单结晶体管触发电路及单
- 格式:pdf
- 大小:185.89 KB
- 文档页数:13
实验一单结晶体管触发电路及示波器使用班级学号姓名同组人员实验任务一.实验目的1.熟悉单结晶体管触发电路的工作原理及各元件的作用。
2.掌握单结晶体管触发电路的调试步骤和方法。
3.详细学习万用表及示波器的使用方法。
二.实验设备及仪器1.教学实验台主控制屏2.NMCL—33组件3.NMCL—05E组件4.MEL—03A组件5.双踪示波器(自备)6.万用表(自备)7. 电脑、投影仪三.实验线路及原理将NMCL—05E面板左上角的同步电压输入接SMCL-02的U、V输出端,触发电路选择单结晶体管触发电路,如图1所示。
图1单结晶体管触发电路图四.注意事项双踪示波器有两个探头,可以同时测量两个信号,但这两个探头的地线都与示波器的外壳相连接,所以两个探头的地线不能同时接在某一电路的不同两点上,否则将使这两点通过示波器发生电气短路。
为此,在实验中可将其中一根探头的地线取下或外包以绝缘,只使用其中一根地线。
当需要同时观察两个信号时,必须在电路上找到这两个被测信号的公共点,将探头的地线接上,两个探头各接至信号处,即能在示波器上同时观察到两个信号,而不致发生意外。
五.实验内容1.实验预习(1)画出晶闸管的电气符号图并标明各个端子的名称。
(2)简述晶闸管导通的条件。
(3)示波器在使用两个探针进行测量时需要注意的问题。
2. 晶闸管特性测试请用万用表测试晶闸管各管脚之间的阻值,填写至下表。
+A K G-AKG3.单结晶体管触发电路调试及各点波形的观察按照实验接线图正确接线,但由单结晶体管触发电路连至晶闸管VT1的脉冲U GK不接(将NMCL—05E面板中G、K接线端悬空),而将触发电路“2”端与脉冲输出“K”端相连,以便观察脉冲的移相范围。
合上主电源,即按下主控制屏绿色“闭合”开关按钮。
这时候NMCL—05E内部的同步变压器原边接有220V,副边输出分别为60V(单结晶触发电路)、30V(正弦波触发电路)、7V(锯齿波触发电路),通过直键开关选择。
《电力电子技术》实验报告班级: 0831102姓名:石航学号:2011212585指导老师:李敏实验地点:数字图书馆单结晶体管触发电路、单相半波可控整流电路实验报告一、实验目的(1)熟悉单结晶体管触发电路的工作原理及各元件的作用。
(2)掌握单结晶体管触发电路的调试步骤和方法。
(3)掌握单结晶体管触发电路的调试步骤和方法。
(4)掌握单相半波可控整流电路在电阻负载及电阻电感性负载时的工作。
(5)了解续流二极管的作用,验证晶闸管的导通条件。
二、实验设备及型号实验一设备及型号序号型号备注1 DZ01 电源控制屏包含“三相电源输出”等几个模块2 DJK03 晶闸管触发电路包含“单结晶体管触发电路”等模块3 双踪示波器包含探头2根实验二设备及型号序型号备注号1 DZ01 电源控制屏2 DJK02 三相变流桥路包含“晶闸管”,以及“电感”等几个模块。
3 DJK03 晶闸管触发电路实验包含“单结晶体管触发电路”模块。
4 DJK06 给定﹑负载及吸收电路包含“二极管”以及“开关”等几个模块。
5 DK04 滑线变阻器串联形式:0.65A,2kΩ并联形式:1.3A,500Ω6 双踪示波器自备三、实验原理及实验步骤1、实验原理一(1) 观测单结晶体管触发电路:如下图所示。
(2) 记录单结晶体管触发电路各点波形,当α=60o 时,单结晶体管触发电路的各观测点波形描绘如下,得到结论。
(3)晶闸管导通条件的测试:在不加门极触发电压,加正向阳极电压(交流15V )的情况下,观察晶闸管是否导通;在加阳极反向电压(交流15V ),加正向门极触发电压(由单结晶体管触发电路提供)的情况下,观察晶闸管是否导通;加正向门极触发电压,加正向阳极电压(交流15V )的情况下, 2、实验原理二如下图所示:(1)单结晶体管触发电路的调试。
(2)单结晶体管触发电路各点电压波形的观察并记录。
(3)单相半波整流电路带电阻性负载时U d /U 2= f(α)特性的测定。
单结晶体管触发电路及单相半波可控整流电路实验报告实验目的:研究单结晶体管触发电路和单相半波可控整流电路的特性。
实验器材:单结晶体管、电阻、电容、整流电路板、交流电源。
实验原理:1.单结晶体管触发电路:单结晶体管触发电路是一种常用的触发电路,可用于控制开关电路,使电路开启或关闭。
单结晶体管的基极和发射极之间的电流可以通过控制功率电源的输入电压来调节,从而实现对整个触发电路的控制。
2.单相半波可控整流电路:单相半波可控整流电路主要包括一个可控硅管和一个载流电阻。
通过控制可控硅管的导通角,可以实现对交流电的半波整流,将交流电转换为直流电。
实验步骤:1.搭建单结晶体管触发电路:根据实验要求,接入单结晶体管、电阻和电容,连接交流电源。
确定合适的电流和电压参数。
2.调节交流电源输出电压,观察并记录单结晶体管的调节情况。
3.搭建单相半波可控整流电路:根据实验要求,接入可控硅管和载流电阻,连接交流电源。
确定合适的电流和电压参数。
4.调节交流电源输出电压,观察并记录可控硅管的导通角度和整流电路的输出情况。
实验结果:1.单结晶体管触发电路的调节情况:在不同的输入电压下,单结晶体管的输出电流变化情况。
2.单相半波可控整流电路的输出情况:记录不同导通角度下,整流电路的输出电流和输出电压。
实验讨论:根据实验结果,分析单结晶体管触发电路和单相半波可控整流电路的特性和工作原理。
对于单结晶体管触发电路,可以控制电路的开启和关闭,实现对电路的控制。
对于单相半波可控整流电路,可以将交流电转换为直流电,实现对电流的整流。
实验一单结晶体管触发电路及单相半波可控整流电路实验一、实验目的(1)熟悉单结晶体管触发电路的工作原理及各元件的作用。
(2)掌握单结晶体管触发电路的调试步骤和方法。
(3)对单相半波可控整流电路在电阻负载工作情况作全面分析。
二、实验线路及原理将单结晶体管触发电路的输出端“G”“K”端接至晶闸管VT1的门阴极, 即可构成如图4-1所示的实验线路。
图4-1单结晶体管触发电路及单相半波整流电路三、实验内容(1)单结晶体管触发电路的调试。
(2)单结晶体管触发电路各点波形的观察。
(3)单相半波整流电路带电阻性负载时特性的测定。
四、实验设备及仪器(1)DJK01电源控制屏;(2)DJK03-1晶闸管触发电路;(3)D42三相可调电阻;(4)DJK02晶闸管主电路;(5)双踪记忆示波器;(6)数字式万用表。
五、预习要求(1) 阅读电力电子技术教材中有关单结晶体管的内容, 弄清单结晶体管触发电路的工作原理。
(2) 复习单相半波可控整流电路的有关内容, 掌握单相半波可控整流电路接电阻性负载的工作波形。
(3)掌握单相半波可控整流电路接不同负载时U d、I d的计算方法。
六、思考题单结晶体管触发电路的振荡频率与电路中的RP1和C2的数值有什么关系?七、实验方法1.单结晶体管触发电路调试及各点波形的观察(1)将 DJK01 电源控制屏的电源选择开关打到“直流调速”侧 , 使输出线电压为 200V (不能打到“交流调速”侧工作, 因为 DJK03 的正常工作电源电压为 220V ± 10% , 而“交流调速”侧输出的线电压为 240V 。
如果输入电压超出其标准工作范围, 挂件的使用寿命将减少, 甚至会导致挂件的损坏。
在“ DZSZ-1 型电机及自动控制实验装置”上使用时, 通过操作控制屏左侧的自藕调压器, 将输出的线电压调到 220V 左右, 然后才能将电源接入挂件), 用两根导线将 200V 交流电压接到 DJK03 的“外接 220V ”端, 按下“启动”按钮, 打开 DJK03 电源开关, 这时挂件中所有的触发电路都开始工作, 用双踪示波器观察单结晶体管触发电路, 经半波整流后“ 1 ”点的波形, 经稳压管削波得到“ 2 ”点的波形, 调节移相电位器 RP1 , 观察“ 4 ”点锯齿波的周期变化及“ 5 ”点的触发脉冲波形;最后观测输出的“ G 、 K ”触发电压波形, 其能否在 30°~ 170°范围内移相 ?(2) 单结晶体管触发电路各点波形的记录: 当α=30°、60°、90°、120°时, 将单结晶体管触发电路的各观测点波形描绘下来, 并与图1-9 的各波形进行比较。
实验一单结晶体管触发电路及单相半波可控整流电路实验组员:毕涛、付晨、李国涛一.实验目的1.熟悉单结晶体管触发电路的工作原理及各元件的作用。
2.掌握单结晶体管触发电路的调试步骤和方法。
3.对单相半波可控整流电路在电阻负载及电阻—电感负载时工作情况作全面分析。
4.了解续流二极管的作用。
二.实验内容1.单结晶体管触发电路的调试。
2.单结晶体管触发电路各点波形的观察。
3.单相半波整流电路带电阻性负载时特性的测定。
4.单相半波整流电路带电阻—电感性负载时,续流二极管作用的观察。
三.实验线路及原理将单结晶体管触发电路的输出端“G”“K”端接至晶闸管VT1的门极、阴极,即可构成如图1-1所示的实验线路。
四.实验设备及仪器1.教学实验台主控制屏;2.NMCL—33组件;3.NMCL—05(E)组件;4.MEL-03(A)组件;5.双踪示波器(自备);6.万用表(自备)。
五.注意事项1.双踪示波器(自备)有两个探头,可以同时测量两个信号,但这两个探头的地线都与示波器的外壳相连接,所以两个探头的地线不能同时接在某一电路的不同两点上,否则将使这两点通过示波器发生电气短路。
为此,在实验中可将其中一根探头的地线取下或外包以绝缘,只使用其中一根地线。
当需要同时观察两个信号时,必须在电路上找到这两个被测信号的公共点,将探头的地线接上,两个探头各接至信号处,即能在示波器上同时观察到两个信号,而不致发生意外。
2.为保护整流元件不受损坏,需注意实验步骤:(1)在主电路不接通电源时,调试触发电路,使之正常工作。
(2)在控制电压U ct=0时,接通主电路电源,然后逐渐加大U ct,使整流电路投入工作。
(3)正确选择负载电阻或电感,须注意防止过流。
在不能确定的情况下,尽可能选择较大的电阻或电感,然后根据电流值来调整。
(4)晶闸管具有一定的维持电流I H ,只有流过晶闸管的电流大于I H ,晶闸管才可靠导通。
实验中,若负载电流太小,可能出现晶闸管时通时断,所以实验中,应保持负载电流不小于100mA 。
实验三 晶闸管触发电路——单结晶体管触发电路一、实验目的:1、 掌握单结晶体管触发电路的工作原理;2、 学会使用示波器测量单结晶体管触发电路的个点电压波形;一、实验仪器设备:1、 ZEC-410型实验台2、 EM-11实验挂箱3、 双踪示波器一台4、 万用表一块、一字型螺丝刀一把(调节RP1用)三、实验原理:单结晶体管触发电路,是利用单结晶体管(双基极二极管)的负阻特性和RC 的充放电特性,构成频率可调的自激振荡电路,如图3-1所示0%R1R2R3R4R5R6D1D2VST1VST2C1V1V2C2T123456T2K GV3RP1图3-1 单结晶体管触发电路由同步变压器T1副边输出的交流同步电压,经D1半波整流,再由稳压管VST1,VST2进行削波,而得到梯形波电压,其过零点与晶闸管阳极电压的过零点一致,梯形波通过R5,V2向电容C2充电,当充电电压达到单结晶体管的峰点电压时,单结晶体管V3导通,从而通过脉冲变压器T2输出脉冲。
同时C2经V3和T2原边放电,由于时间常数很小,U c2很快下降至单结晶体管的谷点电压,V3重新关断,C2再次充电。
每个梯形波周期,V3可能导通,关断多次,但只有第一个输出脉冲起作用。
电容C2的充电时间常数由R7和V2的等效电阻等决定,调节RP1的滑动触点可改变V1的基极电压,使V1,V2都工作在放大区,即等效电阻可由RP1来调节,也就是说一个梯形波周期内的第一个脉冲出现时候(控制角)可由RP1来调节,控制第一个尖脉冲的出现时刻,实现脉冲的移相控制。
四、实验内容及步骤:1、将控制台左上角的交流数字电压表(如图3-2所示)切换到300V档,用专用连接线将图3-2 数字交流电压表(左)及数字交流电流表(右)数字交流电压表接到单、三相可调交流电源输出的“U”孔和“N”孔中,如图3-3所示图3-3 单、三相可调交流电源调节“交流电源输出调节”旋钮,使电压表读数为200V;2、将连接交流电压表的两根连线改接到EM-11挂箱的“同步交流电压输入”端,并打开EM-11挂箱右下角的电源开关,T1原边同步交流电压信号已在内部接好。
实验一单结晶体管触发电路实验一、实验目的(1)熟悉单结晶体管触发电路的工作原理及电路中各元件的作用。
(2)掌握单结晶体管触发电路的调试步骤和方法。
二、实验所需挂件及附件DJK01电源控制屏、DJK03-1晶闸管触发电路、双踪示波器三、实验线路及其原理单结晶体管又称双基极二极管,利用单结晶体管的负阻特性和RC的充放电特性,可组成频率可调的自激振荡电路,如图1所示。
图1 单结晶体管触发电路原理图图中V6为单结晶体管,其常用的型号有BT33和BT55两种,由等效电阻V5和C1组成RC充电回路,由C1-V6-脉冲变压器组成电容放电回路,调节RP1即可改变C1充电回路中的等效电阻。
单结晶体管触发电路的工作原理为:由同步变压器副边输出60V的交流同步电压,经VD1半波整流,再由稳压管V1、V2进行削波,从而得到梯形波电压,其过零点与电源电压的过零点同步,梯形波通过R7及等效可变电阻V5向电容C1充电,当充电电压达到单结晶体管的峰值电压UP时,单结晶体管V6导通,电容通过脉冲变压器原边放电,脉冲变压器副边输出脉冲。
同时由于放电时间常数很小,C1两端的电压很快下降到单结晶体管的谷点电压UV,使V6关断,C1再次充电,周而复始,在电容C1两端呈现锯齿波形,在脉冲变压器副边输出尖脉冲。
在一个梯形波周期内,V6可能导通、关断多次,但只有输出的第一个触发脉冲对晶闸管的触发时刻起作用。
充电时间常数由电容C1和等效电阻等决定,调节RP1改变C1的充电的时间,控制第一个尖脉冲的出现时刻,实现脉冲的移相控制。
四、实验内容(1)单结晶体管触发电路的调试。
(2)单结晶体管触发电路各点电压波形的观察五、预习要求阅读本实验讲义及电力电子技术教材中有关内容,弄清楚单结晶体管触发电路的工作原理。
六、思考题(1)单结晶体管触发电路的振荡频率与电路中C1的数值有什么关系?(2)单结晶体管触发电路的移相范围能够达到180 ?七、实验方法(1)单结晶体管触发电路的观测将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V(不能打到“交流调速”侧工作),用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,这时挂件中所有的触发电路都开始工作,用双踪示波器观察单结晶体管触发电路,经半波整流后“1”点波形,经稳压管削波得到“2”点的波形,调节移相电位器RP1,观察“4”点锯齿波的周期变化及“5”点的触发脉冲波形;最后观测输出的“G、K”触发电压波形,其能否在30~170。
单结晶体管触发电路及单相半波可控整流电路实验报告实验报告:单结晶体管触发电路及单相半波可控整流电路一、实验目的1.了解单结晶体管触发电路的工作原理;2.掌握单相半波可控整流电路的工作原理;3.理解触发电路与可控整流电路的关系与应用。
二、实验原理1.单结晶体管触发电路单结晶体管触发电路由一个单结晶体管、一个电容、一个电阻组成。
当输入信号较大时,单结晶体管导通,输出为低电平;当输入信号较小时,单结晶体管截止,输出为高电平。
触发电路常用于数字信号处理、频率分频和计数器等电路。
2.单相半波可控整流电路单相半波可控整流电路由一个可控硅、一个变压器、一个电阻和一个负载组成。
当可控硅的栅极加上一个触发脉冲信号时,可控硅导通,然后整流变压器的次级绕组上出现一脉冲,可控硅不再触发时,负载处输出为零。
整流电路常用于控制电动机的起动、调速和制动。
三、实验器材和元件1.实验台板、双踪示波器、数字万用表、电磁铁;2.元器件:单结晶体管、电容、电阻、可控硅;3.其他:电源、示波器探头等。
四、实验步骤1.单结晶体管触发电路实验(2)接地电源,调节电源电压至适当值;(3)调节可变电阻RV1,观察和记录输出波形;(4)调节输入信号电压Vi,观察并记录输出波形。
2.单相半波可控整流电路实验(2)接地电源,调节电源电压至适当值;(3)调节可变电阻RV1,观察和记录输出波形;(4)调节可控硅的触发脉冲信号的频率和宽度,观察并记录输出波形。
五、实验结果与分析1.单结晶体管触发电路实验(1)根据观察和记录的结果,绘制输入信号和输出信号波形图;(2)根据波形图,分析单结晶体管在不同输入信号下的工作情况。
2.单相半波可控整流电路实验(1)根据观察和记录的结果,绘制输入信号和输出信号波形图;(2)根据波形图,分析可控整流电路在不同触发脉冲信号下的工作情况。
六、实验结论通过本次实验,我们实现了单结晶体管触发电路和单相半波可控整流电路的搭建,并观察和分析了它们的输入输出波形图。