白车身扭转刚度分析报告
- 格式:pdf
- 大小:1.02 MB
- 文档页数:11
白车身扭转刚度分析及优化翁洋张伟(上海汽车集团股份有限公司技术中心,上海,200804)摘要:白车身结构是否具备合理的静态扭转和弯曲刚度对于提升整车的结构耐久和NVH性能是至关重要的。
不同的车型,刚度的目标值也不同。
车身结构的刚度值可以通过试验或者有限元分析得到,使用有限元方法来模拟白车身刚度试验,通过试验结果来验证有限元分析的正确性。
BIW Torsion Stiffness Analysis & OptimizationAbstract:Adequate static torsion stiffness of BIW is essential for better overall durability and NVH performance. Stiffness targets vary for different vehicles. The stiffness can be evaluated experimentally and analytically. The FE results can be used to correlate CAE to testing data.引言在小型乘用车设计开发中,对车身结构设计进行有限元分析计算是有效缩短产品开发周期、节约产品开发及实验费用、提高产品可靠性的重要技术手段。
因此车身的扭转和弯曲刚度作为衡量车身设计的一项重要条件,对其进行准确的分析计算成为设计开发中的一项不可缺少的重要内容。
为了和白车身刚度试验结果对比,分析中所需的零件需要和试验一致。
可以通过优化软件进行DOE分析,并根据分析结果调整对产品性能起主要作用的参数进行优化设计。
建立有限元模型本文所涉及的有限元模型采用Hypermesh进行前处理。
网格模型由Quard4、Tria3单元以及相应的焊接单元构成,并且单元质量符合指定的建模标准。
模型结构如图所示白车身结构网格模型边界条件后减震塔约束3个方向的自由度,前横梁中心约束5个方向的自由度。
10.16638/ki.1671-7988.2021.09.033轿车白车身弯扭静刚度试验方法研究王多华(重庆车辆检测研究院有限公司,重庆404100)摘要:随着汽车人均保有量的增加,人们对汽车舒适性的要求越来越高,轿车车身刚度是影响整车舒适性的重要指标之一,同时它还影响汽车的安全性能。
在汽车车身开发阶段,各大车企都会测试自己所开发车型的白车身刚度情况。
文章主要分析了白车身弯扭刚度试验结果影响因素以及各试验方法的差异性,为后续的车身开发者提供一点思路与建议。
关键词:白车身;弯扭刚度中图分类号:U467 文献标识码:A 文章编号:1671-7988(2021)09-117-03Research on Test Method of Bending Torsional Static Stiffness of Car Body in WhiteWang Duohua(Chongqing Vehicle Test & Research Institute Co., Ltd., Chongqing 404100)Abstract: With the increase of car ownership per capita, people have higher and higher requirements for vehicle comfort. Car body stiffness is one of the important indicators affecting the comfort of the vehicle, and it also affects the safety performance of the car. In the stage of auto body development, all major car companies will test the stiffness of their developed models in BIW. This paper mainly analyzes the influence factors of BIW bending and torsion stiffness test results and the differences of various test methods, and provides some ideas and suggestions for the follow-up body developers.Keywords: BIW; Bending and torsion stiffnessCLC NO.: U467 Document Code: A Article ID: 1671-7988(2021)09-117-031 引言轿车在不平路面行驶或高速行驶时,时刻承受着弯曲、扭转、空气阻力等多方面作用力,若是汽车自身刚度不够,或刚度分布不合理,就很有可能出现车身整体或局部变形过大,严重影响乘员乘坐舒适性和安全性的情况。
白车身扭转刚度分析及拓扑优化Torsion Stiffness Analysis and TopologyOptimization of Body in White摘要: 白车身(Body in White, BIW)的扭转刚度是车身重要的力学性能之一,对整车各方面的性能有着直接或间接的影响。
本文在已有量产车型基础上,运用HyperMorph工具建立了轴距加长150 mm对应的Morph模型。
以Morph模型为研究对象,以扭转工况对应的柔度最小化为目标,利用OptiStruct软件进行了拓扑优化分析。
基于拓扑优化结果,对后地板横梁加强板、连接板、后围结构进行了形状优化和截面优化,优化后扭转刚度提升了4.85 %,对后续的设计具有一定的指导意义。
关键词:白车身,Morph模型,扭转刚度,OptiStruct,拓扑优化Abstract:The torsion stiffness of the Body in White (BIW) is one of the important mechanical properties of the body, and has a direct or indirect effect on the performance of all aspects of the vehicle. In this paper, based on the existing production models, the corresponding Morph model with 150 mm longer wheelbase was established by using HyperMorph tool. Then, taking Morph model as the research object and aiming at minimizing the compliance corresponding to the BIW torsion condition, topology optimization analysis was carried out by using OptiStruct software. Finally, based on the results of topology optimization, shape and section optimization were carried out for the rear floor beam reinforcing plate, connecting plate and the rear frame structure. As a result, the torsion stiffness is improved by 4.85 % after optimization, which has certain guiding significance for the subsequent design.Key words:Body in White, Morph model, torsion stiffness, OptiStruct, topology optimization1 概述随着经济的快速发展,汽车已经成为人们日常生活中不可缺少的交通工具。
K01设计开发项目白车身刚度分析报告(☑初版/□更改)重庆迪科汽车研究有限公司二〇一五年十月1.数据记录✧初始模型白车身(BIW)✧更改情况无2.分析内容(1)白车身弯曲刚度分析(2)白车身扭转刚度分析3.模型简述✧使用软件前处理:Hypermesh;求解器:Radioss✧建模过程网格划分白车身结构可分为五个总成:顶盖、地板、侧围、后围和前围,依次对各总成进行有限元模型的建立,再将其焊接为一整体。
建立白车身有限元模型的步骤包括几何模型分析、几何清理、模型简化、网格划分、单元质量检查、设置材料和单元属性、各部件焊接等。
由于白车身主要是由大的钢板覆盖件组成,其厚度尺寸远远小于其他尺寸,故白车身网格选用PSHELL的壳单元形式。
采用各总成逐个划分、连接,再总装的方式进行整车的有限元建模。
据工程实践和硬件条件,选取有限元网格的大小为8mm。
根据前面所述的几何清理原则,选用8mm的壳单元网格对各总成进行离散化,建立各总成对应的有限元模型如图3.1——图3.5所示:图3.1 车顶总成的有限元模型图3.2侧围总成的有限元模型图3.3后围总成有限元模型图3.4地板的几何及有限元模型图3.5前围的几何及有限元模型白车身各部件连接白车身大部分零部件是薄板冲压件,各零部件之间主要是通过焊接工艺实现连接,本次运用了点焊、缝焊等。
根据所提供的焊点图,在Hypermesh中通过运用spot-weld单元来把各板件焊点位置的节点连接起来,以此来模拟实际的焊点。
焊点材料选用08AL,焊点直径为7mm。
焊接完成后,焊点周围单元的质量可能会变差,通常需要对这些单元进行重新划分。
有限元焊接结果如图3.6所示图3.6 有限元焊接效果图由于工艺和部件性能的要求,在顶盖与顶盖横梁处,运用了粘胶连接。
本次分析采用了软件的粘胶连接来实现这些有限元部件的连接,通过这样的处理能更好的模拟结构的实际性能。
有限元粘接效果如图3.7所示。
图3.7有限元粘胶连接效果图在前围总成中还采用了螺栓连接,这主要是一些不需永久连接、进行更换的部件。
10.16638/ki.1671-7988.2019.13.030基于白车身扭转刚度的板厚灵敏度分析田佩,华睿(安徽江淮汽车集团股份有限公司,安徽合肥230601)摘要:文章主要介绍了一种白车身扭转刚度的板厚灵敏度分析的方法,用于分析白车身扭转刚度工况下整体扭转角相对零件单位厚度质量的变化量,即计算设计变量△d相对零件单位厚度质量△m的变化量,称为扭转角相对灵敏度,通过对相对灵敏度结果进行排序,结合实际工程约束条件,为提升扭转刚度性能或轻量化设计提供较合理的厚度分配方案。
关键词:白车身刚度;CAE;厚度灵敏度中图分类号:U463.82 文献标识码:A 文章编号:1671-7988(2019)13-85-03Thickness Sensitivity Analysis Based on Torsional Stiffness of BIWTian Pei, Hua Rui(Anhui Jianghuai Automotive Co., Ltd., Anhui Hefei 230601)Abstract:The paper mainly introduces a thickness sensitivity analysis method for the torsional stiffness of BIW, which is used to analyze the variation of the vehicle torsional angle relative to the unit thickness mass of parts under the condition of the torsional stiffness of BIW, that is, the design variable △d is calculated, and the change amount relative to the unit thickness mass △m of the part is called the torsion angle relative response, by sorting the relative response results and combining the actual engineering constraints, a more reasonable thickness distribution scheme is provided for improving torsional stiffness performance or lightweight design.Keywords: Stiffness of BIW; CAE; Thickness sensitivityCLC NO.: U463.82 Document Code: A Article ID: 1671-7988(2019)13-85-03引言白车身的刚度是整车设计的一个重要指标,它决定了车辆在外力作用下抵抗变形的能力。
二、白车身静刚度试验1 白车身弯曲刚度试验1.1 测试仪器设备加载设备:千斤顶2只,力传感器2只,应变仪1台; 位移采集:Topcom GTS 801全站仪。
1.2 车身支承及加载方式在车身轮位附近设置4个铰支点,支承点如图1、2所示。
在车身中柱下方车身底部用2只千斤顶加载,加载力的大小由力传感器测定,并保持一致。
加载现场如图3、4所示。
4个支点的相对位置平面图如图5所示。
图1 前支点 图2 后支点图3 左侧加载 图4 右侧加载图5 支点相对位置示意图 图6测点分布平面图1.3 测点布置在车身前窗平台上选择两个镜像点作为位移测点1#、2#,在车身中柱上方顶部选择两个镜像点作为位移测量点3#、4#,平面图如图6所示,测点照片如图7、8所示。
弯曲试验时,仅采集3#、4#测点的垂向坐标变化,用于计算测点的垂向位移。
图7 1#、2#测点 图8 3#、4#测点1.4 弯曲试验实测原始数据3#、4#号测点实测垂向坐标值见表1。
表1. 测点垂向坐标实测原始数据1.5 弯曲刚度折算方法及结果车身结构基本对称,以等刚度等效简支梁的弯曲模拟车身的弯曲变形。
如图9所示,在力P 作用下,A 点的横向位移为:图9 车身弯曲等效简支梁()223A Pa L a x EIL-=其中,EI 为抗弯刚度。
在试验实测中, 1.45, 2.46a m L m ==,则车身等效抗弯刚度为:0.2906AP EI x = 将表1中的测点坐标平移,使零载荷时坐标为零,则力~位移曲线(P~x A )如图10所示。
图10 弯曲状况力与位移曲线按3#测点计算的曲线平均斜率为:63 1.587710/APk N m x ==⨯。
按4#测点计算的曲线平均斜率为:64 1.649110/APk N m x ==⨯。
取上述两个斜率的平均值作为力~位移曲线斜率,则车身的平均等效抗弯刚度为:620.4710()EI Nm =⨯2 白车身扭转刚度试验2.1 试验仪器设备所用仪器设备与弯曲刚度试验的完全相同。