3da高二数学圆锥曲线测试题以及详细答案
- 格式:doc
- 大小:1.82 MB
- 文档页数:14
高二数学圆锥曲线与方程试题答案及解析1.过双曲线的右焦点有一条弦,,是左焦点,那么△的周长为()A.28B.22C.14D.12【答案】A【解析】如图:由双曲线的定义得:∴△的周长为:。
【考点】双曲线的定义。
点评:此类问题用数形结合的思想来作,先直观观察,的解题思路,再利用双曲线的定义来做。
2.点到曲线(其中参数)上的点的最短距离为()A.0B.1C.D.2【答案】B【解析】由得曲线方程为:,点是抛物线的焦点,根据抛物线上的点到焦点的距离等于到准线的距离,可得点到的顶点的距离最短,∴点到曲线上的点的最短距离为1。
【考点】抛物线的定义及其标准方程。
点评:本题综合性较强,考查了学生对知识的灵活应用能力。
本题把到焦点的距离转化成到准线的距离来做是一种常用的方法。
3.若AB为抛物线y2=2p x (p>0)的动弦,且|AB|=a (a>2p),则AB的中点M到y轴的最近距离是()A.a B.p C.a+p D.a-p【答案】D【解析】如图,当直线AB过焦点F时,过点M作MH⊥Y轴于C交准线L于H ,则AB的中点M到y轴的最近距离即为|MC| .由|MH|=(|AE|+|BF|)=,∴|MC|=。
【考点】直线与抛物线的相交弦问题。
点评:利用数形结合,先直观观察,确定位置,利用抛物线定义把到焦点的距离转化为到准线的距离解决。
4.若抛物线的焦点与椭圆的右焦点重合,则的值为()A.B.C.D.4【答案】D【解析】由椭圆的方程可得:a2=6,b2=2,∴c2=4,即c=2,∴椭圆的右焦点坐标为(2,0)∵抛物线y2=2px的焦点与椭圆的右焦点重合,∴抛物线y2=2px的焦点为(2,0),即=2,∴p=4.故选D。
【考点】本题主要考查圆锥曲线的几何性质。
点评:基础题,重在理解题意。
5.(12分)已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,右顶点为,设点.(1)求该椭圆的标准方程;(2)若是椭圆上的动点,求线段中点的轨迹方程;【答案】(1) ; (2) .【解析】(1)由已知得椭圆的半长轴a=2,半焦距c=,则半短轴b=1.又椭圆的焦点在x轴上, ∴椭圆的标准方程为(2)设线段PA的中点为M(x,y) ,点P的坐标是(x0,y),由得:由,点P在椭圆上,得,∴线段PA中点M的轨迹方程是.【考点】本题主要考查椭圆的标准方程、椭圆的几何性质及中点坐标公式.点评:“相关点法”是求轨迹方程的基本方法,此类题目条件特征明显,关键是确定相关点的坐标关系。
高二数学圆锥曲线综合试题答案及解析1.点到图形上每一个点的距离的最小值称为点到图形的距离,那么平面内到定圆的距离与到定点的距离相等的点的轨迹不可能是()A.圆B.椭圆C.双曲线的一支D.直线【答案】D【解析】设动点为M,到圆C的距离记为MB,直线MB过圆心,当定点A是圆心C时,MB=MA,M为AB中点轨迹为圆;当定点A在圆内(圆心除外)时,MC+MA=r>AC,轨迹为椭圆;当定点A在圆外时,MC-MA=r<AC,轨迹为双曲线的一支,答案选D。
考点:圆锥曲线的定义2.已知、是椭圆的两个焦点,为椭圆上一点,且,若的面积为9,则的值为()A.1B.2C.3D.4【答案】【解析】根据椭圆定义知①,根据,知②,③,所以,可得.【考点】椭圆定义,直角三角形的面积及勾股定理.3.若存在过点的直线与曲线和都相切,则等于()A.或B.或C.或D.或【答案】A【解析】设直线与曲线相切的切点为,利用导数的几何意义得:, 解得或,当时,直线为轴,与相切,即,解得,当时,直线为,与抛物线联立,整理得:,因为相切,所以,解得,故选A.【考点】1.导数的几何意义;2.求切线方程.4.若是任意实数,则方程所表示的曲线一定不是()A.直线B.双曲线C.抛物线D.圆【答案】C【解析】当时,即时,曲线为直线,当时,曲线为圆,当时,曲线为双曲线.故选C.【考点】圆锥曲线的标准方程.5.若是2和8的等比中项,则圆锥曲线的离心率是()A.B.C.或D.【答案】C【解析】由题可知,则,当时,圆锥曲线为椭圆,则,离心率,当时,圆锥曲线为双曲线,则,离心率.所以选C.【考点】本题主要考查圆锥曲线的标准方程,离心率.6.已知椭圆:的离心率,原点到过点,的直线的距离是.(1)求椭圆的方程;(2)若椭圆上一动点关于直线的对称点为,求的取值范围;(3)如果直线交椭圆于不同的两点,,且,都在以为圆心的圆上,求的值.【答案】(1)(2)(3)【解析】(1)由截距式可得直线的方程,根据点到线的距离公式可得间的关系,又因为,解方程组可得的值。
第一学期高二年级圆锥曲线测试、选择题(本大题共 10小题,每小题5分,共50 分)2 爲 1 ( a >b>0)离心率为,则双曲线 b 2 1. 椭圆爲 a A.- 4 B . 2. 抛物线顶点在原点,焦点在 A. x 2 8y 2 X~2 a 2 y b 2 1的离心率为3•圆的方程是(x — cos A. 2、" 2 4.若过原点的直线与圆 A. y 25.椭圆x 9. 5 2 y 轴上,其上一点 2 3 P(m , 1)到焦点距离为5,则抛物线方程为 ( 2 x 2 8y C. 1 )2+(y — sin )2= ,当 从0变化到2时,动圆所扫过的面积是 B . x 2 16y C. (1 , 2) x 2+ y 2 + 4x +3=0相切,若切点在第三象限,唾x3B . y .. 3x C. y 1的焦点为F i 和F 2,点P 在椭圆上, 如果线段 2 D. x 16yD (1邛2 则该直线的方程是 D 43 D. y T x PF i 中点在y 轴上, 那么|PF i | A. 7倍 B . 5倍 C. 4倍 D. 3倍以原点为圆心,且截直线 3x 4y 15 0所得弦长为 8的圆的方程是 ( A. 2 x 2 2 y 5 B . x 2 y 2 2 25 C. x y 4 D. 2 2x y 16 曲线 x 2cos (为参数)上的点到原点的最大距离为( y sin A. 1 B . 2 C. 2 D. .3( 6. 7.如果实数 (X 、 2 12是|PF 2|的 y 满足等式(x 2)2 A.- 23,贝V —最大值 x 仝 2 D. ..3 过双曲线 2Z=1 2 的右焦点F 作直线 交双曲线于A B 两点,若 | AB =4 , 则这样的直 线l 有( ) A. 1条 10.如图,过抛物线C. 3条 y 2 C,若 BC 2BF ,且 AF B . 2条 2px (p 0)的焦点F 的直线l 交抛物线于点 3 ,则此抛物线的方程为D. 4条 A . B ,交其准线于点( )2y2C y2D. 3x 9x、填空题(本大题共4小题,每小题6分,共24 分)11•椭圆的焦点是F i (- 3, 0)F2 (3, 0), P为椭圆上一点,且|F I F2|是|PF i|与|PF2|的等差中项,则椭圆的方程为____________________________________ .12.若直线mx ny 3 0与圆x2 y2 3没有公共点,则m,n满足的关系式为_____________________ .2 2以(m,n)为点P的坐标,过点P的一条直线与椭圆J L L 1的公共点有个.7 313.设点P是双曲线x2 1 上一点,焦点F (2, 0),点A (3, 2),使|PA+ 1| PF 有最2小值时,则点P的坐标是 ____________________________________ .214. AB是抛物线y=x的一条弦,若AB的中点到x轴的距离为1,则弦AB的长度的最大值为.________三、解答题(本大题共6小题,共76分)215. P为椭圆251上一点,F1、F2为左右焦点,若F1PF2 60 (1)求厶F1PF2的面积;(2)求P点的坐标.(12分)16.已知抛物线y2 4x ,焦点为F,顶点为O,点P在抛物线上移动,Q是OP的中点,M是FQ的中点,求点M的轨迹方程.(12分)17.已知焦点在x轴上的双曲线C的两条渐近线过坐标原点,且两条渐近线与以点A(0,.. 2)为圆心,1为半径的圆相切,又知C的一个焦点与A关于直线y x对称.(1)求双曲线C的方程;(2)设直线y mx 1与双曲线C的左支交于A,B两点,另一直线I经过M(—2, 0)及AB的中点,求直线I在y轴上的截距b的取值范围.(12分)18.如图,过抛物线y2 2px(p 0)上一定点P(X o,y。
高二数学圆锥曲线试题答案及解析1.已知椭圆的离心率,右焦点为,方程的两个实根,,则点()A.必在圆内B.必在圆上C.必在圆外D.以上三种情况都有可能【答案】A【解析】本题只要判断与2的大小,时,点在圆上;时,点在圆内;时,点在圆外.由已知,,椭圆离心率为,从而,点在圆内,故选A.【考点】1.点与圆的位置关系;2.二次方程根与系数的关系.2.若抛物线y2=4x上的点A到其焦点的距离是6,则点A的横坐标是( )A.5B.6C.7D.8【答案】A【解析】由抛物线的方程可知抛物线的准线为,根据抛物线的定义可知点到其准线的距离也为6,即,所以。
故A正确。
【考点】抛物线的定义。
3.设一个焦点为,且离心率的椭圆上下两顶点分别为,直线交椭圆于两点,直线与直线交于点.(1)求椭圆的方程;(2)求证:三点共线.【答案】(1)(2)详见解析.【解析】(1)利用椭圆的定义和几何性质;(2)直线与圆锥曲线相交问题,可以设而不求,联立直线与椭圆方程,利用韦达定理结合题目条件来证明.试题解析:(1)由题知,,∴,3分∴椭圆.4分(2) 设点,由(1)知∴直线的方程为,∴.5分∴,,8分由方程组化简得:,,.10分∴,∴三点共线.12分【考点】1.椭圆的标准方程;2.直线与圆锥曲线相交问题;3.韦达定理.4.已知双曲线的右焦点为,若过且倾斜角为的直线与双曲线的右支有且只有一个交点,则双曲线离心率的取值范围是( )A.B.C.D.【答案】A【解析】由渐进线的斜率.又因为过且倾斜角为的直线与双曲线的右支有且只有一个交点,所以.所以.故选A.本小题关键是对比渐近线与过焦点的直线的斜率的大小.【考点】1.双曲线的渐近线.2.离心率.3.双曲线中量的关系.5.点P是抛物线y2 = 4x上一动点,则点P到点(0,-1)的距离与到抛物线准线的距离之和的最小值是 .【答案】【解析】抛物线y2 = 4x的焦点,点P到准线的距离与点P到点F的距离相等,本题即求点P到点的距离与到点的距离之和的最小值,画图可知最小值即为点与点间的距离,最小值为.【考点】抛物线的定义.6.准线方程为x=1的抛物线的标准方程是()A.B.C.D.【答案】A【解析】由题意可知:=1,∴p=2且抛物线的标准方程的焦点在x轴的负半轴上故可设抛物线的标准方程为:y2=-2px,将p代入可得y2=-4x.选A.【考点】抛物线的性质点评:本题主要考查抛物线的基本性质以及计算能力.在涉及到求抛物线的标准方程问题时,一定要先判断出焦点所在位置,避免出错.7.动点到两定点,连线的斜率的乘积为(),则动点P在以下哪些曲线上()(写出所有可能的序号)①直线②椭圆③双曲线④抛物线⑤圆A.①⑤B.③④⑤C.①②③⑤D.①②③④⑤【答案】C【解析】由题设知直线PA与PB的斜率存在且均不为零所以kPA •kPB=,整理得,点P的轨迹方程为kx2-y2=ka2(x≠±a);①当k>0,点P的轨迹是焦点在x轴上的双曲线(除去A,B两点)②当k=0,点P的轨迹是x轴(除去A,B两点)③当-1<k<0时,点P的轨迹是焦点在x轴上的椭圆(除去A,B两点)④当k=-1时,点P的轨迹是圆(除去A,B两点)⑤当k<-1时,点P的轨迹是焦点在y轴上的椭圆(除去A,B两点).故选C.【考点】圆锥曲线的轨迹问题.点评:本题考查圆锥曲线的轨迹问题,解题时要认真审题,注意分类讨论思想的合理运用.8.已知F1,F2是椭圆 (a>b>0)的左,右焦点,点P是椭圆在y轴右侧上的点,且∠F1PF2=,记线段PF1与y轴的交点为Q,O为坐标原点,若△F1OQ与四边形OF2PQ的面积之比为1∶2,则该椭圆的离心率等于【答案】-1【解析】根据题意,由于F1,F2是椭圆 (a>b>0)的左,右焦点,点P是椭圆在y轴右侧上的点,且∠F1PF2=,且有△F1OQ与四边形OF2PQ的面积之比为1∶2,则可知为点P到x轴的距离是Q到x轴距离的3:2倍,那么结合勾股定理可知该椭圆的离心率等于-1 ,故答案为-1 。
高二数学圆锥曲线试题答案及解析1.已知动圆过定点F(0,2),且与定直线L:y=-2相切.求动圆圆心的轨迹C的方程。
【答案】【解析】动圆圆心到定点的距离与到定直线(切线)的距离相等(等于半径),由抛物线的定义可知动点的轨迹是抛物线,易得方程为.试题解析:依题意,圆心的轨迹是以F(0,2)为焦点,L:y=-2为准线的抛物线上因为抛物线焦点到准线距离等于4, 所以圆心的轨迹方程是x2=8y.【考点】抛物线的定义与方程2.已知椭圆上的点到左右两焦点的距离之和为,离心率为. (1)求椭圆的方程;(2)过右焦点的直线交椭圆于两点,若轴上一点满足,求直线的斜率的值.【答案】(1);(2).【解析】(1)根据与离心率可求得a,b,c的值,从而就得到椭圆的方程;(2)设出直线的方程,并与椭圆方程联立消去y可得到关于x的一元二次方程,然后利用中点坐标公式与分类讨论的思想进行解决.试题解析:(1),∴,,∴,∴,椭圆的标准方程为.(2)已知,设直线的方程为,-,联立直线与椭圆的方程,化简得:,∴,,∴的中点坐标为.①当时,的中垂线方程为,∵,∴点在的中垂线上,将点的坐标代入直线方程得:,即,解得或.②当时,的中垂线方程为,满足题意,∴斜率的取值为.【考点】1、椭圆的方程及几何性质;2、直线与椭圆的位置关系.3.已知曲线,求曲线过点的切线方程。
【答案】【解析】因为点不在曲线上,故先设所求切线的切点为,再求的导数则,由点斜式写出所求切线方程,再将切线上的已知点代入切线方程可求出,从而所求出切线方程.试题解析:,点不在曲线上,设所求切线的切点为,则切线的斜率,故所求的切线方程为.将及代入上式得解得:所以切点为或.从而所求切线方程为【考点】1、过曲线外一点求曲线的切线方程;2、导数的几何意义.4.已知点是双曲线的左焦点,过且平行于双曲线渐近线的直线与圆交于点,且点在抛物线上,则该双曲线的离心率是()A.B.C.D.【答案】D【解析】根据题意,由于点是双曲线的左焦点,过且平行于双曲线渐近线的直线与圆交于点(x,y),直线方程为,与联立方程组,并且有,,解得双曲线的离心率是,故选D.【考点】双曲线的性质点评:主要是考查了双曲线与抛物线的几何性质的运用,属于基础题。
高二数学圆锥曲线与方程试题答案及解析1.若点在椭圆上,、分别是椭圆的两焦点,且,则的面积是()A.2B.1C.D.【答案】B【解析】主要考查椭圆的定义、椭圆的几何性质。
解:a=,b=1,c=1由椭圆的定义得,=2,由勾股定理得,所以(,,故的面积是1,选B。
2.过抛物线y 2=4x的焦点作直线,交抛物线于A(x1, y1) ,B(x2, y2)两点,如果x1+ x2=6,那么|AB|= ()A.8B.10C.6D.4【答案】A【解析】由抛物线的焦半径公式得=,故选A。
【考点】本题主要考查抛物线的焦半径表达式应用。
点评:基础题,关键是记熟抛物线的焦半径公式。
3.抛物线y =2x2的一组斜率为k 的平行弦的中点的轨迹方程是.【答案】()【解析】设弦方程为,代入抛物线方程整理得,判别式。
由韦达定理得弦中点为(),所以为常数,由知。
【考点】本题主要考查直线与抛物线的位置关系。
点评:解法中巧妙地利用根与系数的关系,确定得到中点坐标,明确了弦中点的轨迹方程,本题易错漏掉这一限制条件。
4. P是抛物线y 2=4x上一动点,以P为圆心,作与抛物线准线相切的圆,则这个圆一定经过一个定点Q,点Q的坐标是.【答案】(1,0)【解析】抛物线y 2=4x的焦点为(1,0),准线方程为=-1。
因为以P为圆心,作与抛物线准线相切的圆,所以P到直准线的距离为半径,由抛物线定义知到焦点距离也为半径,所以所作圆必过焦点,即圆一定经过一个定点Q(1,0)。
【考点】本题主要考查抛物线的定义及几何性质。
点评:充分运用抛物线定义,数形结合,使问题巧妙得解。
5.已知动圆M与直线y =2相切,且与定圆C:外切,求动圆圆心M的轨迹方程.(12分)【答案】【解析】设动圆圆心为M(x,y),半径为r,则由题意可得M到C(0,-3)的距离与到直线y=3的距离相等,由抛物线的定义可知:动圆圆心的轨迹是以C(0,-3)为焦点,以y=3为准线的一条抛物线,其方程为.【考点】本题主要考查直线与圆、圆与圆的位置关系及抛物线的定义、标准方程、几何性质。
圆锥曲线测试题一、选择题:1.动点M 的坐标满足方程|12512|1322-+=+y x y x ,那么动点M 的轨迹是〔 〕 A. 抛物线 B.双曲线 C. 椭圆D.以上都不对2.设P 是双曲线19222=-y a x 上一点,双曲线的一条渐近线方程为1,023F y x =-、F2分别是双曲线的左、右焦点,假设5||1=PF ,那么=||2PF 〔 〕A. 1或5B. 1或9C. 1D. 93、设椭圆的两个焦点分别为F1、、F2,过F2作椭圆长轴的垂线交椭圆于点P ,假设△F1PF2为等腰直角三角形,那么椭圆的离心率是〔 〕.A. 22 B. 212- C. 22- D.21-4.过点(2,-1)引直线与抛物线2x y =只有一个公共点,这样的直线共有( )条A. 1B.2C. 3D.45.点)0,2(-A 、)0,3(B ,动点2),(y PB PA y x P =⋅满足,那么点P 的轨迹是 ( )A .圆B .椭圆C .双曲线D .抛物线6.如果椭圆193622=+y x 的弦被点(4,2)平分,那么这条弦所在的直线方程是〔 〕A 02=-y xB 042=-+y xC 01232=-+y xD 082=-+y x7、无论θ为何值,方程1sin 222=⋅+y x θ所表示的曲线必不是〔 〕 A. 双曲线B.抛物线C. 椭圆D.以上都不对8.假设抛物线)0(22≠=a ax y 的焦点与双曲线1322=-y x 的左焦点重合,那么a 的值为 A .2-B .2C .4-D .49.点F 、A 分别为双曲线C :22221x y a b-=(0,0)a b >>的左焦点、右顶点,点(0,)B b 满足0FB AB ⋅=,那么双曲线的离心率为A B D 10.方程02=+ny mx )0(122>>=+n m ny mx 的曲线在同一坐标系中的示意图应是〔 〕A B D二、填空题:11.对于椭圆191622=+y x 和双曲线19722=-y x 有以下命题: ①椭圆的焦点恰好是双曲线的顶点;②双曲线的焦点恰好是椭圆的顶点; ③ 双曲线与椭圆共焦点;④椭圆与双曲线有两个顶点一样. 其中正确命题的序号是.12. 假设中心在坐标原点,对称轴为坐标轴的椭圆经过两点〔4,0〕和〔0,2〕,那么该椭圆的离心率等于。
圆锥曲线测试题一、选择题:1.已知动点M 的坐标满足方程|12512|1322-+=+y x y x ,则动点M 的轨迹是( ) A. 抛物线 B.双曲线 C. 椭圆 D.以上都不对2.设P 是双曲线19222=-y a x 上一点,双曲线的一条渐近线方程为1,023F y x =-、F2分别是双曲线的左、右焦点,若5||1=PF ,则=||2PF ( )A. 1或5B. 1或9C. 1D. 93、设椭圆的两个焦点分别为F1、、F2,过F2作椭圆长轴的垂线交椭圆于点P ,若△F1PF2为等腰直角三角形,则椭圆的离心率是( ).A. 2B. 12 C. 2 D.14.过点(2,-1)引直线与抛物线2x y =只有一个公共点,这样的直线共有( )条A. 1B.2C. 3D.45.已知点)0,2(-A 、)0,3(B ,动点2),(y y x P =⋅满足,则点P 的轨迹是 ( )A .圆B .椭圆C .双曲线D .抛物线6.如果椭圆193622=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是( )A 02=-y xB 042=-+y xC 01232=-+y xD 082=-+y x7、无论θ为何值,方程1sin 222=⋅+y x θ所表示的曲线必不是( ) A. 双曲线 B.抛物线 C. 椭圆 D.以上都不对8.方程02=+ny mx )0(122>>=+n m ny mx 的曲线在同一坐标系中的示意图应是( )B 二、填空9.对于椭圆191622=+y x 和双曲线19722=-y x 有下列命题:①椭圆的焦点恰好是双曲线的顶点; ②双曲线的焦点恰好是椭圆的顶点; ③ 双曲线与椭圆共焦点; ④椭圆与双曲线有两个顶点相同. 其中正确命题的序号是 .10.若直线01)1(=+++y x a 与圆0222=-+x y x 相切,则a 的值为 11、抛物线2x y -=上的点到直线0834=-+y x 的距离的最小值是 12、抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,则点Q 的坐标 。
高二数学圆锥曲线试题答案及解析1.已知点,,直线上有两个动点,始终使,三角形的外心轨迹为曲线为曲线在一象限内的动点,设,,,则()A.B.C.D.【答案】C【解析】依题意设,的外心为,则有即,又由得即,将代入化简得即,在中,由余弦定理可得即展开整理得即也就是,将、代入可得,整理可得,即的外心轨迹方程为设,则即,而又,所以所以,故选C.【考点】1.动点的轨迹;2.直线的斜率;3.两角和的正切公式.2.若点P到点的距离与它到直线y+3=0的距离相等,则P的轨迹方程为 () A.B.C.D.【答案】C【解析】根据抛物线的定义可知,条件为以为焦点的抛物线,所以轨迹为.【考点】抛物线的定义.3.过抛物线的焦点的直线交抛物线于两点,且在直线上的射影分别是,则的大小为 .【答案】.【解析】如图,由抛物线的定义可知:,∴;根据内错角相等知;同理可证而,∴.【考点】抛物线的定义.4.已知椭圆的一个焦点为,过点且垂直于长轴的直线被椭圆截得的弦长为;为椭圆上的四个点。
(Ⅰ)求椭圆的方程;(Ⅱ)若,且,求四边形的面积的最大值和最小值.【答案】(Ⅰ) ;(Ⅱ) 2,【解析】(Ⅰ)依题意可得椭圆C的一个焦点为知,在代入点即可得得到一个关于的等式从而可求出的值,即可得椭圆的标准方程.(Ⅱ) 由于,所以直线都过F点,从而又因为所以直线与直线相互垂直.所以四边形的面积为.故关键是求出线段的长度.首先要分类存在垂直于轴的情况,和不垂直于轴的情况两种.前者好求.后者通过假设一条直线联立椭圆方程写出弦长的式子,类似地写出另一条所得到的弦长.通过利用基本不等式即可求得面积的范围.从而再结合垂直于轴的情况,求出最大值与最小值.试题解析:(Ⅰ)由题椭圆C的一个焦点为知故可设椭圆方程为,过焦点且与长轴垂直的直线方程为,设此直线与椭圆交于A,B两点则,又,所以,又,联立求得,,故椭圆方程为.(Ⅱ)由,知,点共线,点共线,即直线经过椭圆焦点。
又知,(i)当斜率为零或不存在时,(ii)当直线存在且不为零时,可设斜率为,则由知,的斜率为所以:直线方程为:。
高二数学《圆锥曲线》单元测试题及答案讲述高二数学《圆锥曲线》单元测试题一、多项选择题(每题5分,共60分)61.下列曲线中离心率为的是()2x2y2x2y2x2y2x2y2a??1b??1c??1d??1244246410x2y2??1的长轴位于y轴上。
如果焦距为4,则M的值为()2。
椭圆10?mm?2a.4b.5c.7d.83.假设焦点在x轴上的双曲线的虚轴长度为2,焦距为23,则双曲线的渐近线方程为()ay??2xby??2xcy??24.抛物线x?12xdy??十、221y上的一点m到焦点的距离为1,则点m的纵坐标是()417157a.b.c.0d.16816x2y2??1左5右。
已知F1和F2分别是椭圆的右焦点,椭圆的弦De穿过焦点F1。
如果直线de169的倾角为?(a?0),那么?def2的周长是()a.64b.20c.16d.随?变化而变化x2y2?2.1(b>0)的准线正好是圆x2?y2?2倍?切线为0,然后是B的6。
如果是双曲线16b值等于()a、 4b。
8c。
23d。
43 pf?pf1xy27.已知P是椭圆??1上的点F1和F2分别是椭圆的左焦点和右焦点,如果1| pf1 |?|如果PF2 | 225922,则△f1pf2是()a.33b、 23c.3d.33x2y28.如图,直线mn与双曲线c:2-2=1的左右两支分别交于m、n两点,AB和双曲线C的右引导线在点P相交,F是右焦点。
如果| FM |=2 | FN |,则=λ(λ∈r) ,,则实数λ的取值为()11a.b.1c.2d.23X2y29。
如果双曲线2?2.在1的右分支上有一个点(a?0,B?0),它到达右焦点和左对齐ab线的距离相等,则双曲线的离心率的取值范围是()a、(1,2]b.(1,2?1]c[2,?)d、 [2?1,?)12y2210。
如图所示,圆圈F:(x?1)?Y1和抛物线x?4.通过F和投掷的直线物线和圆依次交于a、b、c、d四点,求ab?CD的值是()a1b2c3d无法确定X2y211。
高二数学《圆锥曲线与方程》测试题与参考答案一、选择题 (每小题5分,共40分)1.F 1、F 2是定点,|F 1F 2|=5,动点M 满足|MF 1|+|MF 2|=7,则M 的轨迹是( )A .椭圆B .直线C .线段D .圆2.已知双曲线x 2a 2-y 2=1(a >0)的右焦点与抛物线y 2=8x 的焦点重合,则此双曲线的渐近线方程是( )A .y =±5xB .y =±55x C .y =±3xD .y =±33x3.椭圆122=+my x 的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为( )A .41 B .21C .2D .4 4.已知实数4,m,9构成一个等比数列,则圆锥曲线x 2m +y 2=1的离心率为( )A.306B.7C.306或7D.56或75.设定点F 1(0,-3),F 2(0,3),动点P 满足条件|PF 1|+|PF 2|=a +9a (a >0),则点P 的轨迹是( )A .椭圆B .线段C .不存在D .椭圆或线段6..过抛物线x y 42=的焦点作直线l 交抛物线于A 、B 两点,若线段AB 中点的横坐标为3,则||AB 等于( )A .10B .8C .6D .47.与圆122=+y x 及圆012822=+-+x y x 都外切的圆的圆心在( )A .一个椭圆上B .双曲线的一支上C .一条抛物线上D .一个圆上8.已知双曲线x 2a 2-y 22=1(a >2)的两条渐近线的夹角为π3,则双曲线的离心率为( )A.233B.263C. 3D .2二、填空题(每小题5分,共20分)9.双曲线4922=-y x 的渐近线方程为 .10.抛物线x y 82=上到焦点的距离等于4的点的坐标为 . 11.已知正方形ABCD ,则以A ,B 为焦点,且过C ,D 两点的椭圆的离心率为__________.12.以抛物线y 2=83x 的焦点F 为右焦点,且两条渐近线是x ±3y =0的双曲线方程为__________.三、解答题(每小题12分,共24分)13.斜率为2的直线l 与双曲线12322=-y x 交于A 、B 两点,且4=AB ,求直线l 的方程.14.(1)已知直线1-=kx y 与双曲线422=-y x 没有公共点,求斜率k 的取值范围.(2)在抛物线 x y 42=上求一点P ,使得点P 到直线3+=x y 的距离最短.高二数学《圆锥曲线与方程》测试题与参考答案1.A2.解析:∵y 2=8x 焦点是(2,0),∴双曲线x 2a 2-y 2=1的半焦距c =2,又∵虚半轴长b =1且a>0,∴a =22-12=3,∴双曲线的渐近线方程是y =±33x . 答案:D3.A4.解析:因4,m,9成等比数列,则m 2=36,∴m =±6.当m =6时圆锥曲线为椭圆x 26+y 2=1,其离心率为306;当m =-6时圆锥曲线为双曲线y 2-x 26=1,其离心率为7,故选C. 5.解析:由|PF 1|+|PF 2|=a +9a ≥29=6,当|PF 1|+|PF 2|=6时轨迹为线段,当|PF 1|+|PF 2|>6时轨迹为椭圆.答案:D 6.B 7.B8.解析:如图所示,双曲线的渐近线方程为:y =±2a x ,若∠AOB =π3,则θ=π6,tan θ=2a =33,∴a =6>2.又∵c =6+2=22,∴e =c a =226=233. 答案:A9.x y 3±= 10.()4,2±11.解析:设正方形边长为1,则|AB |=2c =1,∴c =12,|AC |+|BC |=1+2=2a ,∴a =2+12,∴e =c a =122+12=2-1. 答案:2-112.解析:抛物线y 2=83x 的焦点F 为(23,0),设双曲线方程为x 2-3y 2=λ,4λ3=(23)2,∴λ=9,双曲线方程为x 29-y 23=1. 答案:x 29-y 23=1。
学习必备欢迎下载高二数学《圆锥曲线》单元测试题一、选择题(每小题5分,共60分)1.下列曲线中离心率为26的是()A14222yxB12422yxC16422yxD110422yx2.椭圆221102x y mm 的长轴在y 轴上,若焦距为4,则m 的值为()A .4B .5C .7D .83.设焦点在x 轴上的双曲线的虚轴长为2,焦距为32,则该双曲线的渐近线方程是()Axy 2 Bx y 2 Cxy22 Dxy214.抛物线y x 412上的一点M 到焦点的距离为1,则点M 的纵坐标是()A.1617 B.1615 C. 0D.875.已知1F 、2F 分别为椭圆221169xy的左、右焦点,椭圆的弦DE 过焦点1F ,若直线DE的倾斜角为(0)a,则2DEF 的周长为()A .64B .20C .16D .随变化而变化6.若双曲线222116xy b(b>0)的一条准线恰好为圆0222xyx的一条切线,则b 的值等于()A. 4B.8C. 32D. 437.已知P 是椭圆192522y x上的点,F 1、F 2分别是椭圆的左、右焦点,若121212||||PF PF PF PF ,则△F 1PF 2的面积为( )A .3 3B .2 3C . 3D .338.如图, 直线MN 与双曲线C: x 2a 2-y 2b 2= 1的左右两支分别交于M 、N 两点, 与双曲线C 的右准线相交于P 点, F 为右焦点,若|FM|=2|FN|, 又= λ(λ∈R),则实数λ的取值为( ) A.12 B. 1C.2D.139.若双曲线22221(0,0)x y a b ab的右支上存在一点,它到右焦点及左准线的距离相等,则双曲线的离心率的取值范围是()A .(1,2]B .(1,21]C .[2,)D .[21,)。
高二数学圆锥曲线试题答案及解析1.方程所表示的曲线为C,有下列命题:①若曲线C为椭圆,则;②若曲线C为双曲线,则或;③曲线C不可能为圆;④若曲线C表示焦点在上的双曲线,则。
以上命题正确的是。
(填上所有正确命题的序号)【答案】②④【解析】①若曲线C为椭圆,则系数都为正且不相等,解得且;②若曲线C为双曲线,则系数符号相反,解得或;③当系数相等且为正即t=3时曲线C为圆;④若曲线C表示焦点在上的双曲线,则的系数为正且的系数为负,解得,故②④正确.【考点】圆锥曲线的方程2.已知平面五边形关于直线对称(如图(1)),,,将此图形沿折叠成直二面角,连接、得到几何体(如图(2))(1)证明:平面;(2)求平面与平面的所成角的正切值.【答案】(1)证明详见解析;(2).【解析】(1)先以B为坐标原点,分别以射线BF、BC、BA为x轴、y轴、z轴的正方向建立空间直角坐标系,求出各点的坐标以及和的坐标,进而得到两向量共线,即可证明线面平行;(2)先根据条件求出两个半平面的法向量的坐标,再求出这两个法向量所成角的余弦值,再结合同角三角函数的基本关系式可求得结果.试题解析:(1)以B为坐标原点,分别以射线BF、BC、BA为x轴、y轴、z轴的正方向建立如图所示的坐标系.由已知与平面几何知识得,∴,∴,∴AF∥DE,又∥ 6分(2)由(1)得四点共面,,设平面,则不妨令,故,由已知易得平面ABCD的一个法向量为∴,设平面与平面的所成角为∴所求角的正切值为 13分.【考点】1.直线与平面平行的判定;2.用空间向量求二面角.3.若一个动点到两个定点的距离之差的绝对值等于8,则动点M的轨迹方程为 ( )A.B.C.D.【答案】C【解析】因为,由双曲线的定义可知,点的轨迹是以为焦点的双曲线。
此时,即,,所以点的轨迹方程是。
故C正确。
【考点】双曲线的定义。
4.若θ是任意实数,则方程x2+4y2=1所表示的曲线一定不是 ( )A.圆B.双曲线C.直线D.抛物线【答案】D【解析】当时,方程x2+4y2=1即为,表示两条直线;当时,方程x2+4y2=1即为,表示圆;当时,方程x2+4y2=1表示双曲线;当且时,方程x2+4y2=1表示椭圆。
高二数学圆锥曲线试题答案及解析1.已知点的坐标为,点为轴负半轴上的动点,以线段为边作菱形,使其两对角线的交点恰好在轴上,则动点的轨迹E 的方程 .【答案】【解析】试题解析:依题意,设对角线的交点为,因为在轴上,又顶点与关于对称,所以始终在直线上,根据菱形的特点,亦即轴,有到定点的距离与到定直线的距离相等,显然,的轨迹是以为焦点,直线为准线的抛物线即,所以,抛物线方程为:,动点D的轨迹E 的方程为:.【考点】动点的轨迹方程.2.已知实数1,m,9构成一个等比数列,则圆锥曲线+y2=1的离心率为_________.【答案】或2【解析】因为实数1,m ,9构成一个等比数列,所以即m=3或m=-3,当m=3时,曲线为焦点在x轴的椭圆,离心率为;当m=-3时,曲线为焦点在y轴的双曲线,离心率为2,答案为或2.【考点】1.等比数列的性质;2.圆锥曲线的性质3.在中,,给出满足的条件,就能得到动点的轨迹方程,下表给出了一些条件及方程:条件方程①周长为10②面积为10③中,则满足条件①、②、③的点轨迹方程按顺序分别是A. 、、B. 、、C. 、、D. 、、【答案】A【解析】①周长为10,即,轨迹为椭圆;②面积为10,即,∴所以轨迹为;③中,,即为圆周上一点,所以轨迹为圆.【考点】圆锥曲线问题、轨迹问题.4.若抛物线y2=4x上的点A到其焦点的距离是6,则点A的横坐标是( )A.5B.6C.7D.8【答案】A【解析】由抛物线的方程可知抛物线的准线为,根据抛物线的定义可知点到其准线的距离也为6,即,所以。
故A正确。
【考点】抛物线的定义。
5.若一个动点到两个定点的距离之差的绝对值等于8,则动点M的轨迹方程为 ( )A.B.C.D.【答案】C【解析】因为,由双曲线的定义可知,点的轨迹是以为焦点的双曲线。
此时,即,,所以点的轨迹方程是。
故C正确。
【考点】双曲线的定义。
6.设椭圆的方程为,斜率为1的直线不经过原点,而且与椭圆相交于两点,为线段的中点.(1)问:直线与能否垂直?若能,之间满足什么关系;若不能,说明理由;(2)已知为的中点,且点在椭圆上.若,求椭圆的离心率.【答案】(1)直线与不能垂直;(2)【解析】(1)设直线的方程为,与椭圆方程联立,消去整理为关于的一元二次方程,因为有两个交点则判别式应大于0,由韦达定理可得根与系数的关系,用中点坐标公式求点的坐标。
高二数学圆锥曲线试题答案及解析1.已知椭圆的离心率,右焦点为,方程的两个实根,,则点()A.必在圆内B.必在圆上C.必在圆外D.以上三种情况都有可能【答案】A【解析】本题只要判断与2的大小,时,点在圆上;时,点在圆内;时,点在圆外.由已知,,椭圆离心率为,从而,点在圆内,故选A.【考点】1.点与圆的位置关系;2.二次方程根与系数的关系.2.若一个动点到两个定点的距离之差的绝对值等于8,则动点M的轨迹方程为 ( )A.B.C.D.【答案】C【解析】因为,由双曲线的定义可知,点的轨迹是以为焦点的双曲线。
此时,即,,所以点的轨迹方程是。
故C正确。
【考点】双曲线的定义。
3.如图平面直角坐标系中,椭圆的离心率,分别是椭圆的左、右两个顶点,圆的半径为,过点作圆的切线,切点为,在轴的上方交椭圆于点.则.【答案】【解析】因为所以又直角三角形中,所以,直线方程为,与椭圆方程联立方程组解得,又,所以【考点】直线与圆,直线与椭圆4.若点P到点的距离与它到直线y+3=0的距离相等,则P的轨迹方程为 () A.B.C.D.【答案】C【解析】根据抛物线的定义可知,条件为以为焦点的抛物线,所以轨迹为.【考点】抛物线的定义.5.已知是双曲线上不同的三点,且连线经过坐标原点,若直线的斜率乘积,则该双曲线的离心率为()A.B.C.D.【答案】D【解析】设,则;把坐标代入双曲线方程,用点差法可得,而,即,所以.【考点】双曲线的应用、点差法.6.如图,已知椭圆:的离心率为,点为其下焦点,点为坐标原点,过的直线:(其中)与椭圆相交于两点,且满足:.(1)试用表示;(2)求的最大值;(3)若,求的取值范围.【答案】(1);(2)离心率的最大值为;(3)的取值范围是.【解析】(1)设,联立椭圆与直线的方程,消去得到,应用二次方程根与系数的关系得到,,然后计算得,将其代入化简即可得到;(2)利用(1)中得到的,即(注意),结合,化简求解即可得出的最大值;(3)利用与先求出的取值范围,最后根据(1)中,求出的取值范围即可.试题解析:(1)联立方程消去,化简得 1分设,则有, 3分∵∴ 5分∴即 6分(2)由(1)知∴,∴ 8分∴∴离心率的最大值为 10分(3)∵∴∴ 12分解得∴即∴的取值范围是 14分.【考点】1.椭圆的标准方程及其性质;2.二次方程根与系数的关系.7.抛物线,其准线方程为,过准线与轴的交点做直线交抛物线于两点.(1)若点为中点,求直线的方程;(2)设抛物线的焦点为,当时,求的面积.【答案】(1)或;(2)4.【解析】(1)首先根据准线方程求得抛物线的标准方程,然后设直线直线l的方程,并与抛物线方程联立消去x得到关于y的二次方程,再利用韦达定理与中点坐标公式可求得m的值,进而得到直线l的方程;(2)根据条件中的垂直关系,利用A、B、F三点的坐标表示出向量与,然后利用向量垂直的条件可得的值,进而可求得的面积.试题解析:(1)∵抛物线的准线方程为,∴∴抛物线的方程为,显然,直线与坐标轴不平行∴设直线的方程为,,联立直线与抛物线的方程,得,,解得或.∵点为中点,∴,即∴解得,,∴或∴,直线方程为或.(2)焦点,∵∴,.【考点】1、直线方程;2、抛物线方程;3、直线与抛物线的位置关系;4、平面向量垂直的充要条件的应用.8.已知椭圆上的点到左右两焦点的距离之和为,离心率为. (1)求椭圆的方程;(2)过右焦点的直线交椭圆于两点,若轴上一点满足,求直线的斜率的值.【答案】(1);(2).【解析】(1)根据与离心率可求得a,b,c的值,从而就得到椭圆的方程;(2)设出直线的方程,并与椭圆方程联立消去y可得到关于x的一元二次方程,然后利用中点坐标公式与分类讨论的思想进行解决.试题解析:(1),∴,,∴,∴,椭圆的标准方程为.(2)已知,设直线的方程为,-,联立直线与椭圆的方程,化简得:,∴,,∴的中点坐标为.①当时,的中垂线方程为,∵,∴点在的中垂线上,将点的坐标代入直线方程得:,即,解得或.②当时,的中垂线方程为,满足题意,∴斜率的取值为.【考点】1、椭圆的方程及几何性质;2、直线与椭圆的位置关系.9.椭圆的一个顶点与两个焦点构成等边三角形,则椭圆的离心率()A.B.C.D.【解析】由题意,设椭圆方程,焦距为,由题意,,所以离心率.【考点】椭圆的方程,离心率.10.极坐标系与直角坐标系xOy有相同的长度单位,以原点D为极点,以x轴正半轴为极轴,曲线Cl 的极坐标方程为,曲线C2的参数方程为为参数)。
高二数学圆锥曲线测试题一.选择题:本大题共10小题,每小题5分,共50分.1.椭圆22146x y +=的长轴长为( )A .2BC .4D .622. 设椭圆1422=+m y x 的离心率为21,则m 的值是( ) A .3 B .316或3 C .316 D .316或2 3.抛物线24y x =的焦点坐标是( ) A .(1,0) B .(0,1) C .1(,0)16 D .1(0,)164.双曲线221916x y -=右支上一点P 到右焦点的距离是4,则点P 到左焦点的距离为( ) A.10 B.16 C.9 D.155. 顶点在原点,焦点在对称轴上的抛物线过圆096222=++-+y x y x 的圆心,则其方程为( ) A .23x y =或23x y -= B .23x y = C .x y 92-=或23x y = D .23x y -=或x y 92=6.已知双曲线)0,0(12222>>=-b a by a x 的离心率为2 )A .2y x =±B .x y 2±=C .x y 22±= D .12y x =± 7.曲线21x xy +=的图像关于( )A .x 轴对称B .y 轴对称C . 坐标原点对称D . 直线x y =对称8.若点A 的坐标为(3,2),F 是抛物线x y 22=的焦点,点M 在抛物线上移动时,使MA MF +取得最小值的M 的坐标为( )A .()0,0B .⎪⎭⎫⎝⎛1,21 C .()2,1 D .()2,2 二.填空题:本大题共4小题,每小题5分,满分20分.9.双曲线22x y k -=的一个焦点为,则k 的值为_________.10.如果方程224kx y +=表示焦点在x 轴上的椭圆,那么实数k 的取值范围是 .11.与椭圆2216x y +=共焦点且过点Q 的双曲线方程是 .12.双曲线221169x y -=的左、右焦点分别为F 1,F 2,在左支上过点F 1的弦AB 的长为5,那么△ABF 2的周长是 .13.椭圆192522=+y x 的焦点1F 、2F ,P 为椭圆上的一点,已知21PF PF ⊥,则△21PF F 的面积为________.14.若直线l 与抛物线216y x =交于点A ,B ,且弦AB 的中点为(2,2),则直线l 的方程为__________. 三.解答题:本大题共6小题,满分80分.15.(本小题满分12分)已知顶点在原点,焦点在x 轴上的抛物线被直线21y x =+截得的弦长为15,求抛物线的方程。
圆锥曲线一、选择题:1.已知动点M 的坐标满足方程|12512|1322-+=+y x y x ,则动点M 的轨迹是( )A. 抛物线B.双曲线C. 椭圆D.以上都不对2.设P 是双曲线19222=-y a x 上一点,双曲线的一条渐近线方程为1,023F y x =-、F2分别是双曲线的左、右焦点,若5||1=PF ,则=||2PF ( )A. 1或5B. 1或9C. 1D. 93、设椭圆的两个焦点分别为F1、、F2,过F2作椭圆长轴的垂线交椭圆于点P ,若△F1PF2为等腰直角三角形,则椭圆的离心率是( ).A. B. C. 2 D.14.过点(2,-1)引直线与抛物线2x y =只有一个公共点,这样的直线共有( )条A. 1B.2C. 3D.45.已知点)0,2(-A 、)0,3(B ,动点2),(y y x P =⋅满足,则点P 的轨迹是 ( )A .圆B .椭圆C .双曲线D .抛物线6.如果椭圆193622=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是( )A 02=-y xB 042=-+y xC 01232=-+y xD 082=-+y x7、无论θ为何值,方程1sin 222=⋅+y x θ所表示的曲线必不是( ) A. 双曲线 B.抛物线 C. 椭圆 D.以上都不对8.方程02=+ny mx )0(122>>=+n m ny mx 的曲线在同一坐标系中的示意图应是( )9.椭圆246x + )A .2BC .4D .6210. 设椭圆1422=+my x 的离心率为21,则m 的值是( )A .3B .316或3 C .316 D .316或2 11.抛物线24y x =的焦点坐标是( )A .(1,0)B .(0,1)C .1(,0)16 D .1(0,)1612.双曲线221916x y -=右支上一点P 到右焦点的距离是4,则点P 到左焦点的距离为( ) A.10 B.16 C.9 D.1513. 顶点在原点,焦点在对称轴上的抛物线过圆096222=++-+y x y x 的圆心,则其方程为( ) A .23x y =或23x y -= B .23x y = C .x y 92-=或23x y = D .23x y -=或x y 92=14.已知双曲线)0,0(12222>>=-b a by a x )A .2y x =±B .x y 2±=C .x y 22±= D .12y x =±15.曲线21x xy +=的图像关于( )A .x 轴对称B .y 轴对称C . 坐标原点对称D . 直线x y =对称16.若点A 的坐标为(3,2),F 是抛物线x y 22=的焦点,点M 在抛物线上移动时,使MA MF +取得最小值的M 的坐标为( )A .()0,0B .⎪⎭⎫⎝⎛1,21 C .()2,1 D .()2,217.抛物线)0(42≠=a ax y 的焦点坐标为 ( )A .(0,41a) B .)161,0(aC .)161,0(a-D .)0,161(a18.中心在原点,准线方程是4±=x ,离心率是21的椭圆方程为 ( )A .1422=+y x B .14322=+y x C .13422=+y x D .1422=+y x 19.双曲线与椭圆1522=+y x 共焦点,且一条渐近线方程是03=-y x ,则此双曲线方程为( )A .1322=-x y B .1322=-x y C .1322=-y x D .1322=-y x20.过抛物线x y 42=的焦点F 作倾斜角为3π的弦AB ,则|AB|的值为 ( )A .738 B .316 C .38 D .731621.ab ay bx b y ax b a =+=+-≠≠220,0,0和则方程所表示的曲线可能是 ( )A B C D 22.已知双曲线)0,0(1122222222>>>=+=-b m a by m x b y a x 和椭圆的离心离互为倒数,那么以a ,b ,m 为边长的三角形一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形 23.已知椭圆121)(1222=-+t y x 的一条准线方程为y=8,则t 为 ( )A .7或-7B .4或12C .1或15D .024.给出下列曲线①0124=-+y x ,②322=+y x ,③1222=+y x ,④1222=-y x其中与直线32--=x y 有交点的所有曲线是( )A .①③B .②④C .①②③D .②③④25.已知F 1、F 2为椭圆E 的左、右焦点,抛物线C 以F 1为顶点,F 2为焦点,设P 为椭圆与抛物线的一个交点,如果椭圆E 的离心率e 满足|PF 1|=e|PF 2|,则e 的值为 ( )A .22 B .32-C .33 D .22-26.已知双曲线)0,0(12222>>=-b a by a x 的离心率为,215+A ,F 分别是它的左顶点和右焦点,设B 点坐标为(0,b ),则∠ABF 等于 ( ) A .45°B .60°C .90°D .120°二、填空题:27.对于椭圆191622=+y x 和双曲线19722=-y x 有下列命题:① 椭圆的焦点恰好是双曲线的顶点; ②双曲线的焦点恰好是椭圆的顶点; ③ 双曲线与椭圆共焦点; ④椭圆与双曲线有两个顶点相同. 其中正确命题的序号是 .28.若直线01)1(=+++y x a 与圆0222=-+x y x 相切,则a 的值为 29、抛物线2x y -=上的点到直线0834=-+y x 的距离的最小值是 30、抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,则点Q 的坐标 。
31、椭圆131222=+y x 的焦点为F 1和F 2,点P 在椭圆上,如果线段PF 1中点在y 轴上,那么|PF 1|是|PF 2|的32.若曲线15422=++-a y a x 的焦点为定点,则焦点坐标是 .;33.双曲线22x y k -=的一个焦点为,则k 的值为_________.34.如果方程224kx y +=表示焦点在x 轴上的椭圆,那么实数k 的取值范围是 .35.与椭圆2216x y +=共焦点且过点Q 的双曲线方程是 . 36.双曲线221169x y -=的左、右焦点分别为F 1,F 2,在左支上过点F 1的弦AB 的长为5,那么△ABF 2的周长是 .37.椭圆192522=+y x 的焦点1F 、2F ,P 为椭圆上的一点,已知21PF PF ⊥,则△21PF F 的面积为________.38.若直线l 与抛物线216y x =交于点A ,B ,且弦AB 的中点为(2,2),则直线l 的方程为__________.三、解答题:39.已知双曲线与椭圆125922=+y x 共焦点,它们的离心率乊和为514,求双曲线方程.(12分)40.P 为椭圆192522=+y x 上一点,1F 、2F 为左右焦点,若︒=∠6021PF F (1)求△21PF F 的面积; (2)求P 点的坐标.(14分)41、求两条渐近线为02=±y x 且截直线03=--y x 所得弦长为338的双曲线方程.(14分)42、知抛物线x y 42=,焦点为F ,顶点为O ,点P 在抛物线上移动,Q 是OP 的中点,M 是FQ 的中点,求点M 的轨迹方程.(12分)43、某工程要将直线公路l 一侧的土石,通过公路上的两个道口 A 和B ,沿着道路AP 、BP 运往公路另一侧的P 处,PA=100m ,PB=150m ,∠APB=60°,试说明怎样运土石最省工?44、点A 、B 分别是椭圆1203622=+y x 长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PF PA ⊥。
(1)求点P 的坐标;(2)设M 是椭圆长轴AB 上的一点,M 到直线AP 的距离等于||MB ,求椭圆上的点到点M 的距离d 的最小值。
45.(本小题满分12分)已知顶点在原点,焦点在x 轴上的抛物线被直线21y x =+截得的弦长为15,求抛物线的方程。
46. (本小题满分12分)已知直角坐标平面上点(0,2)Q 和圆221x y +=,动点M 到圆C 的切线长与||QM 的比等于常数λ(λ>0).求动点M 的轨迹方程,说明它表示什么曲线.47.(本小题满分14分)已知双曲线22122:1(0,0)x y C a b a b-=>>的离心率是2,直线:2l x =与双曲线1C 相切.(Ⅰ)求双曲线1C 的方程;(Ⅱ)曲线2C 上任一点P 到点F (-1,0)的距离比到直线l 的距离小1,求曲线2C 的轨迹方程.48. (本小题满分14分)已知椭圆的两个焦点分别为12(0,F F -,离心率e =. (Ⅰ)求椭圆方程;(Ⅱ)一条不与坐标轴平行的直线l 与椭圆交于不同的两点M N 、,且线段MN 的中点的横坐标为12-,求直线l 的倾斜角的取值范围.49.(本小题满分14分)如图,过抛物线px y 22= 的焦点F 的两条互相垂直的直线与抛物线分别交于点A 、B 和C 、D ;抛物线上的点)0)(,2(>t t T 到焦点的距离为3. (Ⅰ)求p t ,的值;(Ⅱ)求四边形ACBD 的面积的最小值.50. (本小题满分14分)已知A 、B 、C 是椭圆)0(1:2222>>=+b a by a x m 上的三点,其中点A 的坐标为)0,32(,BC 过椭圆m 的中心,且||2||,0AC BC BC AC ==∙.(Ⅰ)求椭圆m 的方程;(Ⅱ)过点),0(t M 且不与坐标轴平行的直线l 与椭圆m 交于两点P ,Q ,设D 为椭圆m 与y 轴负半轴的交点,且||||DQ DP =.求实数t 的取值范围.高中理科数学圆锥曲线测试题答案一、选择题1~8ADDCD DBA 9~16 DBDADCCD 17~26、1.C 2.C 3.C 4.B 5.C 6.B 7.C 8.D 9.C 10.C一、填空题:27~32 9.①② 10、-1 11、34 12. (1,41) 13. 7倍 14.(0,±3) 33~38 9. -9;10. ()1,0;11. 2214x y -=;12.26 ;13. 9 ;14. 460x y --=.三、解答题:39~44 15. 解:由于椭圆焦点为F(0,±4),离心率为e=45,所以双曲线的焦点为F(0,±4),离心率为2,从而所以求双曲线方程为:221412y x -= 16.[解析]:∵a =5,b =3∴c =4 (1)设11||t PF =,22||t PF =,则1021=+t t ①2212221860cos 2=︒⋅-+t t t t ②,由①2-②得1221=t t3323122160sin 212121=⨯⨯=︒⋅=∴∆t t S PF F (2)设P ),(y x ,由||4||22121y y c S PF F ⋅=⋅⋅=∆得 433||=y 433||=∴y 433±=⇒y ,将433±=y 代入椭圆方程解得4135±=x ,)433,4135(P ∴或)433,4135(-P 或)433,4135(-P 或)433,4135(--P 17、解:设双曲线方程为x 2-4y 2=λ.联立方程组得: 22x -4y =30x y λ⎧⎨--=⎩,消去y 得,3x 2-24x+(36+λ)=0设直线被双曲线截得的弦为AB ,且A(11,x y ),B(22,x y ),那么:1212283632412(36)0x x x x λλ+=⎧⎪+⎪=⎨⎪∆=-+>⎪⎩那么:解得: λ=4,所以,所求双曲线方程是:2214x y -= 18 [解析]:设M (y x ,),P (11,y x ),Q (22,y x ),易求x y 42=的焦点F 的坐标为(1,0)∵M 是FQ 的中点,∴ ⎪⎪⎩⎪⎪⎨⎧=+=22122y y x x ⇒⎩⎨⎧=-=yy x x 21222,又Q 是OP 的中点∴⎪⎪⎩⎪⎪⎨⎧==221212y y x x ⇒⎩⎨⎧==-==y y y x x x 422422121,∵P 在抛物线x y 42=上,∴)24(4)4(2-=x y ,所以M 点的轨迹方程为212-=x y .19解析:设直线l 与椭圆交于P 1(x 1,y 1)、P 2(x 2,y 2), 将P 1、P 2两点坐标代入椭圆方程相减得直线l 斜率k ==-=-=-=-.由点斜式可得l 的方程为x +2y -8=0. 答案:x +2y -8=0解:以直线l 为x 轴,线段AB 的中点为原点对立直角坐标系,则在l 一侧必存在经A 到P 和经B 到P 路程相等的点,设这样的点为M ,则 |MA|+|AP|=|MB|+|BP|, 即 |MA|-|MB|=|BP|-|AP|=50,750||=AB ,∴M 在双曲线1625252222=⨯-y x 的右支上. 故曲线右侧的土石层经道口B 沿BP 运往P 处,曲线左侧的土石层经道口A 沿AP 运往P 处,按这种方法运土石最省工。