中考数学复习同步练习(4)(整式方程(组))
- 格式:doc
- 大小:177.49 KB
- 文档页数:3
中考数学专题复习《整式方程(组)的应用》经典题型讲解类型之一一元一次方程的应用【经典母题】汽车队运送一批货物.若每辆车装4 t,还剩下8 t未装;若每辆车装4.5 t,恰好装完.这个车队有多少辆车?解:设这个车队有x辆车,依题意,得4x+8=4.5x,解得x=16.答:这个车队有16辆车.【思想方法】利用一元一次方程解决实际问题是学习二元一次方程组、分式方程、一元二次方程、一元一次不等式(组)等的基础,是课标要求,也是热门考点.【中考变形】1.学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,今年购置计算机的数量是(C) A.25台B.50台C.75台D.100台【解析】设今年购置计算机的数量是x台,去年购置计算机的数量是(100-x)台,根据题意可得x=3(100-x),解得x=75.2.[2016·盐城校级期中]小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.妈妈说:“今天买这两样菜共花了45元,上月买同重量的这两种菜只要36元”.爸爸说:“报纸上说了萝卜的单价上涨50%,排骨单价上涨20%”.小明说:爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?请你通过列一元一次方程求解这天萝卜、排骨的单价(单位:元/斤).解:设上月萝卜的单价是x 元/斤,则排骨的单价36-3x 2元/斤,根据题意,得3(1+50%)x +2(1+20%)⎝ ⎛⎭⎪⎫36-3x 2=45, 解得x =2,则36-3x 2=36-3×22=15. ∴这天萝卜的单价是(1+50%)×2=3(元/斤),这天排骨的单价是(1+20%)×15=18(元/斤).答:这天萝卜的单价是3元/斤,排骨的单价是18元/斤.【中考预测】[2016·株洲模拟]根据如图Z4-1的对话,分别求小红所买的笔和笔记本的价格.图Z4-1解:设笔的价格为x 元/支,则笔记本的价格为3x 元/本,由题意,得10x +5×3x =30,解得x =1.2,∴3x =3.6.答:笔的价格为1.2元/支,笔记本的价格为3.6元/本.类型之二 二元一次方程组的应用【经典母题】用如图Z4-2①中的长方形和正方形纸板做侧面和底面,做成如图②的竖式和横式两种无盖纸盒.现在仓库里有1 000张正方形纸板和2 000张长方形纸板,问两种纸盒各做多少个,恰好将库存的纸板用完?图Z4-2解:设做竖式纸盒x 个,横式纸盒y 个,可恰好将库存的纸板用完.根据题意,得⎩⎪⎨⎪⎧4x +3y =2 000,x +2y =1 000,解得⎩⎪⎨⎪⎧x =200,y =400.答:竖式纸盒做200个,横式纸盒做400个,恰好将库存的纸板用完.【思想方法】 利用方程(组)解决几何计算问题,是较好的方法,体现了数形结合思想.【中考变形】1.小华写信给老家的爷爷,问候“八·一”建军节.折叠长方形信纸,装入标准信封时发现:若将信纸按图Z4-3①连续两次对折后,沿着信封口边线装入时宽绰3.8 cm ;若将信纸按图②三等分折叠后,同样方法装入时宽绰1.4 cm.试求出信纸的纸长与信封的口宽.①②图Z4-3解:设信纸的纸长为x cm ,信封口的宽为y cm.由题意,得⎩⎪⎨⎪⎧y =x 4+3.8,y =x 3+1.4,解得⎩⎪⎨⎪⎧x =28.8,y =11. 答:信纸的纸长为28.8 cm ,信封的口宽为11 cm.2.某中学新建了一栋四层的教学楼,每层楼有10间教室,进出这栋教学楼共有4个门,其中两个正门大小相同,两个侧门大小也相同.安全检查中,对4个门进行了测试,当同时开启一个正门和两个侧门时,2 min 内可以通过560名学生;当同时开启一个正门和一个侧门时,4 min 内可以通过800名学生.(1)求平均每分钟一个正门和一个侧门各可以通过多少名学生?(2)检查中发现,出现紧急情况时,因学生拥挤,出门的效率将降低20%,安全检查规定:在紧急情况下全楼的学生应在5 min 内通过这4个门安全撤离,假设这栋教学大楼每间教室最多有45名学生,问:该教学楼建造的这4个门是否符合安全规定?请说明理由.解:(1)设一个正门平均每分钟通过x 名学生,一个侧门平均每分钟通过y 名学生,由题意,得⎩⎪⎨⎪⎧2x +4y =560,4x +4y =800,解得⎩⎪⎨⎪⎧x =120,y =80.答:一个正门平均每分钟通过120名学生,一个侧门平均每分钟通过80名学生;(2)由题意得共有学生45×10×4=1 800(人),学生通过的时间为1 800÷[(120+80)×0.8×2]=458(min).∵5<458,∴该教学楼建造的这4个门不符合安全规定.【中考预测】随着“互联网+”时代的到来,一种新型的手机打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按p 元/km 计算,耗时费按q 元/min 计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与车速如下表:(1)求p ,q 的值; (2)如果小华也用该打车方式,车速55 km/h ,行驶了11 km ,那么小华的打车总费用为多少?解:(1)小明的里程数是8 km ,时间为8 min ;小刚的里程数为10 km ,时间为12 min.由题意得⎩⎪⎨⎪⎧8p +8q =12,10p +12q =16,解得⎩⎨⎧p =1,q =12;(2)小华的里程数是11 km ,时间为12 min.则总费用是11p +12q =17(元).类型之三 一元二次方程的应用【经典母题】某租赁公司拥有汽车100辆,据统计,当每辆车的月租金为3 000元时,可全部租出,每辆车的月租金每增加50元,未租出的车将会增加1辆.租出的车每辆每月需要维护费为150元,未租出的车每辆每月只需要维护费50元.(1)当每辆车的月租金定为3 600元时,能租出多少辆?(2)当每辆车的月租金定为多少元时,租赁公司的月收益(租金收入扣除维护费)可达到306 600元?解:(1)100-3 600-3 00050=88(辆). 答:当每辆车的月租金定为3 600元时,能租出88辆.(2)设每辆车的月租金定为(3 000+x )元,则⎝ ⎛⎭⎪⎫100-x 50[(3 000+x )-150]-x 50×50=306 600, 解得x 1=900,x 2=1 200,∴3 000+900=3 900(元),3 000+1 200=4 200(元).答:当每辆车的月租金为3 900元或4 200元时,月收益可达到306 600元.【思想方法】利润=收入-支出,即利润=租出去车辆的租金-租出去车辆的维护费-未租出去车辆的维护费.【中考变形】1.[2017·眉山]东坡某烘焙店生产的蛋糕礼盒分为6个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1 080元,该烘焙店生产的是第几档次的产品?解:(1)设此批次蛋糕属第a 档次产品,则10+2(a -1)=14,解得a =3. 答:此批次蛋糕属第3档次产品.⎝⎛⎭⎪⎫或:∵14-102+1=3,∴此批蛋糕属第3档次产品. (2)设该烘焙店生产的是第x 档次的产品,根据题意,得[10+2(x -1)][76-4(x -1)]=1 080,解得x 1=5,x 2=11(舍去).答:该烘焙店生产的是第5档次的产品.2.[2017·重庆B 卷]某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400 kg ,其中枇杷的产量不超过樱桃的产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售.该果农去年樱桃的市场销售量为100 kg,销售均价为30元/kg,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同;该果农去年枇杷的市场销售量为200 kg,销售均价为20元/kg,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%.该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.【解析】(1)根据“枇杷的产量不超过樱桃的产量的7倍”即可列出不等式求得今年收获樱桃的质量;(2)抓住关键语句,仔细梳理,根据去年、今年樱桃销售量、销售均价,求出各自的销售额,可以用一张表格概括其中数量关系:然后根据“今年樱桃和枇杷的销售总金额与去年樱桃和枇杷的市场销售总金额相同”可列方程求解.解:(1)设该果农今年收获樱桃至少x kg,今年收获枇杷(400-x)kg,依题意,得400-x≤7x,解得x≥50.答:该果农今年收获樱桃至少50 kg.(2)由题意,得3 000×(1-m %)+4 000×(1 +2m%)×(1-m%)=7 000,解得m1=0(不合题意,舍去),m2=12.5.答:m的值为12.5.【中考预测】某水果批发商场经销一种水果,如果每千克盈利10元,每天可售出400 kg.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20 kg.(1)当每千克涨价多少元时,每天的盈利最多?最多是多少?(2)若商场只要求保证每天的盈利为4 420元,同时又可使顾客得到实惠,每千克应涨价多少元?解:(1)设每千克涨价x元,总利润为y元.则y=(10+x)(400-20x)=-20x2+200x+4 000=-20(x-5)2+4 500.当x=5时,y取得最大值,最大值为4 500元.答:当每千克涨价5元时,每天的盈利最多,最多为4 500元;(2)设每千克应涨价a元,则(10+a)(400-20a)=4 420.解得a=3或a=7,为了使顾客得到实惠,∴a=3.答:每千克应涨价3元.。
中考基础训练(4)一、选择:1.下列运算中,正确的是( )A.2a a a -+= C .336()a a = D3=- 2.已知样本数据1、2、2、3、7,下列说法不正确...的是( ) A .平均数是3 B .中位数是2 差是2 D .众数是2 3.下列图形中,不是三棱柱的表面展开图的是( )4.学校买来钢笔若干枝,可以平均分给)1(-x 名同学,也可分给)2(-x 名同学(x 为正整数).用代数式表示钢笔的数量不可能的是( )A .232++x x B .)2)(1(3--x x C .232+-x x D .x x x 2323+-5.在Rt △ABC 中,∠C=90°,BC=6,AC=8,D 、E 分别是AC 、BC 上的一点,且DE=6,若以DE 为直径的圆与斜边AB 相交于M 、N ,则MN 的最大值为( ) A .59 B .512 C .516 D .524二、填空: 6.若,则.7.计算:=+m m 42 . 8.计算:=⋅28 .9.“十二五”期间,我国将新建保障性住房36000000套,用于解决中低收入和新参加工作的大学 生住房的需求,把36000000用科学记数法表示为 套. 10.函数x y -=1中,自变量x 的取值范围是 .11.用圆心角为120°,半径为9的扇形围成一个圆锥侧面,则这个圆锥的底面直径为 .NMEDCBA12.已知菱形的两条对角线分别为cm 2、cm 3,则它的面积是 2cm . 13.若0252=+-m m ,则=+-20151022m m .14.如图,在Rt △ABC 中,∠C=90°,CD 是AB 边上的中线,且CD=5,则△ABC 的中位线EF 的长是 .15.如图,∠1=∠2,添加一个条件 使得△ADE ∽△ACB .16.若点P (x ,y )在平面直角坐标系xoy 中第四象限内的一点,且满足42=-y x , m y x =+,则m 的取值范围是 .17.如图,△ABC 三个顶点坐标分别为)5,3(-A ,)0,3(-B ,)0,2(C ,将△ABC 绕点B 顺时针旋转一定角度后使点A 落在y 轴上,与此同时顶点C 恰好落在xky =的图像上, 则k 的值为 .三、解答:18.(本题满分8分)(1)计算:45tan )2013()41(01+----π; (2)化简:xx x 1)11(2-÷+.19.(本题满分10分)(1)解方程:22111-=--x xx ; (2)解不等式:x x<--3521,并把解集表示在数轴上.20.(本题满分6分) 2013年2月28日,全国科学技术名词审定委员会称PM2.5拟正式命名为“细颗粒物”。
一、填空(每小题3分,共90分)1、方程121=x 的解是 2、方程253=-y x 的解的个数有 个3、如果1=x 是方程ax x =-3的根,那么=a4、如果1,3-==y x 是方程33=-ay x 的一个解,那么=a5、方程x x 52=的解为6、方程01652=-x 的解为7、若⎩⎨⎧==11y x 是方程组⎩⎨⎧=+=-522by ax by ax 的解,则=⋅b a8、若b a ,满足⎩⎨⎧=+=+7282b a b a ,那么b a -的值为 9、在方程1822+-=x x y 中,当0=y 时,x 的值为10、一元二次方程)0(02≠=-+a c bx ax 的根的判别式△=11、若2=x 是方程052=+--k kx x 的一个根,则k 的值等于12、方程01732=--x x 的根为13、若方程0262=+-x mx 有两个不相等的实数根,则m 的取值范围是14、若一元二次方程0732=++m x x 无实数根,则m15、方程04322=-+x x 的根的判别式△=16、若一元二次方程的二次项系数为1,它的两个根为1,-2,则这个方程是17、在方程+22x ( )02=+x 括号内填上一个数,使这个方程中有一个实数根为1。
18、不等式x x 2783-<-的解集为19、已知不等式4)32(>+x m 的解是324+<m x ,则m 的取值范围是 20、如果代数式47-x 的值是非负数,那么x 的取值范围是21、若b a >,则a -10 b -10(填"",""<>,或""=中一个)22、不等式组⎩⎨⎧<->6333x x 的解集是23、若代数式23x -不小于3,则x 的取值范围 24、把二元二次方程25912422=+-y xy x 化为两个二元一次方程为25、方程组⎩⎨⎧==xy x y 222的解是26、方程组⎩⎨⎧=⋅=+65b a b a 的解是 27、三角形三边的比是1:3:2,则最大角的度数为28、某工程甲独做要8天完成,乙独做要6天完成,两人合做则x 天完成,根据题意列得方程29、老师要把初三(1)班的学生分成x 组,如果每组8人,还多2人;如果每组9人,缺少4人,找出等量关系可得到方程为30、若b a >与b a 11>同时成立,则b a ,应满足条件是二、选择题(每小题3分,共30分)1、下列方程是一元一次方程的是 ( )A .143=+y xB .012=-xC .1=xD .11=x2、下列方程中,解是零的方程是 ( )A .36)13(2-=+x xB .421632+=+-x x C .)1(7)1(3)2(2x x x -=-+- D .62)3)(2(2+=+-x x x3、多边形的内角和等于︒⨯-180)2(n ,如果某多边形的内角和为︒1440,则多边形的边数n 为 ( )A .6B .8C .10D .以上都不对4、若,2<-a 下列各式中正确的是 ( )A .2-<aB .2>aC .31<+-aD .11>--a5、下列命题中正确的是 ( )A .方程2-=x 没有实数根B .方程2=-x 没有实数根C .方程02322=--x x 没有实数根D .方程082=-x 有两个相等的实数根6、一元二次方程02=++q px x 至少有一个根为零的条件是 ( )A .042=-q pB .0=qC .0=pD .0=-q p7、下列方程中,有两个相等的实数根的是 ( )A .x x 6522=+B .02232=+-x xC .016232=+-x xD .y y 5252=+8、如果实数满足0624=-+a a ,那么2a 的值为 ( )A .-3 或2B .3或-2C .3D .29、方程0)7)(3(=+-y x 的解的个数为 ( )A .1B .2C .4D .无数10、已知一个三角形的两边长分别为7和2,且周长为偶数,则第三边的长为( )A .3B .6C .7D .8三、简答题(第1~3每题7分,第4题9分,共30分)1、解不等式组⎪⎩⎪⎨⎧->+---≤-226231410915x x x x x2、至少用两种方法解一元二次方程01422=--x x3、已知关于x 的方程0132=-++m x x 的有两个相同的实数根,求这个方程的两个根及m 的值。
2023年中考数学《整式》专题考点回顾及练习题(含答案解析) 考点一:整式之代数式1. 代数式的定义:由数与字母通过“+,-,×,÷”以及乘方、开方等运算符号连接的式子叫做代数式。
2. 列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式。
3. 代数式求值:①单个字母带入求代数式的值。
②整体代入法求代数式的值。
(找已知式子与所求式子的倍数关系)1.(2022•长沙)为落实“双减”政策,某校利用课后服务开展了主题为“书香满校园”的读书活动.现需购买甲,乙两种读本共100本供学生阅读,其中甲种读本的单价为10元/本,乙种读本的单价为8元/本,设购买甲种读本x 本,则购买乙种读本的费用为( )A .8x 元B .10(100﹣x )元C .8(100﹣x )元D .(100﹣8x )元【分析】直接利用乙的单价×乙的本数=乙的费用,进而得出答案.【解答】解:设购买甲种读本x 本,则购买乙种读本的费用为:8(100﹣x )元.故选:C .2.(2022•杭州)某体育比赛的门票分A 票和B 票两种,A 票每张x 元,B 票每张y 元.已知10张A 票的总价与19张B 票的总价相差320元,则( )A .y x 1910=320B .xy 1910=320 C .|10x ﹣19y |=320 D .|19x ﹣10y |=320【分析】直接利用10张A 票的总价与19张B 票的总价相差320元,得出等式求出答案.【解答】解:由题意可得:|10x ﹣19y |=320.故选:C .3.(2022•吉林)篮球队要购买10个篮球,每个篮球m 元,一共需要 元.(用含m 的代数式表示)【分析】根据题意直接列出代数式即可.【解答】解:篮球队要买10个篮球,每个篮球m 元,一共需要10m 元,故答案为:10m .4.(2022•梧州)若x =1,则3x ﹣2= .【分析】把x =1代入3x ﹣2中,计算即可得出答案.【解答】解:把x =1代入3x ﹣2中,原式=3×1﹣2=1.故答案为:1.5.(2022•广西)阅读材料:整体代值是数学中常用的方法.例如“已知3a ﹣b =2,求代数式6a ﹣2b ﹣1的值.”可以这样解:6a ﹣2b ﹣1=2(3a ﹣b )﹣1=2×2﹣1=3.根据阅读材料,解决问题:若x =2是关于x 的一元一次方程ax +b =3的解,则代数式4a 2+4ab +b 2+4a +2b ﹣1的值是 .【分析】根据x =2是关于x 的一元一次方程ax +b =3的解,可得:b =3﹣2a ,直接代入所求式即可解答.【解答】解:原式=(2a +b )2+2(2a +b )﹣1=32+2×3﹣1=14,故答案为:14.6.(2022•邵阳)已知x 2﹣3x +1=0,则3x 2﹣9x +5= .【分析】原式前两项提取3变形后,把已知等式变形代入计算即可求出值.【解答】解:∵x 2﹣3x +1=0,∴x 2﹣3x =﹣1,则原式=3(x 2﹣3x )+5=﹣3+5 =2.故答案为:2.7.(2022•郴州)若32=−b b a ,则b a = . 【分析】对已知式子分析可知,原式可根据比例的基本性质可直接得出比例式的值.【解答】解:根据=得3a =5b ,则=.故答案为:. 考点二:整式之单项式1. 单项式的定义:由数与字母的乘积组成的式子叫做单项式。
备考2019中考数学高频考点剖析专题四代数之方程(组)问题考点扫描☆聚焦中考方程和方程组问题,是历年中考的必考内容之一,考查的知识点包括一元一次方程、二元一次方程组、分式方程及其一元二次方程四个方面,总体来看,难度系数低,整式方程以选择填空为主,分式方程以计算为主,综合不等式进行考查,解析题也是重点考查内容。
也有少量的解析题。
解析题主要以二元一次方程和其它方程的综合为主。
结合2018年全国各地中考的实例,我们从四方面进行方程与方程组问题的探讨:(1)一元一次方程;(2)二元一次方程组;(3)分式方程.(4)一元二次方程考点剖析☆典型例题2018·吉林长春·7分)学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.【分析】(1)设每套课桌椅的成本为x元,根据利润=销售收入﹣成本结合商店获得的利润不变,即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=单套利润×销售数量,即可求出结论.【解答】解:(1)设每套课桌椅的成本为x元,根据题意得:60×100﹣60x=72×(100﹣3)﹣72x,解得:x=82.答:每套课桌椅的成本为82元.(2)60×(100﹣82)=1080(元).答:商店获得的利润为1080元.【点评】本题考查了一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据数量关系,列式计算.2018·湖北十堰·3分)我国古代数学著作《九章算术》卷七有下列问题:“今有共买物,人出八,盈三:人出七,不足四,问人数、物价几何?”意思是:现在有几个人共同出钱去买件物品,如果每人出8钱,则剩余3钱:如果每人出7钱,则差4钱.问有多少人,物品的价格是多少?设有x人,物品的价格为y元,可列方程(组)为()A. B. C. D.=【分析】设有x人,物品的价格为y元,根据所花总钱数不变列出方程即可.【解答】解:设有x人,物品的价格为y元,根据题意,可列方程:,故选:A.【点评】本题考查了由实际问题抽象出二元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.2018·辽宁省沈阳市)(8.00分)某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2.3.4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.【分析】(1)设每个月生产成本的下降率为x,根据2月份、3月份的生产成本,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.【解答】解:(1)设每个月生产成本的下降率为x,根据题意得:400(1﹣x)2=361,解得:x1=0.05=5%,x2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%.(2)361×(1﹣5%)=342.95(万元).答:预测4月份该公司的生产成本为342.95万元.【点评】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.2018·辽宁省盘锦市)东东玩具商店用500元购进一批悠悠球,很受中小学生欢迎,悠悠球很快售完,接着又用900元购进第二批这种悠悠球,所购数量是第一批数量的1.5倍,但每套进价多了5元.(1)求第一批悠悠球每套的进价是多少元;(2)如果这两批悠悠球每套售价相同,且全部售完后总利润不低于25%,那么每套悠悠球的售价至少是多少元?【解答】解:(1)设第一批悠悠球每套的进价是x元,则第二批悠悠球每套的进价是(x+5)元,根据题意得:=1.5×,解得:x=25,经检验,x=25是原分式方程的解.答:第一批悠悠球每套的进价是25元.(2)设每套悠悠球的售价为y元,根据题意得:500÷25×(1+1.5)y﹣500﹣900≥(500+900)×25%,解得:y≥35.答:每套悠悠球的售价至少是35元.2018·辽宁省抚顺市)(12.00分)为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?【分析】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x 米,根据工作时间=工作总量÷工作效率结合甲队改造360米的道路比乙队改造同样长的道路少用3天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设安排甲队工作m天,则安排乙队工作天,根据总费用=甲队每天所需费用×工作时间+乙队每天所需费用×工作时间结合总费用不超过145万元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x 米,根据题意得:﹣=3,解得:x=40,经检验,x=40是原分式方程的解,且符合题意,∴x=×40=60.答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)设安排甲队工作m天,则安排乙队工作天,根据题意得:7m+5×≤145,解得:m≥10.答:至少安排甲队工作10天.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.考点过关☆专项突破类型一一元一次方程1. (2018•湖北恩施•3分)一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()A.不盈不亏 B.盈利20元C.亏损10元D.亏损30元2. (2018·湖北省武汉·3分)将正整数1至2018按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是()A.2019 B.2018 C.2016 D.20133. (2018·浙江省台州·4分)甲、乙两运动员在长为100m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点…若甲跑步的速度为5m/s,乙跑步的速度为4m/s,则起跑后100s内,两人相遇的次数为()A.5 B.4 C.3 D.24. (2018·湖南省常德·3分)5个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个实数,并把自己想好的数如实地告诉他相邻的两个人,然后每个人将他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报4的人心里想的数是.5. (2018·湖北江汉·3分)某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A,B两个贫困地区,其中发往A区的物资比B区的物资的1.5倍少1000件,则发往A区的生活物资为件.6. (2018·山东临沂·3分)任何一个无限循环小数都可以写成分数的形式,应该怎样写呢?我们以无限循环小数0.为例进行说明:设0. =x,由0. =0.7777…可知,l0x=7.7777…,所以l0x﹣x=7,解方程,得x=,于是.得0. =.将0.写成分数的形式是.7.(2018•安徽•分)《孙子算经》中有过样一道题,原文如下:“今有百鹿入城,家取一鹿不尽,又三家共一鹿适尽,问城中家几何?” 大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问城中有多少户人家?请解答上述问题.8.(2018·江苏镇江·6分)小李读一本名著,星期六读了36页,第二天读了剩余部分的,这两天共读了整本书的,这本名著共有多少页?类型二二元一次方程组1. (2018·辽宁大连·3分)《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?设有x匹大马,y 匹小马,根据题意可列方程组为.2.(2018·湖北荆州·3分)《九章算术》是中国传统数学名著,其中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛,2只羊,值金10两;2头牛,5只羊,值金8两.问每头牛、每只羊各值金多少两?”若设每头牛、每只羊分别值金x两、y两,则可列方程组为()A. B.C. D.3.(2018·山东泰安·3分)夏季来临,某超市试销A、B两种型号的风扇,两周内共销售30台,销售收入5300元,A型风扇每台200元,B型风扇每台150元,问A、B两种型号的风扇分别销售了多少台?若设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为()A.B.C.D.4.(2018·新疆生产建设兵团·5分)某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x元,水笔每支为y元,那么根据题意,下列方程组中,正确的是()A.B.C.D.5. (2018·广东广州·3分)《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚黄金重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13辆(袋子重量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重x辆,每枚白银重y辆,根据题意得()A. B.C. D.6.(2018·四川自贡·4分)六一儿童节,某幼儿园用100元钱给小朋友买了甲、乙两种不同的玩具共30个,单价分别为2元和4元,则该幼儿园购买了甲、乙两种玩具分别为、个.7.(2018·山东青岛·3分)5月份,甲、乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施.6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂5月份的用水量各是多少.设甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据题意列关于x,y的方程组为.8. (2018•湖南省永州市•10分)在永州市青少年禁毒教育活动中,某班男生小明与班上同学一起到禁毒教育基地参观,以下是小明和奶奶的对话,请根据对话内容,求小明班上参观禁毒教育基地的男生和女生的人数.9 . (2018•江苏扬州•8分)对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a+b.例如3⊗4=2×3+4=10.(1)求2⊗(﹣5)的值;(2)若x⊗(﹣y)=2,且2y⊗x=﹣1,求x+y的值.10. (2018·湖北省宜昌·7分)我国古代数学著作《九章算术》中有这样一题,原文是:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何.”意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,是古代的一种容量单位),1个大桶加上5个小桶可以盛酒2斛.1个大桶、1个小桶分别可以盛酒多少斛?请解答.类型三分式方程1.解方程: =+1.2.(2018·云南省昆明·4分)甲、乙两船从相距300km的A.B两地同时出发相向而行,甲船从A 地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A.=B.=C.=D.=3.(2018·辽宁省阜新市)甲、乙两地相距600km,乘高铁列车从甲地到乙地比乘特快列车少用4h,已知高铁列车的平均行驶速度是特快列车的3倍,设特快列车的平均行驶速度为xkm/h,根据题意可列方程为()A.=4 B.=4C.=4 D.=4×24. (2018·浙江舟山·4分)甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少10%,若设甲每小时检x个,则根据题意,可列出方程:________。
聚焦考点☆温习理解一、一元一次方程的概念二.一元二次方程1、一元二次方程含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。
2、一元二次方程的一般形式)0(02≠=++a c bx ax ,它的特征是:等式左边十一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。
三、一元二次方程的解法 1、直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接开平方法适用于解形如b a x =+2)(的一元二次方程。
根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。
2、配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。
配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。
3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b aac b b x 4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
考点典例一、一元一次方程【例1】(2014·眉山)方程312x -=的解是( )A .1x =B .1x =-C .13x =-D .13x =【举一反三】(2014·湖州)方程2x ﹣1=0的解是x= .考点典例二、一元一次方程的应用【例2】(2014·无锡)某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6•1儿童节”举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x 支,则依题意可列得的一元一次方程为( )A. 1.2×0.8x+2×0.9(60+x )=87B. 1.2×0.8x+2×0.9(60﹣x )=87C. 2×0.9x+1.2×0.8(60+x )=87D. 2×0.9x+1.2×0.8(60﹣x )=87【举一反三】(2014·绍兴)天平呈平衡状态,其中左侧秤盘中有一袋玻璃球,右侧秤盘中也有一袋玻璃球,还有2个各20克的砝码.现将左侧袋中一颗玻璃球移至右侧秤盘,并拿走右侧秤盘的1个砝码后,天平仍呈平衡状态,如图2,则被移动的玻璃球的质量为( )A .10克B .15克C .20克D .25克考点典例三、一元二次方程【例3】(2014·嘉兴)方程2x 3x 0-=的根为 .【举一反三】(2014·无锡)解方程:x 2﹣5x ﹣6=0; 考点典例四、一元二次方程的应用【例4】(2014·南京)(8分)某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第一年的可变成本为2.6万元,设可变成本平均每年增长的百分率为x(1)用含x 的代数式表示低3年的可变成本为 万元;(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年的增长百分率x.【举一反三】(2014·海南)某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的百分率都为x ,那么x 满足的方程是( )A .()21001x 81+=B .()21001x 81-=C .()21001x%81-=D .2100x 81=考点典例五、二元一次方程组【例5】(2014·湖州)解方程组3x y 72x y 3+=-=⎧⎨⎩. 【举一反三】(2014·贺州)已知关于x 、y 的方程组11mx ny 22mx ny 5⎧-=⎪⎨⎪+=⎩的解为x 2y 3=⎧⎨=⎩,求m 、n 的值.考点典例六、二元一次方程组的应用【例6】(2014·海南)海南五月瓜果飘香,某超市出售的“无核荔枝”和“鸡蛋芒果”单价分别为每千克26元和22元.李叔叔购买这两种水果共30千克,共花了708元.请问李叔叔购买这两种水果各多少千克?课时作业☆能力提升一.选择题1.(2014·黄冈)若α、β是一元二次方程2x 2x 60+-=的两根,则22αβ+= ( )A. –6B. 32C. 16D. 402.(2014·苏州)下列关于x 的方程有实数根的是( )A .x 2-x +1=0B .x 2+x +1=0C .(x -1)(x +2)=0D .(x -1)2+l =03.(2014·自贡)一元二次方程x 2﹣4x +5=0的根的情况是( )A .有两个不相等的实数根B . 有两个相等的实数根C .只有一个实数根D . 没有实数根 4.(2014·宜宾) 若关于x 的一元二次方程的两个根为x 1=1,x 2=2,则这个方程是( ) A . x 2+3x ﹣2=0 B . x 2﹣3x +2=0 C . x 2﹣2x +3=0 D . x 2+3x +2=05.(2014·内江)若关于x 的一元二次方程(k ﹣1)x 2+2x ﹣2=0有不相等实数根,则k 的取值范围是( )A . k >12B . k ≥12C . k >12且k ≠1D . k ≥12且k ≠1 6.(2014·襄阳)若方程mx ny 6+=的两个解是x 1x 2,y 1y 2==⎧⎧⎨⎨==-⎩⎩,则m ,n 的值为( ) A .4,2B .2,4C .﹣4,﹣2D .﹣2,﹣4 二.填空题7. (2014·宁夏)服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利20%,则这款服装每件的进价是 元.2.(2014·镇江)若关于x 的一元二次方程2x x m 0++=有两个相等的实数根,则m= . 8.(2014·杭州)设实数x ,y 满足方程组1x y 431x y 23⎧-=⎪⎪⎨⎪+=⎪⎩,则x y += .9.(2014·牡丹江)某种商品每件的标价为240元,按标价的八折销售时,每件仍能获利20%,则这种商品每件的进价为 元.三.解答题10. (2014·吉林)为促进交于均能发展,A 市实行“阳光分班”,某校七年级一班共有新生45人,其中男生比女生多3人,求该班男生、女生各有多少人.11.(2014·滨州市)解方程:2x11x232++-=(2)解方程组:3x y7x3y1-=⎧⎨+=-⎩12 (2014·梅州)(本题满分8分)已知关于x的方程2x ax a20++-=. (1)当该方程的一个根为1时,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.。
2024年南京中考数学复习模拟练习卷全卷满分 120分. 考试时间为120分钟. 一、选择题(本大题共6小题,每小题2 分,共 12分. )1.南京文旅火爆“出圈”.据统计,2023年第一季度南京共接待游客约44300000人次,将44300000用科学记数法表示为( )A .B .C .D .2.的值在( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间3. 我校男子足球队名队员的年龄如下表所示:年龄岁人数这些队员年龄的众数和中位数分别是( )A .,B .,C .,D .,4. 计算的结果等于( )A. B. C.D.5. 如图,O 为坐标原点,菱形OABC 的顶点A 的坐标为,顶点C 在轴的负半轴上,函数的图象经过顶点B ,则的值为( )A .B .C .D .6. 如图,是的切线,,为切点,过点作交于点,连接,若,则的度数为( )80.44310⨯64.4310⨯74.4310⨯84.4310⨯22/1415161718192136731817171718175.175.1821211x x ---1-1x -11x +211x -(34)-,x (0)ky x x=<k 12-27-32-36-,PA PB O A B A AC PB ∥O C BC P α∠=PBC ∠A .B .C .D .二、填空题(本大题共 10 小题,每小题2 分,共20分. 请把答案填写在答题卡相应位置上)7. 方程组的解为 .8.要使分式有意义,x 的取值应满足 .9.的结果为 .10. 若,且m ﹣n =﹣3,则m +n = .11. 分式方程=的解是 .12. 已知一元二次方程的两根为与,则的值为 .13. 已知,点,,在反比例函数的图像上,则,,的大小关系是 .(用“>”连接)15. 如图,⊙O 是△ABC 的外接圆,AB =4,∠B =30°,tanC =,则⊙O 的半径是 .16 . 某快递公司每天上午为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量(件)与时间(分)之间的函数图象如图所示,那么从开始,经过______分钟时,当两仓库快递件数相同.三、解答题(本大题共11 小题,共88分. 解答时应写出文字说明、证明过程或演算步骤)1902α︒+1902α︒-180α︒-11802α︒-32218x y x y -=⎧⎨+=⎩12x -226m n -=-33x -2x256x x x +=+1x 2x 1211+x x 0a b c >>>()1,A a b y -()2,B a c y -()3,C c a y -ky x=1y 2y 3y 439:3010:30-y x 9:3017.(7分)先化简,再求值:,其中.18.(8分)解不等式组,并将解集在数轴上表示出来.19.(7分) 如图,四边形ABCD 是菱形,AE ⊥BC 于点E ,AF ⊥CD 于点F .(1)求证:△ABE ≌△ADF ;(2)若AE =4,CF =2,求菱形的边长.20.(8分) 目前人们的支付方式日益增多,主要有:A .微信B .支付宝C .信用卡D .现金某超市对一天内消费者的支付方式进行了统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,回答下列问题:(1)本次一共调查了 名消费者;(2)补全条形统计图,在扇形统计图中D 种支付方式所对应的圆心角为 ;(3)该超市本周内约有2000名消费者,估计使用A 和B 两种支付方式的消费者的人数的总和.235124a a a -⎛⎫÷- ⎪--⎝⎭1a =-101123x x x +≥⎧⎪+⎨-<⎪⎩︒21.(8分) 2023年春节档电影票房火爆,电影《流浪地球2》和《满江红》深受观众喜爱,甲、乙、丙三人从这两部电影中任意选择一部观看.(1)甲选择《流浪地球2》的概率是______;(2)求甲、乙、丙三人选择同一部电影的概率.22 .(8分)第19届杭州亚运会,吉祥物为“宸宸”、“琮琮”、“莲莲”,如图,某校准备举行“第19届亚运会”知识竞赛活动,拟购买30套吉祥物(“宸宸”、“琮琮”、“莲莲”)作为竞赛奖品.某商店有甲,乙两种规格,其中乙规格比甲规格每套贵20元.(1)若用700元购买甲规格与用900元购买乙规格的数量相同,求甲、乙两种规格每套吉祥物的价格;(2)在(1)的条件下,若购买甲规格数量不超过乙规格数量的2倍,如何购买才能使总费用最少?23.(8分) 如图①是一台手机支架,图②是其侧面示意图,AB 、BC 可分别绕点A 、B 转动,测量知,.当AB ,BC 转动到,时,求点C 到直线AE 的距离.(精确到0.1cm ,参考数据:,)24.(8分) 已知、两点是一次函数和反比例函数图象的两个交点,10cm AB =8cm BC =70BAE ∠=︒65ABC ∠=︒sin 700.94︒≈cos 700.34︒≈ 1.41≈()4,2A -(),4B n -y kx b =+my x=点坐标为.(1)求一次函数和反比例函数的解析式;(2)求的面积;(3)观察图象,直接写出不等式的解集;25.(8分)如图,为的直径,点D 在上,连接、,过点D 的切线与的延长线交于点A ,,与交于点F .(1)求证:;(2)当的半径为,时,求的长.26.(9分) 如图①,抛物线与x 轴交与、两点.P (),0n AOB 0mkx b x+->BC O O BD CD AE CB BCD AEO ∠=∠OE CD OF BD ∥O 102sin ADB 5∠=EF 2y x bx c =-++()10A ,()30B -,(1) 求该抛物线的解析式;(2) 设抛物线与y 轴交于C 点,在该抛物线的对称轴上是否存在点Q .使得的周长最小?若存在,求出Q 点的坐标;若不存在,请说明理由.(3) 如图②,P 是线段上的一个动点.过P 点作y 轴的平行规交抛物线于E 点,求线段长度的最大值:27. (9分) 在直角△ABC 中,∠ACB =90°,AC =3,BC =4,点D 、E 和F 分别是斜边AB 、直角边AC 和直角边BC 上的动点,∠EDF =90°,(1) 如图1,若四边形DECF 是正方形,求这个正方形的边长.(2) 如图2,若E 点正好运动到C 点,并且tan ∠DCF=,求BF 的长.(3) 如图3,当时,求的值2024年南京中考数学复习模拟练习卷 (解析版)全卷满分 120分. 考试时间为120分钟. 一、选择题(本大题共6小题,每小题2 分,共 12分. )QAC △BC PE 1212DE DF ADDB1.南京文旅火爆“出圈”.据统计,2023年第一季度南京共接待游客约44300000人次,将44300000用科学记数法表示为( )A .B .C .D .【答案】C【分析】科学记数法的表示形式为的形式,其中,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】44300000用科学记数法表示应为:故选:C2.的值在()A .3和4之间B .4和5之间C .5和6之间D .6和7之间【答案】B【详解】解:故选:B .3. 我校男子足球队名队员的年龄如下表所示:年龄岁人数这些队员年龄的众数和中位数分别是( )A .,B .,C .,D .,【答案】A【分析】出现次数最多的那个数,称为这组数据的众数;中位数一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.【详解】解:18出现了7次,出现的次数最多,所以众数是18岁;把这些数从小大排列,中位数是第11和第12个数分别是17、17,所以中位数为17岁.80.44310⨯64.4310⨯74.4310⨯84.4310⨯10n a ⨯110a ≤<74.4310⨯<<45∴<<22/1415161718192136731817171718175.175.18故选:A .4.计算的结果等于( )A. B. C.D.【答案】C 【解析】【分析】根据异分母分式加减法法则进行计算即可.【详解】解:;故选:C .7. 如图,O 为坐标原点,菱形OABC 的顶点A 的坐标为,顶点C 在轴的负半轴上,函数的图象经过顶点B ,则的值为( )A .B .C .D .【答案】C【详解】∵A (﹣3,4),∴=5,∵四边形OABC 是菱形,∴AO=CB=OC=AB=5,则点B 的横坐标为﹣3﹣5=﹣8,故B 的坐标为:(﹣8,4),将点B 的坐标代入得,4=,解得:k=﹣32.故选C .21211x x ---1-1x -11x +211x -()()()()21212111111x x x x x x x +-=----+-+()()1211x x x +-=-+()()111x x x -=-+11x =+(34)-,x (0)ky x x=<k 12-27-32-36-k y x=8k-8. 如图,是的切线,,为切点,过点作交于点,连接,若,则的度数为( )A .B .C .D .【答案】A【分析】连接,根据切线的性质得出,根据四边形内角和为,求得,根据圆周角定理得出,然后根据平行线的性质即可求解.【详解】解:如图所示,连接,∵是的切线,∴,∵,∴,∵,∴,∵∴,故选:A .二、填空题(本大题共 10 小题,每小题2 分,共20分. 请把答案填写在答题卡相应位置上)7. 方程组的解为 .【答案】【分析】利用加减消元法解答,即可求解.,PA PB O A B A AC PB ∥O C BC P α∠=PBC ∠1902α︒+1902α︒-180α︒-11802α︒-OA OB ,90OAP OBP ∠=∠=︒360︒180AOB α∠=︒-119022C AOB α∠=∠=︒-,OA OB PA PB ,O 90OAP OBP ∠=∠=︒P α∠=180180AOB P α∠=︒-∠=- AB AB =119022C AOB α∠=∠=︒-AC PB∥1180902PBC C α∠=︒-∠=︒+32218x y x y -=⎧⎨+=⎩82x y =⎧⎨=⎩【详解】解:,由得:,解得:,把代入得:,解得:.∴原方程组的解为.故答案为:8. 要使分式有意义,x 的取值应满足 .【答案】x≠2【详解】解:根据分式有意义的条件,分母不为0,可知x -2≠0,解得x≠2.故答案为x ≠2.9.的结果为 .【详解】解:原式.10.若,且m ﹣n =﹣3,则m +n = .【答案】2【分析】根据平方差公式即可求出答案.【详解】解:∵,m ﹣n =﹣3,∴﹣3(m +n )=﹣6,∴m +n =2,故答案为:211.分式方程=的解是 .32218x y x y -=⎧⎨+=⎩①②2-⨯②①714y =2y =2y =①322x -⨯=8x =82x y =⎧⎨=⎩82x y =⎧⎨=⎩12x -226m n -=-()()226m n m n m n -=+-=-33x -2x【答案】x =-6【分析】去分母后化为整式方程求解后检验即可.【详解】方程两边同时乘以x (x -3)得:3x=2(x -3)3x -2x=-6x=-6检验:当x=-6时,x (x -3)≠0所以x=-6是原分式方程的解.故答案为: x=-612. 已知一元二次方程的两根为与,则的值为 .【答案】【分析】根据一元二次方程根与系数的关系得出,将分式通分,代入即可求解.【详解】解:∵一元二次方程,即,的两根为与,∴,∴,故答案为:.14. 已知,点,,在反比例函数的图像上,则,,的大小关系是 .(用“>”连接)【答案】【分析】先根据反比例函数中判断出函数图象所在的象限及增减性,再根据各点横坐标的特点即可得出结论.【详解】解:根据,反比例函数经过第一、三象限,随的增大而减小,,且,由在第一象限内,随的增大而减小,得,而在第三象限,得,256x x x +=+1x 2x 1211+x x 23-121246x x x x +==-,256x x x +=+2460x x --=1x 2x 121246x x x x +==-,1211+x x 12124263x x x x +===--23-0a b c >>>()1,A a b y -()2,B a c y -()3,C c a y -k y x=1y 2y 3y 123y y y >>0k >0k >k y x=y x 0a b c>>> 0,0,0a b a c c a ∴->->-<a b a c -<-y x 12y y >()3,C c a y -123y y y >>故答案为:.14 计算: =_______【答案】0【分析】先计算特殊角三角函数值,零指数幂和负整数指数幂,再根据实数的混合计算法则求解即可.【详解】解:原式 .15. 如图,⊙O 是△ABC 的外接圆,AB =4,∠B =30°,tanC=,则⊙O 的半径是 .【答案】【分析】作直径AD ,连接BD ,如图,由圆周角定理可得∠ABD =90°,∠D =∠C ,在Rt 中,由正切的定义可得tanD ==,则BD =3,然后根据勾股定理计算出AD 的长度,从而得到⊙O 的半径.【详解】解:作直径AD,连接BD ,如图,AD 为直径,∠ABD =90°,∠D =∠C ,tanD =tanC =,在Rt △ABD 中,tanD ==,而AB =4,BD =3,AD ,⊙O 的半径为.123y y y >>()1012cos30243π-⎛⎫-︒--- ⎪⎝⎭(3221=---321=--+0=4352ABD △A B B D 43∴ ∴43A B B D 43∴∴∴52故答案为:.16 . 某快递公司每天上午为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量(件)与时间(分)之间的函数图象如图所示,那么从开始,经过______分钟时,当两仓库快递件数相同.【答案】20【分析】利用待定系数法分别求出甲、乙两仓库的快件数量(件)与时间(分)之间的函数关系式,在求出两直线的交点即可得到答案.【详解】解:设甲仓库的快件数量(件)与时间(分)之间的函数关系式为,根据图象得,,解得:,,设乙仓库的快件数量(件)与时间(分)之间的函数关系式为,根据图象得,,解得:,529:3010:30-y x 9:30y x y x 111y k x b =+1114060400b k b =⎧⎨+=⎩11640k b =⎧⎨=⎩1640y x ∴=+y x 222y k x b =+222240600b k b =⎧⎨+=⎩224240k b =-⎧⎨=⎩,联立,解得:,经过20分钟时,当两仓库快递件数相同,故答案为:20.三、解答题(本大题共11 小题,共88分. 解答时应写出文字说明、证明过程或演算步骤)17.(7分)先化简,再求值:,其中.【答案】;【分析】先利用分式的运算法则化简,再将代入即可得出答案.【详解】解:原式当时,原式.18.(8分)解不等式组,并将解集在数轴上表示出来.【答案】,见解析【分析】分别求出每个不等式的解集,并将其解集表示在数轴上即可.【详解】解:解不等式①,得,24240y x ∴=-+6404240y x y x =+⎧⎨=-+⎩20160x y =⎧⎨=⎩∴235124a a a -⎛⎫÷- ⎪--⎝⎭1a =-23a a ++121a =-()()2345222a a a a a ⎡⎤---=÷⎢⎥-+-⎣⎦()()()()333222a a a a a a +--=÷-+-()()()()223233a a a a a a +--=⋅-+-23a a +=+1a =-21213132a a +-+===+-+101123x x x +≥⎧⎪+⎨-<⎪⎩13x -≤<101123x x x +≥⎧⎪⎨+-<⎪⎩①②1x ≥-解不等式②,得x <3,∴原不等式组的解集为,∴将不等式组的解集在数轴上表示为:19.(7分) 如图,四边形ABCD 是菱形,AE ⊥BC 于点E ,AF ⊥CD 于点F .(1)求证:△ABE ≌△ADF ;(2)若AE =4,CF =2,求菱形的边长.【答案】(1)见解析(2)5【分析】(1)利用AAS 即可证明△ABE ≌△ADF ;(2)设菱形的边长为x ,利用全等三角形的性质得到BE =DF =x −2,在Rt △ABE 中,利用勾股定理列方程求解即可.【详解】(1)证明:∵四边形ABCD 是菱形,∴AB =BC =CD =AD (菱形的四条边相等),∠B =∠D (菱形的对角相等),∵AE ⊥BC AF ⊥CD ,∴∠AEB =∠AFD =90°(垂直的定义),在△ABE 和△ADF 中,,∴△ABE ≌△ADF (AAS);(2)解:设菱形的边长为x ,∴AB =CD =x ,CF =2,∴DF =x −2,∵△ABE ≌△ADF,13x -≤<AEB AFD B DAB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴BE =DF =x −2(全等三角形的对应边相等),在Rt △ABE 中,∠AEB =90°,∴AE 2+BE 2=AB 2(勾股定理),∴42+(x −2)2=x 2,解得x =5,∴菱形的边长是5.20.(8分) 目前人们的支付方式日益增多,主要有:A .微信B .支付宝C .信用卡D .现金某超市对一天内消费者的支付方式进行了统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,回答下列问题:(1)本次一共调查了 名消费者;(2)补全条形统计图,在扇形统计图中D 种支付方式所对应的圆心角为 ;(3)该超市本周内约有2000名消费者,估计使用A 和B 两种支付方式的消费者的人数的总和.【答案】(1)200(2)图形见解析;36(3)1480【分析】(1)用B 的人数除以所占百分比就能求出一共调查的消费者人数;(2)消费者人数乘以A 所占的百分比,求出A 的人数;消费者总人数减去A ,B ,C 的人数,就得到D 的人数;周角乘以D 占的比例就得到D 种支付方式所对应的圆心角;(3)用总人数乘以对应的百分比求解即可.【详解】(1)解:本次调查的总人数为(名),故答案为:200;(2)解:A 支付方式的人数为(名),︒6834%200÷=20040%80⨯=D 支付方式的人数为(名),补全图形如下:在扇形统计图中D 种支付方式所对应的圆心角为 ,故答案为:36;(3)解: (名),答:估计使用A 和B 两种支付方式的消费者的人数的总和为1480名.21.(8分) 2023年春节档电影票房火爆,电影《流浪地球2》和《满江红》深受观众喜爱,甲、乙、丙三人从这两部电影中任意选择一部观看.(1)甲选择《流浪地球2》的概率是______;(2)求甲、乙、丙三人选择同一部电影的概率.【答案】(1)(2)【分析】(1)直接利用概率公式求解即可;(2)首先根据题意列举全部情况,再利用概率公式求解即可.【详解】(1)解:甲选择《流浪地球2》的概率是,故答案为:;(2)解:《流浪地球2》和《满江红》三部电影分别用 A 、B 表示,甲、乙、丙三人从这两部电影中任意选择一部观看,列举全部情况为:,共有8种等可能的情况数,甲、乙、丙三人选择同一部电影有2种,甲、乙、丙三人选择同一部电影的概率为.22 .(8分)第19届杭州亚运会,吉祥物为“宸宸”、“琮琮”、“莲莲”,()20080683220-++=2036036200°´=°+⨯=80682000148020012141212(A,A,A),(A,A,B),(A,B,A)(A,B,B)(B,A,A),(B,A,B),(B,B,A)(B,B,B)2184=如图,某校准备举行“第19届亚运会”知识竞赛活动,拟购买30套吉祥物(“宸宸”、“琮琮”、“莲莲”)作为竞赛奖品.某商店有甲,乙两种规格,其中乙规格比甲规格每套贵20元.(1)若用700元购买甲规格与用900元购买乙规格的数量相同,求甲、乙两种规格每套吉祥物的价格;(2)在(1)的条件下,若购买甲规格数量不超过乙规格数量的2倍,如何购买才能使总费用最少?解:(1)设甲规格吉祥物每套价格元,则乙规格每套价格为元,根据题意,得,解得.经检验,是所列方程的根,且符合实际意义..答:甲规格吉祥物每套价格为70元,乙规格每套为90元.(2)设乙规格购买套,甲规格购买套,总费用为元根据题意,得,解得,,,随的增大而增大.当时,最小值.故乙规格购买10套、甲规格购买20套总费用最少.23.(8分) 如图①是一台手机支架,图②是其侧面示意图,AB 、BC 可分别绕点A 、B 转动,测量知,.当AB ,BC 转动到,时,求点C 到直线AE 的距离.x ()20x +70090020=+x x 70x =70x =20702090x ∴+=+=a ()30a -W 302a a -≤10a ≥()907030202100=+-=+W a a a 200> ∴W a ∴10a =W 10cm AB =8cm BC =70BAE ∠=︒65ABC ∠=︒(精确到0.1cm ,参考数据:,)解:如图所示:过点作垂足为过点作垂足为过点作垂足为∴四边形是矩形,在中,在中,即∴点C 到直线AE 的距离为24.(8分) 已知、两点是一次函数和反比例函数图象的两个交点,,CN AE ⊥,N C ,CD BM ⊥,D 90AMB CNE CDM DCN ∴∠=∠=∠=∠=︒,DCNM ,DM CN ∴=Rt AMB △10cm,70,AB BAE =∠=︒ sin 10sin 70100.949.4cm,BM AB BAE ∴=∠=︒≈⨯= 20,ABM ∴∠=︒65,ABC ∠=︒ 45,CBD ∴∠=︒Rt BCD 8cm,BC = cos cos 458 5.64cm,BD BC CBD BC ∴=∠=︒==≈ 9.4 5.64 3.76 3.8cm,DM BM BD ∴=-=-=≈3.8cm,CN = 3.8cm.sin 700.94︒≈cos 700.34︒≈ 1.41≈B ,BM AE ⊥,M C ()4,2A -(),4B n -y kx b =+m y x=点坐标为.(1)求一次函数和反比例函数的解析式;(2)求的面积;(3)观察图象,直接写出不等式的解集;【答案】(1),(2)(3)不等式的解集为:或【分析】(1)根据待定系数求得反比例函数解析式,进而求得点的坐标,根据的坐标待定系数法求一次函数解析式即可;(2)求得直线与轴交于点,根据求解即可(3)由图象可得,直线在双曲线上方部分时,求得的取值范围;【详解】(1)把代入,得,所以反比例函数解析式为,把代入,得,解得,把和代入,得,解得,所以一次函数的解析式为;P (),0n AOB 0m kx b x +->8y x =-2y x =--6AOB S =V 0m kx b x+-><4x -02x <<B ,A B 2y x =--x ()2,0C -AOB AOC BOC S S S =+△△△x ()4,2A -m y x =()248m =⨯-=-8y x =-(),4B n -8y x=-48n -=-2n =()4,2A -()2,4B -y kx b =+4224k b k b -+=⎧⎨+=-⎩12k b =-⎧⎨=-⎩2y x =--(2)设直线与轴交于点,中,令,则,即直线与轴交于点,∴;(3)由图象可得,不等式的解集为:或.25.(8分)如图,为的直径,点D 在上,连接、,过点D 的切线与的延长线交于点A ,,与交于点F .(1)求证:;(2)当的半径为,时,求的长.【答案】(1)见解析;(2).【分析】(1)连接,根据圆周角定理的推论、切线的性质得到,再由圆的基本性质、等腰三角形的性质以及等量代换得到,然后根据平行线的判定即可得证结论;(2)由(1)知,,在中依据求得,再根据三角形中位线定理求得,在中,=,求得,最后依据可得解.【详解】(1)证明:连接,如图,2y x =--x C 2y x =--0y =2x =-2y x =--x ()2,0C -112224622AOB AOC BOC S S S =+=⨯⨯+⨯⨯= 0m kx b x+-><4x -02x <<BC O O BD CD AE CB BCD AEO ∠=∠OE CD OF BD ∥O 102sin ADB 5∠=EF 21OD ADB ODC ∠=∠ADB AEO ∠=∠ADB AEO BCD ∠=∠=∠Rt BCD 2sin 5BD C BC ∠==BD OF Rt EOD △sin OD E OE =25OE EF OE OF =-OD∵与相切,∴,∴,∵为直径,∴,即,∴,∵,∴,而,∴,∴;(2)解:由(1)知,,∴,在中,,∴,∵,∴,在中,=,∴,∴.26.(9分) 如图①,抛物线与x 轴交与、两点.AE O OD AE ⊥90ADB ODB ∠+∠=︒BC =90BDC ∠︒90ODB ODC ∠+∠=︒ADB ODC ∠=∠OC OD =BCD ODC ∠=∠BCD AEO ∠=∠ADB AEO ∠=∠OF BD ∥ADB AEO BCD ∠=∠=∠2sin sin sin 5C AEO ADB ∠=∠=∠=Rt BCD 2sin 5BD C BC ∠==2220855BD BC ==⨯=OF BD ∥142OF BD ==Rt EOD △sin OD E OE =2555102522OE OD ==⨯=25421EF OE OF =-=-=2y x bx c =-++()10A ,()30B -,(1)求该抛物线的解析式;(2)设抛物线与y 轴交于C 点,在该抛物线的对称轴上是否存在点Q .使得的周长最小?若存在,求出Q 点的坐标;若不存在,请说明理由.(3)如图②,P 是线段上的一个动点.过P 点作y 轴的平行规交抛物线于E 点,求线段长度的最大值:【答案】(1)(2)存在,(3)【分析】(1)利用待定系数法即可求解;(2)先求出C 点坐标为:和抛物线可得其对称轴为:,利用待定系数法求出直线的解析式为:,连接,,,,利用勾股定理可得,则的周长为:A 、B 两点关于抛物线对称轴对称,点Q 在抛物线的对称轴上,可得,即、、三点共线时,可得到的周长最小,将代入直线的解析式中,即可求出点坐标;(3)根据P 是线段上的一个动点,设P 点坐标为:,且,则可得点坐标为:,结合图象,根据题意有:,即,整理得:,则问题随之得解.【详解】(1)解:将、代入中,QAC △BC PE 223y x x =--+()12-,94()3C 0,223y x x =--+=1x -BC 3y x =+BC BQ QC AC AC ==QAC △QA AC QC QA QC ++=+=1x -QA BQ =QA QC QB QC +=+B Q C QAC △=1x -BC 3y x =+Q BC ()3m m +,30m -<<E ()223m m m --+,E P PE y y =-()()2233PE m m m =--+-+29342PE m ⎛⎫=-+ ⎪⎝⎭()10A ,()30B -,2y x bx c =-++有:,解得:;即抛物线解析式为:;(2)解:存在,理由如下:令,即有:,则C 点坐标为:,由可得其对称轴为:,设直线的解析式为:,代入、有:,解得:,直线的解析式为:,如图,连接,,,,∵、,,∴∴的周长为:∵A 、B 两点关于抛物线对称轴对称,点Q 在抛物线的对称轴上,∴,∴即当点、、三点共线时,有最小,且为,此时即可得到的周长最小,且为,10930b c b c -++=⎧⎨--+=⎩23b c =-⎧⎨=⎩223y x x =--+0x =3y =()3C 0,223y x x =--+=1x -BC y kx t =+()3C 0,()30B -,330t k t =⎧⎨-+=⎩13k t =⎧⎨=⎩BC 3y x =+BC BQ QC AC ()10A ,()30B -,()3C 0,AC ==QAC △QA AC QC QA QC ++=+=1x -QA BQ =QA QC QB QC +=+B Q C QB QC +BC QAC △BC如图,∵点Q 在抛物线的对称轴上,∴将代入直线的解析式中,有:,即Q 点坐标为:;(3)解:根据P 是线段上的一个动点,设P 点坐标为:,且,∵轴,∴点、的横坐标相同,均为m ,∵点在抛物线上,∴点坐标为:,结合图象,根据题意有:,∴,整理得:,∵,且,∴当时,,即的最大值为:.27.(9分) 在直角△ABC 中,∠ACB =90°,AC =3,BC =4,点D 、E 和F 分别是斜边AB 、直角边AC 和直角边BC 上的动点,∠EDF =90°,=1x -=1x -BC 3y x =+3132y x =+=-+=()12-,BC ()3m m +,30m -<<PE x ⊥P E E 223y x x =--+E ()223m m m --+,E P PE y y =-()()2233PE m m m =--+-+29342PE m ⎛⎫=-+ ⎪⎝⎭30m -<<10<-32m =-94PE =最大PE 94(1)如图1,若四边形DECF 是正方形,求这个正方形的边长.(2)如图2,若E 点正好运动到C 点,并且tan ∠DCF=,求BF 的长.(3)如图3,当时,求的值【答案】(1);(2)1;(3)【分析】(1)设正方形的边长为x ,则AE =3-x ,由正方形的性质,得DE BC ,则AE :AC =DE :BC ,代入计算即可求解;(2)过D 点作DG ⊥BC ,垂足为G 点,由tan ∠DCF =,得DG :CG =1:2,设DG =y ,则CG =2y ,则BG =4-2x ,根据DG AC ,得DG :AC =BG :BC ,代入即可求得x =1.2,从而求得BG =4-2x =1.6,再根据tan ∠GDF =tan ∠DCF =,得,即可求得FG =0.6,然后由FB =BG -FG 求解即可;(3)过D 点作DM ⊥AC ,垂足为M 点,作DN ⊥BC ,垂足为N 点,先由勾股定理求得AB =5,再证明Rt △DME ∽Rt △DNF ,得=,由=,得=,设DM =z ,则DN =2z ,再由DM BC ,得DM :BC =AM :AC =AD :AB ,即z :4=(3-2z ):3 ,解得 z =,所以:4=AD :5 ,求得AD =,BD =5-=,即可代入求解.【详解】(1)解:∵四边形AOBC 是的正方形,∴DE BC ,∴AE :AC =DE :BC设正方形的边长为x ,则AE =3-x ,∴(3-x ):3=x :4,解得 x =,1212DE DF =AD DB 12738∥12∥1212FG DG =DE DF DM DN DE DF12DM DN 12∥12111211151115114011∥127即这个正方形的边长为;(2)解:过D 点作DG ⊥BC ,垂足为G 点,如图2,∵tan ∠DCF =,∴DG :CG =1:2设DG =y ,则CG =2y ,∴BG =4-2y ,∵DG AC ,∴DG :AC =BG :BC ,∴y :3=(4-2y ):4,解得 y =1.2 ,BG =4-2y =1.6,∵∠EDF =,∴∠CDG +∠GDF =,∵DG ⊥BC ,∴∠CDG +∠DCG =,∴∠GDF =∠DCG ,∵tan ∠DCF =,∴tan ∠GDF =,∴,∵DG =1.2,∴FG =0.6,∴FB =BG -FG =1.6-0.6 =1;(3)解:过D 点作DM ⊥AC ,垂足为M 点,过D 点作DN ⊥BC ,垂足为N 点,如图3,12712∥90︒90︒90︒121212FG DG =∵∠ACB =,AC =3,BC =4,∴AB =5,∵DM ⊥AC ,DN ⊥BC ,∠ACB =,∴∠MDN =,∴∠MDE +∠EDN =,∵∠EDF =,∴∠FDN +∠EDN =,∴∠MDE =∠FDN ,∴Rt △DME ∽Rt △DNF ,∴=,∵=,∴=,设DM =z ,则DN =2z ,∵DM BC ,∴DM :BC =AM :AC =AD :AB ,∴z :4=(3-2z ):3 ,解得 z =,∴:4=AD :5 ,∴AD =,BD =5-=,∴=.90︒90︒90︒90︒90︒90︒DEDF DMDN DE DF 12DMDN 12∥12111211151115114011AD DB 38。
整式方程等式及基本性质、方程、方程的解、解方程、一元一次方程、一元二次方程、简单的高次方程 〖大纲要求〗1. 理解方程和一元一次方程、一元二次方程概念;2. 理解等式的基本性质,能利用等式的基本性质进行方程的变形,掌握解一元一次方程的一般步骤,能熟练地解一元一次方程;3. 会推导一元二次方程的求根公式,理解公式法与用直接开平方法、配方法解一元二次方程的关系,会选用适当的方法熟练地解一元二次方程;4. 了解高次方程的概念,会用因式分解法或换元法解可化为一元一次方程和一元二次方程的简单的高次方程;5. 体验“未知”与“已知”的对立统一关系。
[内容分析]1.方程的有关概念含有未知数的等式叫做方程.使方程左右两边的值相等的未知数的值叫做方程的解(只含有—个未知数的方程的解,也叫做根).2.一次方程(组)的解法和应用只含有一个未知数,并且未知数的次数是1,系数不为零的方程,叫做一元一次方程. 解一元一次方程的一般步骤是去分母、去括号、移项、合并同类项和系数化成1. 3.一元二次方程的解法(1)直接开平方法 形如(mx+n)2=r(r ≥o)的方程,两边开平方,即可转化为两个一元一次方程来解,这种方法叫做直接开平方法.(2)把一元二次方程通过配方化成 (mx+n)2=r(r ≥o) 的形式,再用直接开平方法解,这种方法叫做配方法.(3)公式法 通过配方法可以求得一元二次方程 ax 2+bx+c=0(a ≠0) 的求根公式:aacb b x 242-±-=用求根公式解一元二次方程的方法叫做公式法.(4)因式分解法 如果一元二次方程ax 2+bx+c=0(a ≠0)的左边可以分解为两个一次因式的积,那么根据两个因式的积等于O ,这两个因式至少有一个为O ,原方程可转化为两个一元一次方程来解,这种方法叫做因式分解法.〖考查重点与常见题型〗考查一元一次方程、一元二次方程及高次方程的解法,有关习题常出现在填空题和选择题中。
中考数学历年各地市真题整式与整式方程4.(济宁市)把代数式 322363x x y xy -+分解因式,结果正确的是 A .(3)(3)x x y x y +- B .223(2)x x xy y -+C .2(3)x x y -D .23()x x y - 6.(济宁市)若0)3(12=++-+y y x ,则y x -的值为A .1B .-1C .7D .-712.(济宁市)若代数式26x x b -+可化为2()1x a --,则b a -的值是 . 9.(青岛市)= . 11.(青岛市)(1)解方程组:34194x y x y +=⎧⎨-=⎩7.(南通市)关于x 的方程12mx x -=的解为正实数,则m 的取值范围是A .m ≥2B .m ≤2C .m >2D .m <213.(南通市)分解因式:2ax ax -= ▲ . 12.(盐城市)因式分解:=-a a 422▲5.(盐城市)下列说法或运算正确的是 A .1.0×102有3个有效数字 B .222)(b a b a -=-C .532a a a =+D .a 10÷a 4= a 610.(盐城市)使2-x 有意义的x 的取值范围是 ▲ .15.(连云港市)若关于x 的方程x 2-mx +3=0有实数根,则m 的值可以为___________.(任意给出一个符合条件的值即可) 2.(泰州市)下列运算正确的是( )A.623a a a =∙ B. 632)(a a -=- C. 33)(ab ab = D.428a a a =÷ 8.(泰州市)已知m m Q m P 158,11572-=-=(m 为任意实数),则P 、Q 的大小关系为( )A.Q P >B. Q P =C. Q P <D.不能确定 19. (泰州市)(8分)计算(1)12)21(30tan 3)21(001+-+---OABC第10题图·16.(淮安市)小明根据方程5x+2=6x-8编写了一道应用题.请你把空缺的部分补充完整. 某手工小组计划教师节前做一批手工品赠给老师,如果每人做5个,那么就比计划少2个; .请问手工小组有几人?(设手工小组有x 人) 2.(连云港市)下列计算正确的是( )A .a +a =x 2B .a 〃a 2=a 2C .(a 2) 3=a 5D .a 2 (a +1)=a 3+1 2.(淮安市)计算32a a ⋅的结果是A .a 6B .a 5C .2a 3D .a 2.(常德市)分解因式:269___________.x x ++=3.(常德市)______.=4.(常德市)方程2560x x --=的两根为( )A 。
专题04分式与分式方程(34题)一、单选题1.(2024·山东济宁·中考真题)解分式方程1513126x x-=---时,去分母变形正确的是()A .2625x -+=-B .6225x --=-C .2615x --=D .6215x -+=2.(2024·四川雅安·中考真题)计算()013-的结果是()A .2-B .0C .1D .43.(2024·四川巴中·中考真题)某班学生乘汽车从学校出发去参加活动,目的地距学校60km ,一部分学生乘慢车先行0.5h ,另一部分学生再乘快车前往,他们同时到达.已知快车的速度比慢车的速度每小时快20km ,求慢车的速度?设慢车的速度为km /h x ,则可列方程为()A .60601202x x -=+B .60601202x x -=-C .60601202x x -=+D .60601202x x -=-4.(2024·四川雅安·中考真题)已知()2110a b a b+=+≠.则a ab a b +=+()A .12B .1C .2D .3二、填空题5.(2024·湖南长沙·中考真题)要使分式619x -有意义,则x 需满足的条件是.6.(2024·辽宁·中考真题)方程512x =+的解为.7.(2024·重庆·中考真题)计算:011(3)()2π--+=.8.(2024·重庆·中考真题)计算:023-+=.9.(2024·安徽·中考真题)若代数式14-x 有意义,则实数x 的取值范围是.10.(2024·青海·中考真题)若式子13x -有意义,则实数x 的取值范围是.11.(2024·四川甘孜·中考真题)分式方程11x 2=-的解为.12.(2024·内蒙古通辽·中考真题)分式方程322x x=-的解为.13.(2024·重庆·中考真题)若关于x 的不等式组()411321x x x x a -⎧<+⎪⎨⎪+≥-+⎩至少有2个整数解,且关于y 的分式方程13211a y y -=---的解为非负整数,则所有满足条件的整数a 的值之和为.14.(2024·黑龙江绥化·中考真题)计算:22x y xy y x x x ⎛⎫--÷-= ⎪⎝⎭.15.(2024·江苏盐城·中考真题)使分式11x -有意义的x 的取值范围是.16.(2024·山东滨州·中考真题)若分式11x -在实数范围内有意义,则x 的取值范围是.17.(2024·四川自贡·中考真题)计算:31211a aa a +-=++.18.(2024·江苏常州·中考真题)计算:111x x x +=++.19.(2024·四川内江·中考真题)已知实数a ,b 满足1ab =,那么221111a b +++的值为.三、解答题20.(2024·甘肃兰州·中考真题)先化简,再求值:7411a a a a ++⎛⎫+÷⎪+⎝⎭,其中4a =.21.(2024·四川资阳·中考真题)先化简,再求值:221412x x x x x+-⎛⎫-÷ ⎪+⎝⎭,其中3x =.22.(2024·黑龙江大庆·中考真题)先化简,再求值:22391369x x x x -⎛⎫+÷ --+⎝⎭,其中2x =-.23.(2024·黑龙江大庆·中考真题)为了健全分时电价机制,引导电动汽车在用电低谷时段充电,某市实施峰谷分时电价制度,用电高峰时段(简称峰时):7:00—23:00,用电低谷时段(简称谷时):23:00—次日7:00,峰时电价比谷时电价高0.2元/度.市民小萌的电动汽车用家用充电桩充电,某月的峰时电费为50元,谷时电费为30元,并且峰时用电量与谷时用电量相等,求该市谷时电价.24.(2024·四川遂宁·中考真题)先化简:2121121x x x x -⎛⎫-÷ ⎪--+⎝⎭,再从1,2,3中选择一个合适的数作为x 的值代入求值.25.(2024·吉林长春·中考真题)先化简,再求值:32222x x x x ---,其中x =26.(2024·青海·中考真题)先化简,再求值:11x y y x y x ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭,其中2x y =-.27.(2024·四川·中考真题)化简:11x x x x +⎛⎫-÷ ⎪⎝⎭.28.(2024·四川雅安·中考真题)(1()111525-⎛⎫-+-⨯- ⎪⎝⎭;(2)先化简,再求值:2221211a a aa a -+⎛⎫-÷⎪-⎝⎭,其中2a =.29.(2024·重庆·中考真题)为促进新质生产力的发展,某企业决定投入一笔资金对现有甲、乙两类共30条生产线的设备进行更新换代.(1)为鼓励企业进行生产线的设备更新,某市出台了相应的补贴政策.根据相关政策,更新1条甲类生产线的设备可获得3万元的补贴,更新1条乙类生产线的设备可获得2万元的补贴.这样更新完这30条生产线的设备,该企业可获得70万元的补贴.该企业甲、乙两类生产线各有多少条?(2)经测算,购买更新1条甲类生产线的设备比购买更新1条乙类生产线的设备需多投入5万元,用200万元购买更新甲类生产线的设备数量和用180万元购买更新乙类生产线的设备数量相同,那么该企业在获得70万元的补贴后,还需投入多少资金更新生产线的设备?30.(2024·四川雅安·中考真题)某市为治理污水,保护环境,需铺设一段全长为3000米的污水排放管道,为了减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前15天完成铺设任务.(1)求原计划与实际每天铺设管道各多少米?(2)负责该工程的施工单位,按原计划对工人的工资进行了初步的预算,工人每天人均工资为300元,所有工人的工资总金额不超过18万元,该公司原计划最多应安排多少名工人施工?31.(2024·江苏常州·中考真题)书画装裱,是指为书画配上衬纸、卷轴以便张贴、欣赏和收藏,是我国具有民族传统的一门特殊艺术.如图,一幅书画在装裱前的大小是1.2m 0.8m ⨯,装裱后,上、下、左、右边衬的宽度分别是a m 、b m 、c m 、d m .若装裱后AB 与AD 的比是16:10,且a b =,c d =,2c a =,求四周边衬的宽度.32.(2024·四川达州·中考真题)先化简:22224xx x x x x x +⎛⎫-÷ ⎪-+-⎝⎭,再从2-,1-,0,1,2之中选择一个合适的数作为x 的值代入求值.33.(2024·重庆·中考真题)计算:(1)()()22x x y x y -++;(2)22111a a a a-⎛⎫+÷ ⎪+⎝⎭.34.(2024·内蒙古呼伦贝尔·中考真题)先化简,再求值:22422324x xx x x -⎛⎫+-÷+⎪+-⎝⎭,其中72x =-.专题04分式与分式方程(34题)一、单选题1.(2024·山东济宁·中考真题)解分式方程1513126x x-=---时,去分母变形正确的是()A .2625x -+=-B .6225x --=-C .2615x --=D .6215x -+=【答案】A【分析】本题考查通过去分母将分式方程转化为整式方程,方程两边同乘各分母的最简公分母,即可去分母.【详解】解:方程两边同乘26x -,得()()152626263126x x x x x---⨯=-⨯---,整理可得:2625x -+=-故选:A .2.(2024·四川雅安·中考真题)计算()013-的结果是()A .2-B .0C .1D .4【答案】C【分析】本题考查零指数幂,掌握“任何不为零的零次幂等于1”是正确解答的关键.根据零指数幂的运算性质进行计算即可.【详解】解:原式0(2)1=-=.故选:C .3.(2024·四川巴中·中考真题)某班学生乘汽车从学校出发去参加活动,目的地距学校60km ,一部分学生乘慢车先行0.5h ,另一部分学生再乘快车前往,他们同时到达.已知快车的速度比慢车的速度每小时快20km ,求慢车的速度?设慢车的速度为km /h x ,则可列方程为()A .60601202x x -=+B .60601202x x -=-C .60601202x x -=D .60601202x x -=【答案】A【分析】本题主要考查了分式方程的应用.设慢车的速度为km /h x ,则快车的速度是()20km /h x +,再根据题意列出方程即可.【详解】解:设慢车的速度为km /h x ,则快车的速度为()20km /h x +,根据题意可得:60601202x x -=+.故选:A .4.(2024·四川雅安·中考真题)已知()2110a b a b+=+≠.则a ab a b +=+()A .12B .1C .2D .3二、填空题5.(2024·湖南长沙·中考真题)要使分式619x -有意义,则x 需满足的条件是.6.(2024·辽宁·中考真题)方程12x =的解为.7.(2024·重庆·中考真题)计算:011(3)()2π--+=.8.(2024·重庆·中考真题)计算:023-+=.【答案】3【分析】原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法则计算即可得到结果.【详解】解:原式=2+1=3,故答案为:3.【点睛】此题考查了有理数的运算,熟练掌握运算法则是解本题的关键.9.(2024·安徽·中考真题)若代数式14-x 有意义,则实数x 的取值范围是.【答案】4x ≠【分析】根据分式有意义的条件,分母不能等于0,列不等式求解即可.【详解】解: 分式有意义的条件是分母不能等于0,∴40x -≠∴4x ≠.故答案为:4x ≠.【点睛】本题主要考查分式有意义的条件,解决本题的关键是要熟练掌握分式有意义的条件.10.(2024·青海·中考真题)若式子13x -有意义,则实数x 的取值范围是.11.(2024·四川甘孜·中考真题)分式方程1x 2=-的解为.【答案】x 3=【分析】首先去掉分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解.12.(2024·内蒙古通辽·中考真题)分式方程2x x=-的解为.13.(2024·重庆·中考真题)若关于x 的不等式组()1321x x x a -⎧<+⎪⎨⎪+≥-+⎩至少有2个整数解,且关于y 的分式方程13211a y y-=---的解为非负整数,则所有满足条件的整数a 的值之和为.14.(2024·黑龙江绥化·中考真题)计算:22x y xy y x x x ⎛⎫--÷-= ⎪⎝⎭.15.(2024·江苏盐城·中考真题)使分式1x -有意义的x 的取值范围是.【答案】x ≠1【详解】根据题意得:x -1≠0,即x ≠1.故答案为:x ≠1.16.(2024·山东滨州·中考真题)若分式11x -在实数范围内有意义,则x 的取值范围是.17.(2024·四川自贡·中考真题)计算:11a a +-=++.【答案】118.(2024·江苏常州·中考真题)计算:11x x +=.19.(2024·四川内江·中考真题)已知实数a ,b 满足1ab =,那么221111a b +的值为.三、解答题20.(2024·甘肃兰州·中考真题)先化简,再求值:7411a a a a ++⎛⎫+÷⎪+,其中4a =.21.(2024·四川资阳·中考真题)先化简,再求值:212x x x+-⎛⎫-÷ ⎪+,其中3x =.22.(2024·黑龙江大庆·中考真题)先化简,再求值:21369x x x -⎛⎫+÷ ,其中2x =-.23.(2024·黑龙江大庆·中考真题)为了健全分时电价机制,引导电动汽车在用电低谷时段充电,某市实施峰谷分时电价制度,用电高峰时段(简称峰时):7:00—23:00,用电低谷时段(简称谷时):23:00—次日7:00,峰时电价比谷时电价高0.2元/度.市民小萌的电动汽车用家用充电桩充电,某月的峰时电费为50元,谷时电费为30元,并且峰时用电量与谷时用电量相等,求该市谷时电价.【答案】该市谷时电价0.3元/度【分析】本题考查了分式方程的应用,设该市谷时电价为x 元/度,则峰时电价()0.2x +元/度,根据题意列出分式方24.(2024·四川遂宁·中考真题)先化简:21121x x x -⎛⎫-÷ ⎪--+⎝⎭,再从1,2,3中选择一个合适的数作为x 的值代入求值.25.(2024·吉林长春·中考真题)先化简,再求值:22x x -,其中x =26.(2024·青海·中考真题)先化简,再求值:11x y y x y x ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭,其中2x y =-.27.(2024·四川·中考真题)化简:11x x x x ⎛⎫-÷ ⎪.28.(2024·四川雅安·中考真题)(1()111525-⎛⎫-+-⨯- ⎪⎝⎭;(2)先化简,再求值:2221211a a a a a -+⎛⎫-÷ ⎪-,其中2a =.29.(2024·重庆·中考真题)为促进新质生产力的发展,某企业决定投入一笔资金对现有甲、乙两类共30条生产线的设备进行更新换代.(1)为鼓励企业进行生产线的设备更新,某市出台了相应的补贴政策.根据相关政策,更新1条甲类生产线的设备可获得3万元的补贴,更新1条乙类生产线的设备可获得2万元的补贴.这样更新完这30条生产线的设备,该企业可获得70万元的补贴.该企业甲、乙两类生产线各有多少条?(2)经测算,购买更新1条甲类生产线的设备比购买更新1条乙类生产线的设备需多投入5万元,用200万元购买更新甲类生产线的设备数量和用180万元购买更新乙类生产线的设备数量相同,那么该企业在获得70万元的补贴后,还需投入多少资金更新生产线的设备?30.(2024·四川雅安·中考真题)某市为治理污水,保护环境,需铺设一段全长为3000米的污水排放管道,为了减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前15天完成铺设任务.(1)求原计划与实际每天铺设管道各多少米?(2)负责该工程的施工单位,按原计划对工人的工资进行了初步的预算,工人每天人均工资为300元,所有工人的工资总金额不超过18万元,该公司原计划最多应安排多少名工人施工?31.(2024·江苏常州·中考真题)书画装裱,是指为书画配上衬纸、卷轴以便张贴、欣赏和收藏,是我国具有民族传统的一门特殊艺术.如图,一幅书画在装裱前的大小是1.2m 0.8m ⨯,装裱后,上、下、左、右边衬的宽度分别是a m 、b m 、c m 、d m .若装裱后AB 与AD 的比是16:10,且a b =,c d =,2c a =,求四周边衬的宽度.【答案】上、下、左、右边衬的宽度分别是0.1m 0.1m 0.2m 0.2m 、、、【分析】本题考查分式方程的应用,分别表示出,AB AD 的长,列出分式方程,进行求解即可.【详解】解:由题意,得: 1.2 1.22 1.24AB c d c a =++=+=+,0.80.82AD a b a =++=+,∵AB 与AD 的比是16:10,∴1.24160.8210a a +=+,解得:0.1a =,经检验0.1a =是原方程的解.∴上、下、左、右边衬的宽度分别是0.1m 0.1m 0.2m 0.2m 、、、.32.(2024·四川达州·中考真题)先化简:2224x x x +⎛⎫-÷ ⎪-+-⎝⎭,再从2-,1-,0,1,2之中选择一个合适的数作为x 的值代入求值.【答案】41x +,当1x =时,原式2=.【分析】本题主要考查了分式的化简求值,先把小括号内的式子通分,再把除法变成乘法后约分化简,接着根据分式有意义的条件确定x 的值,最后代值计算即可.【详解】解:22224x x x x x x x +⎛⎫-÷ ⎪-+-⎝⎭()()()()()()()2212222x x x x x x x x x x +--+=÷-+-+()()()()()222222221x x x x x x x x x x -++-+=⋅-++()()()()()224221x x x x x x x -+=⋅-++41x =+,∵分式要有意义,∴()()()22010x x x x ⎧+-≠⎪⎨+≠⎪⎩,33.(2024·重庆·中考真题)计算:(1)()()22x x y x y -++;(2)22111a a a a -⎛⎫+÷ ⎪.34.(2024·内蒙古呼伦贝尔·中考真题)先化简,再求值:22324x x x -⎛⎫+-÷+ ⎪,其中2x =-.。
方程(组)专题一、单选题1.若x=4是分式方程的根,则a的值为A.6B.-6C.4D.-4【答案】A2.一商店以每件150元的价格卖出两件不同的商品,其中一件盈利25%,另一件亏损25%,则商店卖这两件商品总的盈亏情况是()A.亏损20元B.盈利30元C.亏损50元D.不盈不亏【答案】A3.为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有()A.4种B.3种C.2种D.1种【答案】B4.已知关于x的分式方程=1的解是负数,则m的取值范围是()A.m≤3B.m≤3且m≠2C.m<3 D.m<3且m≠2【答案】D5.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.B.C.D.【答案】C6.2017﹣2018赛季中国男子篮球职业联赛,采用双循环制(每两队之间都进行两场比赛),比赛总场数为380场,若设参赛队伍有x支,则可列方程为()A.B.C.D.【答案】B7.若2-是方程x2-4x+c=0的一个根,则c的值是()A.1 B.3-C.1+D.2+【答案】A8.已知x1,x2是关于x的方程x2+bx﹣3=0的两根,且满足x1+x2﹣3x1x2=5,那么b的值为()A.4 B.﹣4 C.3 D.﹣3【答案】A9.若关于x的分式方程有增根,则m的值为()A.﹣1或﹣2 B.﹣1或2 C.1或2 D.0或﹣2【答案】D10.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为万千克,根据题意,列方程为A.B.C.D.【答案】A11.若关于x的一元二次方程x2﹣2x﹣k+1=0有两个相等的实数根,则k的值是()A.﹣1 B.0 C.1 D.2【答案】B12.某抗战纪念馆馆长找到大学生团干部小张,联系青年志愿者在周日参与活动,活动累计56个小时的工作时间,需要每名男生工作5个小时,每名女生工作4个小时,小张可以安排学生参加活动的方案共有( ) A.1种B.2种C.3种D.4种【答案】B13.某商店将巧克力包装成方形、圆形礼盒出售,且每盒方形礼盒的价钱相同,每盒圆形礼盒的价钱相同.阿郁原先想购买3盒方形礼盒和7盒圆形礼盒,但他身上的钱会不足240元,如果改成购买7盒方形礼盒和3盒形礼盒,他身上的钱会剩下240元.若阿郁最后购买10盒方形礼盒,则他身上的钱会剩下多少元?()A.360 B.480 C.600 D.720【答案】C14.已知关于x的一元二次方程x2-2x+k-1=0有两个不相等的实数根,则实数的取值范围是A.k≤2B.k≤0C.k<2D.k<0【答案】C15.已知关于x的一元二次方程mx2﹣(m+2)x+=0有两个不相等的实数根x1,x2.若+=4m,则m 的值是()A.2 B.﹣1 C.2或﹣1 D.不存在【答案】A16.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.B.C.D.【答案】A17.阅读理解:,,,是实数,我们把符号称为阶行列式,并且规定:,例如:.二元一次方程组的解可以利用阶行列式表示为:;其中,,.问题:对于用上面的方法解二元一次方程组时,下面说法错误的是()A.B.C.D.方程组的解为【答案】C二、填空题18.若关于x的一元二次方程有两个相等的实数根,则的值为__.【答案】19.已知x1,x2是一元二次方程x2-2x-1=0的两实数根,则的值是__.【答案】620.爸爸沿街匀速行走,发现每隔7分钟从背后驶过一辆103路公交车,每隔5分钟从迎面驶来一辆103路公交车,假设每辆103路公交车行驶速度相同,而且103路公交车总站每隔固定时间发一辆车,那么103路公交车行驶速度是爸爸行走速度的__倍.【答案】621.若关于x的方程无解,则m的值为__.【答案】-1或5或22.已知实数m,n满足,,且,则= .【答案】.23.为实现营养套餐的合理搭配,某电商推出两款适合不同人群的甲、乙两种袋装的混合粗粮.甲种袋装粗粮每袋含有3千克A粗粮,1千克B粗粮,1千克C粗粮;乙种袋装粗粮每袋含有1千克A粗粮,2千克B粗粮,2千克C粗粮.甲、乙两种袋装粗粮每袋成本分别等于袋中的A、B、C三种粗粮成本之和.已知每袋甲种粗粮的成本是每千克A种粗粮成本的7.5倍,每袋乙种粗粮售价比每袋甲种粗粮售价高20%,乙种袋装粗粮的销售利润率是20%.当销售这两款袋装粗粮的销售利润率为24%时,该电商销售甲、乙两种袋装粗粮的袋数之比是_____(商品的销售利润率=×100%)【答案】24.已知是关于x,y的二元一次方程组的一组解,则a+b=_____.【答案】525.已知关于的方程有两个相等的实根,则的值是__________.【答案】26.若关于x、y的二元一次方程组的解是,则关于a、b的二元一次方程组的解是_______.【答案】27.若是一元二次方程的两个实数根,则=__________.【答案】-3三、解答题28.小明购买A,B两种商品,每次购买同一种商品的单价相同,具体信息如下表:购买数量(件购买总费用(元根据以上信息解答下列问题:(1)求A,B两种商品的单价;(2)若第三次购买这两种商品共12件,且A种商品的数量不少于B种商品数量的2倍,请设计出最省钱的购买方案,并说明理由.【答案】(1)A种商品的单价为20元,B种商品的单价为15元;(2) 当a=8时所花钱数最少,即购买A商品8件,B商品4件.29.如图是学习分式方程应用时,老师板书的问题和两名同学所列的方程.根据以上信息,解答下列问题.(1)冰冰同学所列方程中的x表示什么,庆庆同学所列方程中的y表示什么;(2)两个方程中任选一个,并写出它的等量关系;(3)解(2)中你所选择的方程,并回答老师提出的问题.【答案】(1)甲队每天修路的长度;甲队修路400米所需时间;(2)冰冰用的等量关系是:甲队修路400米所用时间=乙队修路600米所用时间;(3)甲队每天修路的长度为40米.30.某公司购买了一批、型芯片,其中型芯片的单价比型芯片的单价少9元,已知该公司用3120元购买型芯片的条数与用4200元购买型芯片的条数相等.(1)求该公司购买的、型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条型芯片?【答案】(1)A型芯片的单价为26元/条,B型芯片的单价为35元/条;(2)80.31.阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通过因式分解把它转化为x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.(1)问题:方程x3+x2-2x=0的解是x1=0,x2= ,x3= ;(2)拓展:用“转化”思想求方程的解;(3)应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.【答案】(1)-2,1;(2)x=3;(3)4m.32.小明同学三次到某超市购买A、B两种商品,其中仅有一次是有折扣的,购买数量及消费金额如下表:解答下列问题:(1)第次购买有折扣;(2)求A、B两种商品的原价;(3)若购买A、B两种商品的折扣数相同,求折扣数;(4)小明同学再次购买A、B两种商品共10件,在(3)中折扣数的前提下,消费金额不超过200元,求至少购买A商品多少件.【答案】(1)三(2)A:30元/件,B:40元/件(3)6 (4)7件33.收发微信红包已成为各类人群进行交流联系,增强感情的一部分,下面是甜甜和她的双胞胎妹妹在六一儿童节期间的对话.请问:(1)2015年到2017年甜甜和她妹妹在六一收到红包的年增长率是多少?(2)2017年六一甜甜和她妹妹各收到了多少钱的微信红包?【答案】(1)10%;(2)甜甜在2017年六一收到微信红包为150元,则她妹妹收到微信红包为334元.34.某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同;该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.【答案】(1) 50千克(2) 12.535.已知关于x的一元二次方程x2﹣(2m﹣2)x+(m2﹣2m)=0.(1)求证:方程有两个不相等的实数根.(2)如果方程的两实数根为x1,x2,且x12+x22=10,求m的值.【答案】(1)见解析;(2)m=﹣1或m=3.36.已知关于x的一元二次方程有实数根.求m的取值范围;当时,方程的两根分别是矩形的长和宽,求该矩形外接圆的直径.【答案】;该矩形外接圆的直径是37.某市创建“绿色发展模范城市”,针对境内长江段两种主要污染源:生活污水和沿江工厂污染物排放,分别用“生活污水集中处理”(下称甲方案)和“沿江工厂转型升级”(下称乙方案)进行治理,若江水污染指数记为Q,沿江工厂用乙方案进行一次性治理(当年完工),从当年开始,所治理的每家工厂一年降低的Q值都以平均值n计算.第一年有40家工厂用乙方案治理,共使Q值降低了12.经过三年治理,境内长江水质明显改善.(1)求n的值;(2)从第二年起,每年用乙方案新治理的工厂数量比上一年都增加相同的百分数m,三年来用乙方案治理的工厂数量共190家,求m的值,并计算第二年用乙方案新治理的工厂数量;(3)该市生活污水用甲方案治理,从第二年起,每年因此降低的Q值比上一年都增加个相同的数值a.在(2)的情况下,第二年,用乙方案所治理的工厂合计降低的Q值与当年因甲方案治理降低的Q值相等,第三年,用甲方案使Q值降低了39.5.求第一年用甲方案治理降低的Q值及a的值.【答案】(1)0.3;(2)60家;(3)Q=20.5;a=9.5.38.班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:(1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远?【答案】(1)大巴的平均速度为40公里/时,则小车的平均速度为60公里/时;(2)苏老师追上大巴的地点到基地的路程有30公里。
中考数学复习同步检测(4)(整式方程(组)) 姓名 ___________________一•填空题:1方程x+2=3的解也是方程ax —5=8的解时,则a= ______________ ; 2 .若3x -2和4—5x 互为相反数,则x = ________ ;2x _ 32 3.当x= ------------------ 时,代数式 与代数式一x-3的差为0;534. X =3是方程 4x-3(a-X )=6x -7(a-X )的解,那么 a = _______ ;若是2ab 2c 3xl 与- 5ab 2c 6x 3是同类项,贝U x -已知二元一次方程 3x —y -1 = 0,用含y 的代数式表示x ,则x 二25. x=9是方程丄乂―2 3二b 的解,那么b 二,当b =1时,方程的解6. 7. x=38.尸一2,(2)5,( 3)"「51X 二一4这三组数值中,7y「2是方程组- 3y =9的解,.是方程2x • y =4,是方程组丿 卜3尸9的解;2x y = 49.)=5、1是方程一 x ■ 2my • 7 = 0的解,贝y m 二410.若方程组aX +by =7的解是」 ax —by = 1311.1已知等式y=kx ,b ,当x=2时,y--2 ;当x 时,y=3,则k = __,2 12. , 1 2若 3a +4b —c +—(c —2b)2 = 0 ,贝U a : b :c = 4x 2 +y 2 _4x+2y+5 = 0 ,贝H 2005xHy=_ 二元一次方程3x + 2y =15的正整数解为_________ 13. 14. 二.选择题: 2x 1 10x 1 15.解方程36A . 4x 1 -10x 1 =1 C . 4x2 —10x T = 6=1时,去分母后正确的结果是4x 2 -10x -1 = 1 4x 2—10x 1 =616.关于x 的一元二次方程(a -1) x 2x a 2-^0的一个根是0,则a 的值为22 317.已知下列方程组:其中属于二元一次方程组的个数为已知2x b 5y 3a 与-4x 2a y 2*b 是同类项,则b a 的值为m =1m = 2m = 3A■■■n = —1 B■■■E =1 C■■■E = 2D-x y =1元一次方程组y • z = 5的解是\=1上=1'x = 1A* y =0B<y = 2 Cy =0DZ =5Z = 4M = 421. 若方程组丿 玄%—1)"6的解x 、 +3y =14y 的值相等,则a 的值为A-4B4C2D1则余下 4人;若每组 某班学生分组搞活动,若每组 7人, 22. 班有学生x 人,分成y 个小组,则可得方程组 A.B. C. 1或一1 D.(1)丿X=3y , ( 2)」 y = -2附八2 , (3) \y~z =4 1x - y 1 x -—y(4)1 x - y 1 x -— y=018. 19. "mx + 2y = n 已知方程组丿 的解是丿、4x - ny = 2m -1X=1y = -1 那么m 、n 的值为20.8人,则有一组少 3人.设全( )22 37x +4 = y B8x _3 =y 三•解方程(组): x -1 -(1) x2 -7y = x +4gy +3 = x7y =x -4 <Qy =x + 37y = x + 4 i8y = x + 31.8 -8x 1.3-3x 5x-0.4 n 0 ;0.3(5) 2—J7x -5y = -5.(2) 7^! x -2(x -l)环-1);(3)X —1 i —6、4=1;(4)1.22 3—x + — y =0.53 44 5 7— x+ — y=—. k5 6 15x-2y z = 0(7) «3x + y -2z = 0 7x +6y + 7z=100 .(8)已知方程组'2x-3y =3 一’3x+2y=11与丿、ax+by =-1 、2ax+3by = 3的解相同,求 2 2a - 2ab ■ b 的值;(6)。
【通用版】中考数学专题训练含答案专题1、整式的乘法、因式分解和二元一次方程组1. 下列方程组中,是二元一次方程组的是( ) A.⎩⎪⎨⎪⎧x +y =11x +1y=2 B .⎩⎪⎨⎪⎧x +y =1x +z =2C .⎩⎪⎨⎪⎧x =1y =2D .⎩⎪⎨⎪⎧x +y =1x +y2=22.下列运算正确的是( )A .x2·x3=x6B .x6÷x5=xC .(-x2)4=x6D .x2+x3=x5 3.已知代数式-5xm -1y3与72xnym +n 是同类项,那么m 、n 的值分别是( )A .m =2,n =-1B .m =-2,n =-1C .m =2,n =1D .m =-2,n =1 4.下列各式计算正确的是( )A .(a +b)2=a2+b2B .(a -b)2=a2-b2C .(x -y)2=x2-2xy +y2D .(x +2)(x -1)=x2-x -2 5.下列各组式子中,没有公因式的是( ) A .-a2+ab 与ab2-a2b B .mx +y 与x +y C .(a +b)2与-a -b D .5m(x -y)与y -x6.将多项式ax2-8ax +16a 分解因式,下列结果正确的是( ) A .a(x +4)2 B .a(x -4)2 C .a(x2-8x +16) D .a(x -2)2 7.已知⎩⎪⎨⎪⎧x +y =27y +z =33x +z =20,则x +y +z 的值是( )A .80B .40C .30D .不能确定8.若方程组⎩⎪⎨⎪⎧x +y =3mx -y =5的解是方程x -y =1的一个解,则m 的值是( )A .1B .2C .3D .49.对于有理数x ,定义f(x)=ax +b ,且f(0)=3,f(-1)=2,则f(2)的值为( )A .5B .4C .3D .110.小明在某商店购买商品A.B 共两次,这两次购买商品A.B 的数量和费用如表:若小丽需要购买3个商品A 和2个商品B ,则她要花费( ) A .64元 B .65元 C .66元 D .67元 11.因式分解:m(x -y)+n(x -y)=_____________. 12.若(x +3)(x -2)=x2+mx +n ,则mn = _____________. 13.若(3x -2y -5)2+|2x -3y|=0,则xy =______________.14.已知t 满足方程组⎩⎪⎨⎪⎧2x +y =-tx -3y =2t,则y 和x 之间满足的关系是y =____________.15.已知a +b =2,ab =-1,则3a +ab +3b = _______,a2+b2=_____________ .16.若a2+a =2,则2a2+2a +2017的值是 __________ .17.若x2-y2=8,x +y =-2,则x -y =___________.18.如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的13,另一根露出水面的长度是它的15,两根铁棒长度之和为55cm ,此时木桶中水的深度是________cm.19. 解方程组:(1)⎩⎪⎨⎪⎧x -2y =-1 ①x -y =2-2y ②(2)⎩⎪⎨⎪⎧12x -13y =5 ①14x +18y =34 ②.20. 因式分解:(1)2x3-4x2y +2xy2;(2)(m +n)(m +n -4)+4.21.已知am =3,an =4,求a2m +3n 的值.22.先化简,再求值:(1)(a +b)(a -b)+(a +b)2,其中a =-1,b =12(2)(a +2)(a -2)+a(4-a),其中a =14.23.(8分)对于任意两个数对(a ,b)和(c ,d),规定:当且仅当a =c 且b =d 时,(a ,b)=(c ,d).定义运算“⊗”:(a ,b)⊗(c ,d)=(ac -bd ,ad +bc).若(1,2)⊗(p ,q)=(5,0).试求p 、q 的值.24.已知(a +b)2=m ,(a -b)2=n ,用含有m 、n 的式子表示: (1)a 与b 的平方和; (2)a 与b 的积; (3)b a +a b .25. 为了响应“足球进校园”的号召,某校计划为学校足球队购买一批足球,已知购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元.(1)求A.B两种品牌的足球的单价;(2)求该校购买20个A品牌的足球和2个B品牌的足球的总费用.参考答案:1—10 CBCCB BBCAC 11. (x -y)(m +n) 12. -6 13. 9 14. 5x 15. 5 6 16. 2021 17. -4 18. 2019. 解:(1)把②合并同类项:x +y =2 ③,①-③得:-3y =-3,即y =1,把y =1代入③得:x =1,∴原方程组的解为⎩⎪⎨⎪⎧x =1y =1;(2)去分母得:⎩⎪⎨⎪⎧3x -2y =30 ①2x +y =6 ②,②×2+①得:7x =42,即x =6,把x =6代入②得:y =-6,∴原方程组的解为⎩⎪⎨⎪⎧x =6y =-6.20. 解:(1)2x(x -y)2 (2)(m +n -2)221. 解:a2m +3n =(am)2·(an)3=32×43=9×64=57622. 解:原式=a2-b2+a2+2ab +b2=2a2+2ab ,当a =-1,b =12时,原式=2×(-1)2+2×(-1)×12=2-1=1;解:(a +2)(a -2)+a(4-a)=a2-4+4a -a2=4a -4,当a =14时,原式=4×14-4=1-4=- 3.23. 解:由题意得⎩⎪⎨⎪⎧p -2q =5q +2p =0,解得p =1,q =-2.24. 解:(1)a2+b2=a +b 2+a -b 22=m +n2;(2)ab =a +b 2-a -b 24=m -n4;(3)b a +a b =b2+a2ab =m +n 2m -n 4=2m +nm -n. 25. 解:(1)设一个A 品牌的足球需x 元,则一个B 品牌的足球需y 元,依题意得:⎩⎪⎨⎪⎧2x +3y =3804x +2y =360,解得⎩⎪⎨⎪⎧x =40y =100.答:一个A 品牌的足球需40元,则一个B 品牌的足球需100元;(2)依题意得:20×40+2×100=1000(元).答:该校购买20个A 品牌的足球和2个B 品牌的足球的总费用是1000元.2、轴对称变换一、选择题1.下列图形中不是轴对称图形的是()A. 等边三角形B. 正方形C. 平行四边形D. 正五边形2.点(﹣1,﹣5)关于y轴的对称点为()A. (1,5)B. (﹣1,﹣5)C. (5,﹣1)D. (﹣1,5)3.与点P(5,-3)关于x 轴对称的点的坐标是()A. (5,3)B. (-5,3)C. (-3,5)D. (3,-5)4.以下是我市著名企事业(新飞电器、心连心化肥、新乡银行、格美特科技)的徽标或者商标,其中既是轴对称图形又是中心对称图形的是()A. B.C. D.5.如图,在矩形ABCD中,AB=6,BC=8,若将矩形折叠,使B点与D点重合,则折痕EF的长为()A. B.C. 5D. 66.给出下列命题,其中错误命题的个数是()①四条边相等的四边形是正方形;②两组邻边分别相等的四边形是平行四边形③有一个角是直角的平行四边形是矩形;④矩形、线段都是轴对称图形A. 1B. 2C. 3D. 47.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E.F,则线段B′F的长为()A. B.C. D.8.在下列黑体大写英文字母中,不是轴对称图形的是()A. B.C. D.9.下列图案,既是轴对称图形又是中心对称图形的个数是A. 1个B. 2个C. 3个D. 4个10.如图,菱形ABCD的边长为6,∠ABC=120°,M是BC边的一个三等分点,P 是对角线AC上的动点,当PB+PM的值最小时,PM的长是()A. B.C. D.二、填空题11.在“线段、圆、等边三角形、正方形、角”这五个图形中,对称轴最多的图形是________.12.已知点P(3,a)关于y轴的对称点为Q(b,2),则ab=________.13.一辆汽车车牌在水中的倒影为如图,该车牌的牌照号码是________.14.△ABC中,AD是BC边上的高,BD=3,CD=1,AD=2,P、Q、R分别是BC.AB.AC边上的动点,则△PQR周长的最小值为________15.把点A(a,a﹣1)向上平移3个单位,所得的点与点A关于x轴对称,则a 的值为________.16.在平面直角坐标系中,将点A(﹣1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是________.17.如图,在△ABC中,∠ACB=90°,AB=10,AC=8,P是AB边上的动点(不与点B重合),点B关于直线CP的对称点是B′,连接B′A,则B′A长度的最小值是________.18.如图,将△ABC三个角分别沿DE.HG、EF翻折,三个顶点均落在点O处,则∠1+∠2的度数为________°.三、解答题19.如图,∠AOB的内部有一点P,在射线OA,OB边上各取一点P1 , P2 ,使得△PP1P2的周长最小,作出点P1 , P2 ,叙述作图过程(作法),保留作图痕迹.20.如图,在平面直角坐标系内,已知点A的位置;点B的坐标为(3,3);点C 的坐标为(5,1).(1)写出A的坐标,并画出△ABC;(2)画出△ABC关于y轴对称的△A1B1C1;(3)求四边形AB B1A1的面积.21.将军在B处放马,晚上回营,需要将马赶到河CD去饮水一次,再回到营地A,已知A到河岸的距离AE=2公里,B到河岸的距离BF=3公里,EF=12公里,求将军最短需要走多远.22.在等边△ABC外侧作直线AP,点B关于直线AP的对称点为D,连接BD,CD,其中CD交直线AP于点E.(1)依题意补全图1;(2)若∠PAB=30°,求∠ACE的度数;(3)如图2,若60°<∠PAB<120°,判断由线段AB,CE,ED可以构成一个含有多少度角的三角形,并证明.23.在△ABC中,∠C=90°,AC=6,BC=8,D.E分别是斜边AB和直角边CB上的点,把△ABC沿着直线DE折叠,顶点B的对应点是B′.(1)如图(1),如果点B′和顶点A重合,求CE的长;(2)如图(2),如果点B′和落在AC的中点上,求CE的长.参考答案一、选择题1.C2. D3. A4.D5. A6.B7.B8.C9. A 10.A二、填空题11.圆 12.-6. 13.M17936 14.15.﹣ 16.(2,﹣2) 17.2 18.180三、解答题19.解:如图,作点P关于直线OA的对称点E,点P关于直线OB的对称点F,连接EF交OA于P1 ,交OB于P2 ,连接PP1 , PP2 ,△PP1P2即为所求.理由:∵P1P=P1E,P2P=P2F,∴△PP1P2的周长=PP1+P1P2+PP2=EP1+p1p2+p2F=EF,根据两点之间线段最短,可知此时△PP1P2的周长最短20.解:(1)由图可知,A(1,﹣4);结论:所以△ABC即为所求作的三角形;(2)所以△A1B1C1即为所求作的三角形;(3)画出梯形的高AD,点A1.B1.D的坐标分别为(﹣1,﹣4)、(﹣3,3)、(1,3)因此S四边形ABB1A1=×(2+6)×7=28.21.解:作A点关于河岸的对称点A′,连接BA′交河岸与P,连接A′B′,则BB′=2+3=5,则PB+PA=PB+PA′=BA′最短,故将军应将马赶到河边的P地点.作FB′=EA′,且FB′⊥CD,∵FB′=EA′,FB′⊥CD,BB′∥A′A,∴四边形A′B′BA是矩形,∴B'A'=EF,在Rt△BB′A′中,BA′= =13,答:将军最短需要走13公里22. (1)解:所作图形如图1所示:(2)解:连接AD,如图1.∵点D与点B关于直线AP对称,∴AD=AB,∠DAP=∠BAP=30°,∵AB=AC,∠BAC=60°,∴AD=AC,∠DAC=120°,∴2∠ACE+60°+60°=180°,∴∠ACE=30°(3)解:线段AB,CE,ED可以构成一个含有60°角的三角形.证明:连接AD,EB,如图2.∵点D与点B关于直线AP对称,∴AD=AB,DE=BE,∴∠EDA=∠EBA,∵AB=AC,AB=AD,∴AD=AC,∴∠ADE=∠ACE,∴∠ABE=∠ACE.设AC,BE交于点F,又∵∠AFB=∠CFE,∴∠BAC=∠BEC=60°,∴线段AB,CE,ED可以构成一个含有60°角的三角形.23. (1)解:如图(1),设CE=x,则BE=8﹣x;由题意得:AE=BE=8﹣x,由勾股定理得:x2+62=(8﹣x)2 ,解得:x= ,即CE的长为:(2)解:如图(2),∵点B′落在AC的中点,∴CB′= AC=3;设CE=x,类比(1)中的解法,可列出方程:x2+32=(8﹣x)2 解得:x= .即CE的长为:.。
中考数学复习同步检测(4)(整式方程(组))及答案-中考数学试题、初中数学中考试卷、模拟题、复习资料-初中数学试卷-试卷下载2006年中考数学复习同步检测(4)(整式方程(组))姓名一.填空题:1.方程的解也是方程的解时,则;2.若和互为相反数,则;3.当时,代数式与代数式的差为0;4.是方程的解,那么;5.是方程的解,那么,当1时,方程的解;6.若是与是同类项,则;7.已知二元一次方程=0,用含的代数式表示,则;8.在(1),(2),(3)这三组数值中,_____是方程组的解,______是方程,______是方程组的解;9.已知,是方程的解,则;10.若方程组的解是,则(A)=_________,(B)=_______;11.已知等式,当时,;当时,,则;12.若,则(A)∶(B)∶(C)=_________;13.,则;14.二元一次方程的正整数解为______________;二.选择题:15.解方程时,去分母后正确的结果是()(A)(B)(C)(D)16.关于的一元二次方程的一个根是0,则的值为()(A)1(B)-l(C) 1 或-1(D)17.已知下列方程组:(1),(2),(3),(4),其中属于二元一次方程组的个数为()(A)1(B)2(C)3(D)418.已知与是同类项,则的值为()(A)2(B)-2(C)1(D)-119.已知方程组的解是,那么m、n 的值为()(A)(B)(C)(D)20.三元一次方程组的解是()(A)(B)(C)(D)21.若方程组的解、的值相等,则(A)的值为()(A)-4(B)4(C)2(D)122.某班学生分组搞活动,若每组7人,则余下4人;若每组8人,则有一组少3人.设全班有学生人,分成个小组,则可得方程组()(A)(B)(C)(D)三.解方程(组):23.(1);(2);(3)=1;(4);(5)(6)(7)(8)已知方程组与的解相同,求的值;2006年中考数学复习同步检测(4)(整式方程(组))一.1.;2.;3.;4.;5.,;6.;7.;8.(1)(2),(1),(1);9.;10.,;11.,;12.;13.2006;14.,;二.15.C;16.B;17.A;18.C;19.D;20.A;21.C;22.C;三.23.(1);(2);(3);(4);(5);(6)(7);(8);欢迎下载使用,分享让人快乐。
2021年中考数学复习同步检测三 整式方程(组)本卷贰O 贰贰年贰月捌日编写; 出题人:令狐学复;欧阳化语;令狐理总。
一.填空题:1.方程32=+x 的解也是方程85=-ax 的解时,那么_____=a ;2.假设23-x 和x 54-互为相反数,那么______=x ;3.当______=x 时,代数式532-x 与代数式332-x 的差为0; 4.3=x 是方程)(76)(34x a x x a x --=--的解,那么_____=a ;5.9=x 是方程b x =-231的解,那么=b ,当=b 1时,方程的解 ; 6.假设是1322-x c ab 与3625+-x c ab 是同类项,那么______=x ;7.二元一次方程1213-+y x =0,用含y 的代数式表示x ,那么______=x ; 8.在〔1〕⎩⎨⎧-==23y x ,〔2〕⎪⎩⎪⎨⎧-==354y x ,〔3〕⎪⎪⎩⎪⎪⎨⎧-==2741y x 这三组数值中,_____是方程组 93=-y x 的解,______是方程42=+y x ,______是方程组⎩⎨⎧=+=-4293y x y x 的解; 9.⎩⎨⎧=-=54y x ,是方程07241=++my x 的解,那么_____=m ; 10.假设方程组⎩⎨⎧=-=+137by ax by ax 的解是⎩⎨⎧-=-=12y x ,那么a =_________,b =_______; 11.等式b kx y +=,当2=x 时,2-=y ;当21-=x 时,3=y ,那么______,==b k ; 12.假设0)2(41432=-+-+b c c b a ,那么a ∶b ∶c =_________; 13.052422=++-+y x y x ,那么 ________2005=+y x ;14.二元一次方程1523=+y x 的正整数解为______________;二.选择题:15.解方程16110312=+-+x x 时,去分母后正确的结果是 〔 〕 A . 111014=+-+x x B . 111024=--+x xC . 611024=--+x xD . 611024=+-+x x16.关于x 的一元二次方程01)1(22=-++-a x x a 的一个根是0,那么a 的值是 〔 〕 A. 1 B. -l C. 1 或者-1 D. 1217.以下方程组:〔1〕⎩⎨⎧-==23y y x ,〔2〕⎩⎨⎧=-=+423z y y x ,〔3〕⎪⎪⎩⎪⎪⎨⎧=-=+0131y x y x ,〔4〕⎪⎪⎩⎪⎪⎨⎧=-=+0131y x y x ,其中属于二元一次方程组的个数为 〔 〕A 1B 2C 3D 418.a b y x 352+与b a y x 4224--是同类项,那么a b 的值是 〔 〕A 2B -2C 1D -119.方程组⎩⎨⎧-=-=+1242m ny x ny mx 的解是⎩⎨⎧-==11y x ,那么m 、n 的值是 〔 〕A ⎩⎨⎧-==11n mB ⎩⎨⎧==12n m C ⎩⎨⎧==23n m D⎩⎨⎧==13n m20.三元一次方程组⎪⎩⎪⎨⎧=+=+=+651x z z y y x 的解是 〔 〕A ⎪⎩⎪⎨⎧===501z y xB ⎪⎩⎪⎨⎧===421z y xC ⎪⎩⎪⎨⎧===401z y xD ⎪⎩⎪⎨⎧===014z y x21.假设方程组⎩⎨⎧=+=-+14346)1(y x y a ax 的解x 、y 的值相等,那么a的值是 〔〕 A -4 B 4 C 2 D 122.某班学生分组搞活动,假设每组7人,那么余下4人;假设每组8人,那么有一组少3人.设全班有学生x 人,分成y 个小组,那么可得方程组 〔 〕 A ⎩⎨⎧=-=+y x y x 3847 B ⎩⎨⎧=++=xy x y 3847 C ⎩⎨⎧+=-=3847x y x y D ⎩⎨⎧+=+=3847x y x y三.解方程〔组〕:〔1〕32221+-=--x x x ;〔2〕 )1(32)1(21217-=⎥⎦⎤⎢⎣⎡---x x x x ;〔3〕⎭⎬⎫⎩⎨⎧+⎥⎦⎤⎢⎣⎡-⎪⎭⎫⎝⎛-46151413121x =1;〔4〕03.04.05233.12.188.1=-----x x x ;〔5〕⎩⎨⎧-=-=-.557832y x y x〔6〕⎪⎪⎩⎪⎪⎨⎧=+=+.15765545.04332y x y x〔7〕⎪⎩⎪⎨⎧=++=-+=+-.10076702302z y x z y x z y x〔8〕方程组⎩⎨⎧-=+=-1332by ax y x 与⎩⎨⎧=+=+3321123by ax y x 的解一样,求222b ab a ++的值;本卷贰O 贰贰年贰月捌日编写; 出题人:令狐学复;欧阳化语;令狐理总。
年中考数学复习同步练习(4)(整式方程(组)) 姓名
一、选择题: 1.(08浙江温州)方程的解是 ( ) (A )
(B )
(C )
(D )
2.(08湖南郴州)方程012=+x 的解是 ( ) (A )
(B )
(C ) 2 (D ) 2-
3.(08杭州)已知是方程的一个解,那么的值是 ( )
(A ) 1 (B ) 3 (C ) 3- (D ) 1- 4.(08厦门)已知方程,那么方程的解是 ( )
(A )
(B )
(C )
(D )
5.(08上海)如果是方程的根,那么的值是 ( )
(A ) 0 (B ) 2 (C ) (D )
6.(08湖北武汉)已知关于的方程的解是
,则
的值是 ( ) (A ) 2 (B )
(C )
(D ) 7
2
-
7.某商店售出了一批进价为a 的商品,利润率为20%,则每件商品的售价为 ( ) (A ) 20%a (B ) 80%a (C ) (120%)
a
+ (D ) 120%a
8.(08四川自贡)方程
的解的相反数是 ( )
(A ) 2 (B )
(C ) 3 (D ) 3-
9.某地出租车的收费标准是:起步价为7元,超过3千米以后,每增加1千米, 加收2.4元.某人乘这种出租车从甲地到乙地共付车费19元, 设此人从甲地到乙地经过的路程为x 千米,那么x 的最大值是 ( ) (A ) 11 (B ) 8 (C ) 7 (D ) 5
10.(08山东潍坊)下列方程有实数解的是 ( )
(A ) (B ) 021=++x (C )
(D )
二、填空题:
11.方程32=+x 的解也是方程85=-ax 的解时,则_____=a ; 12.若23-x 和x 54-互为相反数,则______=x ; 13.当______=x 时,代数式
532-x 与代数式33
2
-x 的差为0; 14.3=x 是方程)(76)(34x a x x a x --=--的解,那么_____=a ; 15.9=x 是方程
b x =-23
1
的解,那么=b ,当=b 1时,方程的解 ; 16.若是1322-x c ab 与3625+-x c ab 是同类项,则______=x ; 17.(08年四川宜宾)若方程组
的解是
,那么
;
18.(08年云南双柏)下面是一个简单的数值运算程序,当输入的值为2时,输出的数值是 .
19.已知⎩⎨
⎧=-=5
4y x ,是方程07241
=++my x 的解,则_____=m ;
20.(08乌兰察布)对于
定义一种新运算“”:
,其中为常数,等式右边是通常的加法和乘法的运算.已知:,那么
= .
三、解方程(组):
21.(08年内蒙古乌兰察布)在一次春游中,小明、小亮等同学随家人一同到江郎山旅游,下面是购买门票时,小明与他爸爸的对话(如图所示).
(1)小明他们一共去了几个成人?几个学生?
(2)请你帮助小明算一算,用哪种方式买票更省钱?并说明理由.
2009年中考数学复习同步练习(4)(整式方程(组))参考答案
一、
1.B ;2.B ;3.A ;4.C ;5.C ;6.A ;7.D ;8.A ;9.B ;10.C ; 二、
11.13;12.1;13.36;14.29;15.1,29,23
; 16.3
4
-;17.1;18.0;19.53;20.2;
三、
21.解:(1)设小明他们一共了个成人,个学生,
答:小明他们一共去了7个成人,4个学生.
(2)若按14人购买团体票,则共需(元)
(元).
购买团体票可省24元.
x y 11140403602
x y x y +=⎧⎪∴⎨+=⎪⎩,
74
x y =⎧∴⎨
=⎩,
144060%336⨯⨯=36033624-=∴。