111D C B A ABCD O A AO -为平行四边形四边形且且 11111111//////OCO A OC O A OC O A OC AO O A AO ⇒=⇒∴ 1111111111//, . //B CD BD A O D B C O O BD O A C O O A 面面且⇒==⇒ .(证毕(Ⅱ的高是三棱柱面 ABD D B A O A ABCD O A -∴⊥11111 . 在正方形 AB CD中,AO = 1 . . 111=∆O A OA A RT 中, 在11 2(2121111111=⋅⋅=⋅=-∆-O A S V ABD D B A ABD ABD D B A 的体积三棱柱 . 所以 , 1111111=--ABD D B A V ABD D B A 的体积三棱柱 .4. (2013年高考福建卷 (文如图 , 在四棱锥 P ABCD -中 , PD ABCD ⊥面 , //AB DC , AB AD ⊥, 5BC =, 3DC =, 4AD =, 60PAD ∠= .(1当正视图方向与向量 AD 的方向相同时 , 画出四棱锥 P ABCD -的正视图 .(要求标出尺寸 , 并画出演算过程 ;(2若 M 为 PA 的中点 , 求证 ://DM PBC 面 ;(3求三棱锥 D PBC -的体积 .【答案】解法一:(Ⅰ在梯形 ABCD 中 , 过点 C 作 CE AB ⊥, 垂足为 E , 由已知得 , 四边形 ADCE 为矩形 , 3AE CD ==在Rt BEC ∆中 , 由 5BC =, 4CE =, 依勾股定理得 :3BE =, 从而 6AB =又由 PD ⊥平面 ABCD 得 , PD AD ⊥从而在Rt PDA ∆中 , 由 4AD =, 60PAD ∠=︒,得 PD =正视图如右图所示 :(Ⅱ取 PB 中点 N , 连结 MN , CN在PAB ∆中 , M 是 PA 中点 ,∴ MN AB , 132MN AB ==, 又 CD AB , 3CD = ∴ MN CD , MN CD =∴四边形 MNCD 为平行四边形,∴ DM CN又 DM ⊄平面 PBC , CN ⊂平面 PBC∴ DM 平面 PBC (Ⅲ 13D PBC P DBC DBC V V S PD --∆==⋅又6PBC s ∆= , PD =,所以 D PBC V -=解法二 :(Ⅰ同解法一(Ⅱ取 AB 的中点 E , 连结 ME , DE在梯形 ABCD 中 , BE CD , 且 BE CD =∴四边形 BCDE 为平行四边形∴ DE BC , 又 DE ⊄平面 PBC , BC ⊂平面 PBC∴ DE 平面 PBC , 又在PAB ∆中 , ME PBME ⊄平面 PBC , PB ⊂平面 PBC∴ ME 平面 PBC . 又 DE ME E = ,∴平面 DME 平面 PBC , 又 DM ⊂平面 DME∴ DM 平面 PBC(Ⅲ同解法一5. (2013年高考广东卷(文如图 4, 在边长为 1的等边三角形 ABC 中 , , D E 分别是 , AB AC 边上的点 , AD AE =, F 是 BC 的中点 , AF 与 DE 交于点 G , 将ABF ∆沿AF 折起 , 得到如图 5所示的三棱锥 A BCF -,其中 2BC =. (1 证明 :DE //平面 BCF ;(2 证明 :CF ⊥平面 ABF ;(3 当 23AD =时 , 求三棱锥 F DEG -的体积 F DEG V -. 图 4【答案】 (1在等边三角形 ABC 中 , AD AE =AD AE DB EC ∴=, 在折叠后的三棱锥 A BCF -中也成立 , //DE BC ∴ ,DE ⊄平面 BCF ,BC ⊂平面 BCF , //DE ∴平面 BCF ;(2在等边三角形 ABC 中 , F 是 BC 的中点 , 所以 AF BC ⊥① ,12BF CF==. 在三棱锥 A BCF -中 , 2BC =, 222BC BF CF CF BF ∴=+∴⊥② BF CF F CF ABF ⋂=∴⊥平面 ;(3由 (1可知 //GE CF , 结合 (2可得GE DFG ⊥平面.111111132323323324F DEG E DFG V V DG FG GF --⎛∴==⋅⋅⋅⋅=⋅⋅⋅⋅⋅= ⎝⎭6. (2013年高考湖南(文如图 2. 在直菱柱 ABC-A 1B 1C 1中,∠BAC=90°,AB=AC=,AA 1=3,D是 BC 的中点 , 点 E 在菱 BB 1上运动 . (I 证明:AD⊥C 1E;(II当异面直线 AC,C 1E 所成的角为 60°时 , 求三菱子 C 1-A 2B 1E 的体积.【答案】解: (Ⅰ 11C CBB ADE 面为动点,所以需证因为⊥.AD BB ABC AD ABC BB C B A ABC ⊥⇒⊂⊥∴-11111, 面且面是直棱柱AD BC BC D ABC RT ⊥∴∆的中点, 为是等腰直角且又 .. 1111111E C AD C CBB E C C CBB AD B BB BC ⊥⇒⊂⊥⇒=⋂面且面由上两点,且 (证毕(Ⅱ 660, //111111=∆⇒︒=∠∴AE E C A RT E C A A C CA 中, 在 .的高是三棱锥是直棱柱中, 在 1111111111. 2C B A E EB C B A ABC EB E B A RT -∴-=∆⇒ .. 3232213131111111111111的体积为所以三棱锥 E B A C EB S V V C B A C B A E E B A C -⋅=⋅⋅=⋅⋅==∆-- 7. (2013年高考北京卷(文如图 , 在四棱锥 P ABCD -中 , //AB CD , AB AD ⊥, 2CD AB =,平面 PAD ⊥底面 ABCD , PA AD ⊥, E 和 F 分别是 CD 和 PC 的中点 , 求证 : (1PA ⊥底面 ABCD ;(2//BE 平面 PAD ;(3平面 BEF ⊥平面 PCD【答案】 (I因为平面 PAD⊥平面 ABCD, 且 PA 垂直于这个平面的交线 AD 所以 PA 垂直底面 ABCD.(II因为 AB∥CD,CD=2AB,E为 CD 的中点所以 AB∥DE,且 AB=DE 所以ABED 为平行四边形 ,所以 BE∥AD,又因为 BE ⊄平面 PAD,AD ⊂平面 PAD 所以 BE∥平面 PAD.(III因为 AB⊥AD,而且 ABED 为平行四边形所以 BE⊥CD,AD⊥CD,由 (I知 PA⊥底面 ABCD, 所以 PA⊥CD,所以 CD⊥平面 PAD所以 CD⊥PD,因为 E 和 F 分别是 CD 和 PC 的中点所以 PD∥EF,所以 CD⊥EF,所以 CD⊥平面 BEF, 所以平面 BEF⊥平面PCD.8. (2013年高考课标Ⅰ卷 (文如图 , 三棱柱 111ABC A B C -中 , CA CB =, 1AB AA =, 160BAA ∠= .(Ⅰ证明 :1AB AC ⊥; (Ⅱ若 2AB CB ==, 1AC =求三棱柱 111ABC A B C -的体积 .1B 1A1【答案】【答案】 (I取 AB 的中点 O, 连接 OC O 、 1OA O 、 1A B , 因为CA=CB,所以 OC AB ⊥, 由于 AB=AA 1,∠BA A1=600,故, AA B ∆为等边三角形 , 所以 OA 1⊥AB.因为 OC ⨅ OA 1=O,所以 AB ⊥平面 OA 1C. 又 A 1CC 平面 OA 1C, 故 AB ⊥AC. (II由题设知12ABC AA B ∆∆与都是边长为的等边三角形, 12AA B 都是边长为的等边三角形,所以2211111. OC OA AC AC OA OA OC ===+⊥又 ,故111111111, --=3.ABC ABCOC AB O OA ABC OA ABC A B CABC S A B C V S OA=⊥∆=⨯=因为所以平面 , 为棱柱的高,又的面积 ABC 的体积9. (2013年高考山东卷 (文如图 , 四棱锥 P ABCD -中 , , AB AC AB PA⊥⊥, , 2AB CD AB CD=∥ , , , , ,E F G M N 分别为, , , ,PB AB BC PD PC 的中点(Ⅰ求证 :CE PAD∥平面 ; (Ⅱ求证 :EFG EMN⊥平面平面【答案】10. (2013年高考四川卷(文如图 , 在三棱柱11ABC A B C-中 , 侧棱1AA ⊥底面ABC , 122AB AC AA ===, 120BAC ∠= , 1, D D 分别是线段 11, BC B C 的中点 , P 是线段 AD 上异于端点的点 .(Ⅰ在平面 ABC 内 , 试作出过点 P 与平面 1A BC 平行的直线 l , 说明理由 , 并证明直线 l ⊥平面11ADD A ;(Ⅱ设 (Ⅰ中的直线 l 交 AC 于点 Q , 求三棱锥 11A QC D -的体积 .(锥体体积公式 :13V Sh =, 其中 S 为底面面积 , h 为高【答案】解:(Ⅰ如图 , 在平面 ABC 内 , 过点 P 作直线 BC l //, 因为 l 在平面 BC A 1外 , BC 在平面 BC A 1内 ,由直线与平面平行的判定定理可知 , //l 平面 1A BC .由已知 , AC AB =, D 是 BC 中点 , 所以 BC ⊥ AD , 则直线 AD l ⊥, 又因为1AA ⊥底面 ABC , 所以 l AA ⊥1,又因为 AD , 1AA 在平面 11A ADD 内 , 且 AD 与 1AA 相交 , 所以直线⊥l 平面11A ADD(Ⅱ过 D 作 AC DE ⊥于 E , 因为 1AA ⊥平面 ABC , 所以 DE AA ⊥1,又因为 AC , 1AA 在平面 C C AA 11内 , 且 AC 与 1AA 相交 , 所以⊥DE 平面C C AA 11,由 2==AC AB ,∠ BAC ︒=120, 有 1=AD ,∠ DAC ︒=60, 所以在△ ACD 中 , 2 323==AD DE , 又 1211111=⋅=∆AA C A S AQC , 所以 631233*********=⋅⋅=⋅==--QC A QC A D D QC A S DE V V 因此三棱锥 11A QC D -的体积为 6311. (2013年高考湖北卷(文如图 , 某地质队自水平地面 A , B , C 三处垂直向地下钻探 , 自 A 点向下钻到A 1处发现矿藏 , 再继续下钻到 A 2处后下面已无矿 , 从而得到在 A 处正下方的矿层厚度为 121A A d =. 同样可得在 B , C 处正下方的矿层厚度分别为 122B B d =, 123C C d =, 且 123d d d <<. 过AB , AC 的中点 M , N 且与直线 2AA 平行的平面截多面体 111222A B C A B C -所得的截面 DEFG 为该多面体的一个中截面 , 其面积记为 S 中 .(Ⅰ证明 :中截面 DEFG 是梯形 ;(Ⅱ在△ ABC 中 , 记 BC a =, BC 边上的高为 h , 面积为 S . 在估测三角形 ABC 区域内正下方的矿藏储C 11BC B 1量 (即多面体 11122A B C A B C -的体积 V 时 , 可用近似公式 V S h =⋅估中来估算 . 已知1231( 3V d d d S =++, 试判断 V 估与 V 的大小关系 , 并加以证明 .【答案】 (Ⅰ依题意 12A A ⊥平面 ABC , 12B B ⊥平面 ABC , 12C C ⊥平面ABC ,所以 A 1A 2∥ B 1B 2∥ C 1C 2. 又 121A A d =, 122B B d =, 123C C d =, 且 123d d d << . 因此四边形 1221A A B B 、 1221A A C C 均是梯形 .由 2AA ∥平面 MEFN , 2AA ⊂平面 22AA B B , 且平面 22AA B B 平面 MEFN ME =, 可得 AA 2∥ ME , 即 A 1A 2∥ DE . 同理可证 A 1A 2∥ FG , 所以 DE ∥ FG . 又 M 、 N 分别为 AB 、 AC 的中点 ,则 D 、 E 、 F 、 G 分别为 11A B 、 22A B 、 22A C 、 11A C 的中点 , 即DE 、 FG 分别为梯形 1221A A B B 、 1221A A C C 的中位线 .因此 12121211( ( 22DE A A B B d d =+=+, 12121311( ( 22FG A A C C d d =+=+,而 123d d d <<, 故 DE FG <, 所以中截面 DEFG 是梯形 . (Ⅱ V V <估 . 证明如下 :由 12A A ⊥平面 ABC , MN ⊂平面 ABC , 可得 12A A MN ⊥.而 EM ∥ A 1A 2, 所以 EM MN ⊥, 同理可得 FN MN ⊥.由 MN 是△ ABC 的中位线 , 可得 1122MN BC a ==即为梯形 DEFG 的高 ,因此 13121231( (2 22228DEFG d d d d a aS S d d d ++==+⋅=++中梯形 ,即 123(2 8ahV S h d d d =⋅=++估中 . 又 12S ah =, 所以 1231231( ( 36ahV d d d S d d d =++=++. 第 20题图于是 1231232131( (2 [( (]6824ah ah ahV V d d d d d d d d d d -=++-++=-+-估 . 由 123d d d <<, 得 210d d ->, 310d d ->, 故 V V <估 .12. (2013年高考课标Ⅱ卷(文如图,直三棱柱 111ABC A B C -中, D , E 分别是AB , 1BB 的中点, 。
1.(安徽理科第6题、文科第8题)(A ) 48 (B)32+817 (C) 48+8 (C) 48+817 (D) 80解析:由三视图可知几何体是底面是等腰梯形的直棱柱.底面等腰梯形的上底为2,下底为4,高为4,两底面积和为()12244242´+´=,四个侧面的面积为()44221724817++=+,所以几何体的表面积为48817+故选C. 2.(安徽理科第17题,文科第19题,本小题满分13分)分) 如图,A B E D F C 为多面体,平面ABED 与平面A C F D 垂直,点O 在线段A D 上,1O A =,OD =,ODE ODF OAC OAB D D D D ,,,都是正三角形。
都是正三角形。
(Ⅰ)证明直线BC EF ∥;(Ⅱ)求棱锥F OBED -的体积. (1)证明:分别去OA ,OD 的中点M ,N ,连接CM ,BM,BMEN,FN,设EB和DA相交于G,由于OA=1,EN,FN,设EB和DA相交于G,由于OA=1,OD=2,则EN BM //,且EN BM 21=,则M 为GN 的中点,所以GA=1 同理可得:G 为FC 和DA 的交点。
则有C 为FG 的中点,B 为EG 的中点。
所以的中点。
所以BC 是EFG D 的中位线。
故BC EF ∥。
(2)四边形OBED 是梯形,其中OB=1,DE=2,底边上的高为323260sin =×=°OE2333)21(2131331=××+×=×=\-O B E D O B E DF S V3.(北京理科第7题)某四面体的三视图如图所示,该四面体四个面的面积中,最大的是某四面体的三视图如图所示,该四面体四个面的面积中,最大的是某四面体的三视图如图所示,该四面体四个面的面积中,最大的是(A) 8 (B) 62 (C)10 (D) 82解:根据三视图可知,该四面体满足:^SA 平面ABC ,ABC D 中 °=Ð90ABC ,3,4===BC AB SA ,四个三角形都是直角三角形,四个三角形都是直角三角形 6,26,8,10,5,24======D D D D ABC SBC SAB SAC S S S S AC SB4.(北京理科第16题)如图,在四棱锥P ABCD -中,P A ^平面ABCD ,底面ABCD 是菱形,2,60A B B A D =Ð=.(Ⅰ)求证:BD ^平面;P A C(Ⅱ)若,P A A B =求P B 与A C 所成角的余弦值;所成角的余弦值; (Ⅲ)当平面P B C 与平面P D C 垂直时,求P A 的长的长. .解:(1)因为ABCD 是菱形,则对角线互相垂直,BD AC ^\,又^PA 平面ABC所以BD ^平面PAC ,(2)设O BD AC = ,3,1,2,60=====°=ÐCO AO BO AB PA BAD以以O 为坐标原点以OC OB ,所在的直线分别为y x ,轴建立空间直角坐标系xyz O -则)0,3,0(),0,1,1(,0,3,0(),2,3,0(C B A P )--,)2,3,1(-=\PB ,)0,32,0(=AC 设AC PB ,的夹角为q ,则4632226||||cos=´=×=AC PB AC PB q(3)由()由(22)知),0,3,1(-=BC 设)0)(,3,0(>t t P 设平面PBC 的法向量为),,(z y x m =,则0,0=×=×m BP m BC所以ïîïíì=+--=+-0303tz y x y x ,令3=y ,则t z x 6,3==,)6,3,3(t m =\同理,平面PDC 的法向量为)6,3,3(tn -=,因为平面PBC ^平面PDC 所以0=×n m ,即03662=+-t,解得6=t ,6=\PA5.(北京文科第5题)某四棱锥的三视图如图所示,该四棱锥的表面积是锥的表面积是(A)32 (B)16+162 (C)48 (D)16322+6.(北京文科17)如图,在四面体PABC 中,,,P C A B P A B C ^^点,,,D E F G 分别是棱,,,A PA CB C P B的中点。
2013高考数学试卷及答案一、选择题1.若函数 $f(x)=\\frac{\\sqrt{1-x^2}}{\\sqrt{1+x^2}}$,则f(−1)+f(0)+f(1)的值为A. 0B. 1C. 2D. 3答案: C. 22.已知函数 $y=\\log_2{x}$,则 $y^2-4y-5 \\leq 0$ 的解集为A. (-∞, -1] ∪ [5, +∞)B. [-1, 5]C. [-1, 1]D. (1, 5)答案: B. [-1, 5]3.如图所示,在ΔABC 中,$AD \\perp BC$,则 $\\frac{BD}{CD} =$imageimageA. $\\frac{2}{3}$B. $\\frac{3}{7}$C. $\\frac{5}{3}$D. $\\frac{3}{2}$答案: A. $\\frac{2}{3}$二、填空题4.设a1=3,$a_2=\\frac{7}{4}$,a n+2=2a n+1+a n,则a10=答案: $\\frac{535}{64}$5.设 $f(x)=\\sin^3{x}-\\cos^3{x}$,则 $f(\\frac{\\pi}{6})=$答案: $\\frac{1}{4}$三、解答题1. 计算题6.已知数列 $\\{a_n\\}$,a1=2,$a_{n+1}=2a_n+3(n\\geq1)$,求a n 的通项公式。
解答:首先我们观察数列的前几项,可以发现:a1=2 $a_2 = 2 \\cdot 2 + 3 \\cdot 1 = 7$ $a_3 = 2 \\cdot 7 + 3 \\cdot 2 = 20$定义数列 $\\{b_n\\}$,$b_n = a_n + \\frac{3}{2} \\cdot n$,我们来观察数列 $\\{b_n\\}$: $b_1 = 2 + \\frac{3}{2} \\cdot 1 = \\frac{7}{2}$ $b_2 = 7 + \\frac{3}{2} \\cdot 2 = 12$ $b_3 = 20 + \\frac{3}{2} \\cdot 3 =\\frac{29}{2}$我们可以发现数列 $\\{b_n\\}$ 是一个等差数列,公差为$\\frac{3}{2}$。
实用精品文献资料分享
2013年全国高考理科数学直线与圆试题汇编
2013年全国高考理科数学试题分类汇编8:直线与圆
一、选择题 1 .(2013年上海市春季高考数学试卷(含答案))直线的一个方向向量是() A. B. C. D.【答案】D 2 .(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD版含答案))已知点 ,直线将△ 分割为面积相等的两部分,则的取值范围是() A. B. ( C) D.【答案】B 3 .(2013年普通高等
学校招生统一考试山东数学(理)试题(含答案))过点作圆的两
条切线,切点分别为 , ,则直线的方程为() A. B. C. D.【答案】A
4 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知点() A. B. C. D.【答案】C
5 .(2013年高考江西卷(理))如图,半径为1的半圆O与等边三角形ABC夹在两平行线, 之间 // , 与半圆相交于F,G两点,与三角形ABC两边相交于E,D两点,设弧的长为 , , 若从平行移动到 ,则
函数的图像大致是【答案】D 6 .(2 013年高考湖南卷(理))在等腰三角形中, 点是边上异于的一点,光线从点出发,经发射
后又回到原点 (如图 ).若光线经过的中心,则等()
A. B. C. D.【答案】D 二、解答题 7 .(2013年普通高等学
校招生全国统一招生考试江苏卷(数学)(已校对纯WORD版含附加题))本小题满分14分.如图,在平面直角坐标系中,点 ,直线 ,设圆的
半径为 ,圆心在上。
2013年全国高考理科数学试题分类汇编7:立体几何一、选择题1错误!未指定书签。
.(2013年高考新课标1(理))如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为( )A .35003cm π B .38663cm π C .313723cm π D .320483cm π2错误!未指定书签。
.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是( )A .若αβ⊥,m α⊂,n β⊂,则m n ⊥B.若//αβ,m α⊂,n β⊂,则//m nC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m α⊥,//m n ,//n β,则αβ⊥3错误!未指定书签。
.(2013年上海市春季高考数学试卷(含答案))若两个球的表面积之比为1:4,则这两个球的体积之比为 ( )A .1:2B .1:4C .1:8D .1:164错误!未指定书签。
.(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知正四棱柱1111ABCD A B C D -中12AA AB =,则CD 与平面1BDC 所成角的正弦值等于( )A .23B .33C .23D .13错误!未指定书签。
.5.(2013年高考新课标1(理))某几何体的三视图如图所示,则该几何体的体积为( )A .168π+B .88π+C .1616π+D .816π+错误!未指定书签。
6.(2013年高考湖北卷(理))一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为1V ,2V ,3V ,4V ,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有 ( ) A .1243V V V V <<<B .1324V V V V <<<C .213V V V <<7错误!未指定书签。
1、(2013新课标I 文11)某几何函数的三视图如图所示,则该几何的体积为
(A )16+8π (B )8+8π
(C )16+16π (D )8+16π
2、(2013北京理14)如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 为BC 的中点,点P 在
线段D 1E 上,点P 到直线CC 1的距离的最小值为 .
3、(2013新课标I 文)19. 如图,三棱柱ABC-A 1B 1C 1中,CA=CB ,AB=A A 1,∠BA A 1=60°. (Ⅰ)证明AB ⊥A 1C;(Ⅱ)若AB=CB=2, A 1C=6,求三棱柱ABC-A 1B 1C 1的体积
4、(2013北京理17.)
如图,在三棱柱ABC -A 1B 1C 1中,AA 1C 1C 是边长为4的正方形.平面AB C ⊥平面AA 1C 1C ,AB=3,BC=5.
(Ⅰ)求证:AA 1⊥平面ABC ; (Ⅱ)....(Ⅲ)....
5、(2013广东卷理6)设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是
A .若α⊥β,m ⊂α,n ⊂β,则m ⊥ n
B .若α∥β,m ⊂α,n ⊂β,则m ∥n
C .若m ⊥ n ,m α,n ⊂β,则α⊥β
D .若m α,m ∥n ,n ∥β,则α⊥β
6、(2013新课标Ⅰ理4)已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β。
直线l 满足l ⊥m ,l ⊥n ,l ⊄β,则(
) (A )α∥β且l ∥α (B )α⊥β且l ⊥β
(C )α与β相交,且交线垂直于l (D )α与β相交,且交线平行于l
7、(2013重庆理5)某几何体的三视图如右图图所示,则该几何体的体积为( )
A 、
5603 B 、5803
C 、200
D 、240 8、(2013江西理8)如果,正方体的底面与正四面体的底面在同一平面α上,且AB//CD ,正方体的六个面所在的平面与直线CE,EF 相交的平面个数分别记为m ,n ,那么m+n=( )
A.8
B.9
C.10
D.11
9、(2013江苏理16)如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,
BC AB ⊥,AB AS =,过A 作SB AF ⊥,垂足为F ,
点G E ,分别是棱SC SA ,的中点。
求证:(1)平面//EFG 平面ABC ;
(2)SA BC ⊥。
10、(2013新课标Ⅱ文18)如图,直三棱柱ABC-A 1B 1C 1中,D,E 分别是AB ,BB 1的中点.
(1) 证明: BC 1//平面A 1CD;
(2) 设AA 1= AC=CB=2,AB=错误!未找到引用源。
,求三棱锥C 一A 1DE 的体积.
A B C
S
G F E A
B C C 1
A 1
B 1
2013高考数学试题 立体几何直线与圆 选做 GR27B
11、(2013湖南文17)如图2.在直菱柱ABC-A 1B 1C 1中,∠ABC=90°,AB=AC=错误!未找到引用源。
,AA 1=3,D 是BC 的中点,点E 在棱BB 1上运动。
(I ) 证明:AD ⊥C 1E ;
(II ) 当异面直线AC ,C 1E 所成的角为60°时,
求三棱锥C 1 - A 1B 1E 的体积
12、(2013陕西卷文)已知点),(b a M 在圆221:O x y +=外, 则直线1=+by ax 与圆O 的位置关系是
(A) 相切 (B) 相交 (C) 相离 (D) 不确定
13、(2013江西理9)过点)0,2(引直线l 与曲线21x y -=相交于B A ,两点,O 为坐标原点,当AOB ∆的面积取最大值时,直线l 的斜率等于
.A 3
3 .B 33- .C 33± .D 3- 14、(2013山东卷文13)过点)1,3(作圆4)2()2(22=-+-y x 的弦,其中最短的弦长为
15、(2013天津卷文5)已知过点)2,2(P 的直线与圆5)1(22=+-y x 相切,且与直线01=+-y ax 垂直,则=a
.A 21- .B 1 .C 2 .D 2
1 16、(2013重庆卷文4)设P 是圆4)1()3(22=-+-y x 上的动点,Q 是直线3-=x 上的动点,则PQ 的最小值为
.A 6 .B 4 .C 3 .D 2
17、(2013湖北卷文14)已知圆O :225x y +=,直线l :cos sin 1x y θθ+=(π02
θ<<).设圆O 上到直线l 的距离等于1的点的个数为k ,则k = .
18、(2013浙江卷文13)直线y=2x+3被圆x 2+y 2-6x-8y=0所截得的弦长等于___ _______.
19、(2013山东理9)过点(3,1)作圆(x-1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为
(A )2x+y-3=0 (B )2X-Y-3=0 (C )4x-y-3=0 (D )4x+y-3=0
20、(2013江苏卷17)如图,在平面直角坐标系xOy 中,点)3,0(A ,直线42:-=x y l .设圆C 的半径为1,圆心在l 上.
(1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线,求切线的方程;
(2)若圆C 上存在点M ,使MO MA 2=,求圆心C 的横坐标a 的取值范围.
21.(2013新课标2卷文20)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为32。
(1)求圆心的P 的轨迹方程;
(2)若P 点到直线x y =的距离为
2
2,求圆P 的方程。