中考数学专题复习课件:整式方程
- 格式:ppt
- 大小:198.00 KB
- 文档页数:12
脚踏实地,才能走得更远!xx x +=++8)145(221)2(4)1(23)1(=-+x x ⇔⇔⇔ 第五讲 整式方程一、一元一次方程定义:含有___个未知数,且未知数最高次数是___,这样的整式方程叫一元一次方程 解一元一次方程的步骤:(1)______(2)______ (3)_______(4)_______(5)____________ 1、解方程(2015大连、梧州)二、一元二次方程定义:含有___个未知数,且可化成形式为__________________(0≠a )的方程叫一元二次方程 解一元二次方程的常用方法(1)______,(2)________,(3)_____________(4)__________(5)______________ 2、解方程:(2013广东)09102=+-x x (用三种方法)3、(2015随州)用配方法解方程0462=--x x ,下列变形正确的是( )A.364)6(2+-=-xB.364)6(2+=-x C.94)3(2+-=-x D.94)3(2+=-x一元二次方程02=++c bx ax 的判别式=∆______________ 一元二次方程有两个不相等的实数根 _______ 一元二次方程有两个相等的实数根 _______ 一元二次方程没有实数根 4、(2015重庆)已知一元二次方程03522=+-x x ,则该方程根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.两个根都是自然数D.没有实数根5、(2015河北)关于x 的一元二次方程032=+-b x x 有两个相等的实数根,则b 的取值范围是__________6、(2015包头)关于x 的方程0112=--+x k x 有两 个不相等的实数根 ,则k 的取值范围是__________ 7、(2105绥化)关于x 的一元二次方程0122=-+x ax 无解,则a 的取值范围是__________8、关于x 的一元二次方程 有两个不相等的实数根 ,则m 的取值范围是_________ 根与系数的关系:如果一元二次方程02=++c bx ax 的两个实数根为,那么=+21x x ______,=21x x _________9、(2013包头)已知方程0122=--x x 则此方程( ) A.无实数根 B.两根之和为-2 C.两根之积为-1 D.有一个根为21+- 10、(2015泸州)设21,x x 是方程0152=--x x 的两个实数根,则=+2221x x __________10、(2014包头)关于x 的方程()01222=+-+m x m x 的两个实数根分别为21,x x 且0,02121>>+x x x x 则m 的取值范围是( )A.21≤mB.021≠≤m m 且C.1<mD.0m 1≠<且m应用题11、如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道.若设人行道的宽度为x 米,则可以列出关于x 的方程是 _______________________12、水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤。
中考数学专题复习(三) 整式方程【知识梳理】1.等式及其性质 ⑴ 等式:用等号“=”来表示 关系的式子叫等式.⑵ 性质:① 如果b a =,那么=±c a ;② 如果b a =,那么=ac ;如果b a =()0≠c ,那么=c a . 2. 方程、一元一次方程的概念⑴ 方程:含有未知数的 叫做方程;使方程左右两边值相等的 ,叫做方程的解;求方程解的 叫做解方程. 方程的解与解方程不同.⑵ 一元一次方程:在整式方程中,只含有 个未知数,并且未知数的次数是 ,系数不等于0的方程叫做一元一次方程;它的一般形式为 ()0≠a .3. 解一元一次方程的步骤:①去 ;②去 ;③移 ;④合并 ;⑤系数化为1.4.易错知识辨析:(1)判断一个方程是不是一元一次方程,首先在整式方程前提下,化简后满足只含有一个未知数,并且未知数的次数是1,系数不等于0的方程,像21=x,()1222+=+x x 等不是一元一次方程. (2)解方程的基本思想就是应用等式的基本性质进行转化,要注意:①方程两边不能乘以(或除以)含有未知数的整式,否则所得方程与原方程不同解;②去分母时,不要漏乘没有分母的项;③解方程时一定要注意“移项”要变号.5.二元一次方程:含有 未知数(元)并且未知数的次数是 的整式方程.6. 二元一次方程组:含有 的两个一次方程所组成的方程组叫方程组.7.二元一次方程的解: 适合一个二元一次方程的 未知数的值叫做这个二元一次方程的一个解,一个二元一次方程有 个解.8.二元一次方程组的解:二元一次方程组中两个方程的 ,叫做二元一次方程组的解.9. 解二元一次方程的方法步骤:二元一次方程组 方程.消元是解二元一次方程组的基本思路,方法有 消元和 消元法两种.10.易错知识辨析:消元 转化(1)二元一次方程有无数个解,它的解是一组未知数的值;(2)二元一次方程组的解是两个二元一次方程的公共解,是一对确定的数值;(3)利用加减法消元时,一定注意要各项系数的符号.11.一元二次方程:在整式方程中,只含 个未知数,并且未知数的最高次数是 的方程叫做一元二次方程.一元二次方程的一般形式是 .其中 叫做二次项, 叫做一次项, 叫做常数项; 叫做二次项的系数, 叫做一次项的系数.12. 一元二次方程的常用解法:(1)直接开平方法:形如)0(2≥=a a x 或)0()(2≥=-a a b x 的一元二次方程,就可用直接开平方的方法.(2)配方法:用配方法解一元二次方程()02≠=++a o c bx ax 的一般步骤是:①化二次项系数为1,即方程两边同时除以二次项系数;②移项,使方程左边为二次项和一次项,右边为常数项,③配方,即方程两边都加上一次项系数一半的平方,④化原方程为2()x m n +=的形式,⑤如果是非负数,即0n ≥,就可以用直接开平方求出方程的解.如果n <0,则原方程无解.(3)公式法:一元二次方程20(0)ax bx c a ++=≠的求根公式是21,240)2b x b ac a-±=-≥. (4)因式分解法:因式分解法的一般步骤是:①将方程的右边化为 ;②将方程的左边化成两个一次因式的乘积;③令每个因式都等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.13.易错知识辨析:(1)判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断,注意一元二次方程一般形式中0≠a .(2)用公式法和因式分解的方法解方程时要先化成一般形式.(3)用配方法时二次项系数要化1.(4)用直接开平方的方法时要记得取正、负.14. 一元二次方程根的判别式:关于x 的一元二次方程()002≠=++a c bx ax 的根的判别式为 .(1)ac b 42->0⇔一元二次方程()002≠=++a c bx ax 有两个 实数根,即=2,1x .(2)ac b 42-=0⇔一元二次方程有 相等的实数根,即==21x x .(3)ac b 42-<0⇔一元二次方程()002≠=++a c bx ax 实数根. 15. 一元二次方程根与系数的关系若关于x 的一元二次方程20(0)ax bx c a ++=≠有两根分别为1x ,2x ,那么=+21x x ,=⋅21x x .16.易错知识辨析:(1)在使用根的判别式解决问题时,如果二次项系数中含有字母,要加上二次项系数不为零这个限制条件.(2)应用一元二次方程根与系数的关系时,应注意:① 根的判别式042≥-ac b ;② 二次项系数0a ≠,即只有在一元二次方程有根的前提下,才能应用根与系数的关系.【中考真题解析】一、选择题1.下列方程中,是一元一次方程的是( )A 、()232x x x x +-=+B 、()40x x +-=C 、1x y +=D 、10x y+= 2.小明在做解方程作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是:11222y y -=,怎么呢?小明想了一想,便翻看书后答案,此方程的解是53y =-,很快补好了这个常数,并迅速地完成了作业,同学们,你们能补出这个常数吗?它应是( )A 、1B 、2C 、3D 、43.已知:()2135m --有最大值,则方程5432m x -=+的解是( ) 7979 B C D 9797A --、、、、 4.某商品连续两次9折降价销售,降价后每件商品的售价为a 元,该产品原价为( )。