数学建模与数学实验回归分析
- 格式:pptx
- 大小:1.66 MB
- 文档页数:80
湖南城市学院数学与计算科学学院《数学建模》实验报告专业:学号:姓名:指导教师:成绩:年月日目录实验一 初等模型........................................................................ 错误!未定义书签。
实验二 优化模型........................................................................ 错误!未定义书签。
实验三 微分方程模型................................................................ 错误!未定义书签。
实验四 稳定性模型.................................................................... 错误!未定义书签。
实验五 差分方程模型................................................................ 错误!未定义书签。
实验六 离散模型........................................................................ 错误!未定义书签。
实验七 数据处理........................................................................ 错误!未定义书签。
实验八 回归分析模型................................................................ 错误!未定义书签。
实验一 初等模型实验目的:掌握数学建模的基本步骤,会用初等数学知识分析和解决实际问题。
实验内容:A 、B 两题选作一题,撰写实验报告,包括问题分析、模型假设、模型构建、模型求解和结果分析与解释五个步骤。
第1篇一、实验目的本次实验旨在让学生掌握数学建模的基本步骤,学会运用数学知识分析和解决实际问题。
通过本次实验,培养学生主动探索、努力进取的学风,增强学生的应用意识和创新能力,为今后从事科研工作打下初步的基础。
二、实验内容本次实验选取了一道实际问题进行建模与分析,具体如下:题目:某公司想用全行业的销售额作为自变量来预测公司的销售量。
表中给出了1977—1981年公司的销售额和行业销售额的分季度数据(单位:百万元)。
1. 数据准备:将数据整理成表格形式,并输入到计算机中。
2. 数据分析:观察数据分布情况,初步判断是否适合使用线性回归模型进行拟合。
3. 模型建立:利用统计软件(如MATLAB、SPSS等)进行线性回归分析,建立公司销售额对全行业的回归模型。
4. 模型检验:对模型进行检验,包括残差分析、DW检验等,以判断模型的拟合效果。
5. 结果分析:分析模型的拟合效果,并对公司销售量的预测进行评估。
三、实验步骤1. 数据准备将数据整理成表格形式,包括年份、季度、公司销售额和行业销售额。
将数据输入到计算机中,为后续分析做准备。
2. 数据分析观察数据分布情况,绘制散点图,初步判断是否适合使用线性回归模型进行拟合。
3. 模型建立利用统计软件进行线性回归分析,建立公司销售额对全行业的回归模型。
具体步骤如下:(1)选择合适的统计软件,如MATLAB。
(2)输入数据,进行数据预处理。
(3)编写线性回归分析程序,计算回归系数。
(4)输出回归系数、截距等参数。
4. 模型检验对模型进行检验,包括残差分析、DW检验等。
(1)残差分析:计算残差,绘制残差图,观察残差的分布情况。
(2)DW检验:计算DW值,判断随机误差项是否存在自相关性。
5. 结果分析分析模型的拟合效果,并对公司销售量的预测进行评估。
四、实验结果与分析1. 数据分析通过绘制散点图,观察数据分布情况,初步判断数据适合使用线性回归模型进行拟合。
2. 模型建立利用MATLAB进行线性回归分析,得到回归模型如下:公司销售额 = 0.9656 行业销售额 + 0.01143. 模型检验(1)残差分析:绘制残差图,观察残差的分布情况,发现残差基本呈随机分布,说明模型拟合效果较好。
多项式回归数学建模实验报告一、引言多项式回归是一种常用的数学建模方法,它可以通过拟合多项式函数来描述不同变量之间的关系。
多项式回归在实际问题中广泛应用,例如经济学、生物学、工程学等领域。
本实验旨在通过对一组实验数据进行多项式回归分析,探索多项式回归在模型建立和预测中的应用。
二、数据收集与预处理在实验中,我们收集了一个关于汽车油耗与发动机排量之间关系的数据集。
数据集中包含了不同车型的汽车的油耗和发动机排量的数据。
为了进行多项式回归分析,我们首先对数据进行了预处理,包括数据清洗、去除异常值和缺失值处理等。
三、多项式回归模型建立在多项式回归分析中,我们可以选择不同次数的多项式函数来拟合数据。
在本实验中,我们选择了3次多项式函数来建立模型。
通过最小二乘法将多项式函数拟合到数据上,得到了模型的系数。
四、模型评估与优化为了评估多项式回归模型的拟合效果,我们计算了模型的均方误差(MSE)和决定系数(R-squared)。
通过观察这些指标的数值,我们可以评估模型的拟合效果,并根据需要进行模型优化。
五、模型预测与应用在模型建立和优化之后,我们可以使用多项式回归模型来进行预测和应用。
通过输入不同的发动机排量,我们可以预测相应的汽车油耗。
这对于汽车制造商和消费者来说都具有重要的实际意义,可以帮助他们做出更好的决策。
六、实验结果与讨论通过对实验数据的多项式回归分析,我们得到了一个拟合效果较好的模型。
模型的MSE较小,R-squared较大,说明模型对数据的拟合效果较好。
通过模型预测,我们可以得到不同发动机排量下的汽车油耗预测值,可以帮助汽车制造商和消费者做出更准确的预测和决策。
七、结论与展望本实验通过对多项式回归模型的建立和应用,探索了多项式回归在数学建模中的实际应用。
实验结果表明多项式回归模型在描述汽车油耗和发动机排量之间关系方面具有较好的效果。
未来的研究可以继续优化模型,探索更高次数的多项式函数或其他回归方法,以提高模型的精确度和预测能力。
北京建筑大学理学院信息与计算科学教研室实验报告课程名称数学建模实验名称回归模型实验地点大兴机房日期2014.5.14姓名渠娅静班级计122 学号04 指导教师靳旭玲成绩【实验目的】1、了解回归分析的基本原理,掌握Matlab实现的方法;2、练习用回归分析解决实际问题;【实验要求】1、独立完成各个实验任务;2、实验的过程保存成.m 文件,以备检查;3、完成实验报告。
【实验内容】1、为了估计山上积雪融化后对下游灌溉的影响,在山上建立了一个观察站,测量了最大积雪深度(x)与当年灌溉面积(y),得到连续10年的数据如表所示。
20和25的灌溉面积。
2、水泥凝固时放出的热量y与水泥中4种化学成分x1、x2、x3、x4有关,今测得一组数据如下,试用逐【实验步骤】一、试建立灌溉面积对于最大积雪深度的回归模型,对模型和回归系数进行检验,并预测最大积雪深度是20和25的灌溉面积。
1、问题分析:求回归系数的点估计和区间估计、并检验回归模型: [b, bint,r,rint,stats]=regress(Y,X,alpha) Bint--回归系数的区间估计; r--残差; rint--置信区间; stats--用于检验回归模型的统计量,有三个数值:相关系数r 2、F 值、与F 对应的概率p; alpha--显著性水平(缺省时为0.05) 2 、求解过程:(1)输入数据,建立模型:x=[28.6 19.3 40.5 35.6 48.9 45.0 29.2 34.1 46.7 37.4 ]'; X=[ones(10,1) x];Y=[15.2 10.4 21.2 18.6 26.4 23.4 13.5 16.7 24.0 19.1]'; (2)、回归分析及检验:[b,bint,r,rint,stats]=regress(Y,X) b,bint,stats 3、实验结果:b = 2.3564 1.8129bint = -1.8587 6.5715 1.5962 2.0297stats = 0.9789 371.9453 0.0000 2.0133 4、结果分析:即01ˆˆ 2.3564 1.8129ββ==;0ˆβ的置信区间为[-1.8587,6.5715], 1ˆβ的置信区间为[1.5962,2.0297]; r2=0.9789, F=371.9453, p=0.0000,p<0.05, 可知回归模型 y=2.3564+1.8129x 成立.预测最大积雪深度是20和25的灌溉面积: X=20时,y =38.6144 X=25时,y = 47.6789 残差分析,作残差图: rcoplot(r,rint)预测及作图:z=b(1)+b(2)*xplot(x,Y,'k+',x,z,'r')二、水泥凝固时放出的热量y与水泥中4种化学成分x1、x2、x3、 x4有关,今测得一组数据如下,试用逐步回归法确定一个线性模型.1、问题分析:○1逐步回归的命令是: stepwise(x,y,inmodel,alpha)X--自变量数据, 阶矩阵; y--因变量数据, 阶矩阵; inmodel--矩阵的列数的指标,给出初始模型中包括的子集(缺省时设定为全部自变量); alpha--显著性水平(缺省时为0.5).○2运行stepwise命令时产生三个图形窗口:Stepwise Plot,Stepwise Table,Stepwise History.2、求解过程及结果:(1)输入数据,建立模型:x1=[7 1 11 11 7 11 3 1 2 21 1 11 10]';x2=[26 29 56 31 52 55 71 31 54 47 40 66 68]';x3=[6 15 8 8 6 9 17 22 18 4 23 9 8]';x4=[60 52 20 47 33 22 6 44 22 26 34 12 12]';y=[78.5 74.3 104.3 87.6 95.9 109.2 102.7 72.5 93.1 115.9 83.8 113.3 109.4]';(2)逐步回归:先在初始模型中取全部自变量x=[x1 x2 x3 x4];stepwise(x,y)(2)对变量y和x1、x2、x3、x4作线性回归X=[ones(13,1) x1 x2 x3 x4];b=regress(y,X)结果:b = 62.40541.55110.51020.1019-0.14413、结果分析:故最终模型为:y=62.4054+1.5511x1+0.5102x2+0.1019x3-0.1441x4【实验小结】心得体会:根据题目建立数学模型来求解,熟悉掌握MATLAB中线性规划的命令,注意自变量是X还是Y;总之多多练习、多多交流来不断提高自己应用MATLAB的能力。
数学建模常用方法介绍数学建模是指利用数学方法对实际问题进行数学描述和分析的过程。
它是数学与实际问题相结合的一种科学研究方法。
在数学建模中,常用的方法有线性规划、非线性规划、动态规划、数值模拟、统计分析等。
下面将介绍这些常用的数学建模方法。
1.线性规划线性规划是一种优化问题的数学描述方法,可以用于求解最优化问题,例如最大化利润或最小化成本。
线性规划的基本思想是在一定的约束条件下,通过线性目标函数和线性约束条件,寻找最优解。
线性规划常用的算法有单纯形法、内点法等。
2.非线性规划非线性规划是一种在约束条件下求解非线性最优化问题的方法。
与线性规划不同,非线性规划中目标函数和/或约束条件是非线性的。
非线性规划的求解方法包括梯度下降法、牛顿法等。
3.动态规划动态规划是一种常用的求解最优化问题的方法,它可以用于求解具有重叠子问题结构的问题。
动态规划将原问题分解为一系列子问题,并通过保存子问题的解来避免重复计算,从而降低计算复杂度。
动态规划常用于求解最短路径问题、背包问题等。
4.数值模拟数值模拟是通过数值方法对实际问题进行计算机模拟和仿真的方法。
数值模拟在现代科学和工程中得到广泛应用。
数值模拟方法包括有限差分法、有限元法、蒙特卡洛方法等。
5.统计分析统计分析是通过数理统计方法对数据进行分析和推断的方法。
统计分析可以帮助我们了解数据的分布、关系和趋势,并做出科学的推断和预测。
统计分析方法包括假设检验、方差分析、回归分析等。
除了以上常用方法,还有一些其他常用的数学建模方法,例如图论、随机过程、优化算法等。
不同的问题需要选用不同的数学建模方法。
为了解决实际问题,数学建模需要结合实际背景和需求,在数学建模的过程中运用合适的数学方法,建立准确的模型,并通过数学分析和计算机辅助求解,得到符合实际情况的解答和结论。
数学建模的过程不仅仅是将数学工具应用于实际问题,更要注重问题的形式化、合理性和可行性。
在实际建模过程中,需要对问题进行适当的简化和假设,并考虑到模型的稳定性和可靠性。
数学中的数据建模与统计分析方法随着信息技术的发展以及数据产生和集成的速度增加,数据分析和建模的需求也在逐渐增长。
在众多的数据分析和建模方法中,数学方法的应用也越来越广泛。
本文将介绍一些常见的数学数据建模和统计分析方法。
一、线性回归线性回归是一种基本的数据建模方法,用于研究变量之间的关系。
在线性回归中,我们将自变量与因变量之间的关系表示为一个线性方程,通过线性拟合找到最优解。
线性回归可用于预测和建模连续型数据,如销售额和房价等。
在线性回归中,我们需要选择合适的自变量和最优的拟合函数。
这可能需要对数据进行预处理和特征选择。
线性回归的依据是数据的相关性,因此在样本数量较少时,需要进行显著性检验,确保模型的可靠性。
二、非线性回归与线性回归不同,非线性回归研究的是自变量和因变量之间的非线性关系。
非线性回归可以用于建模非线性系统,例如天气、地震等。
与线性回归不同,非线性回归需要找到合适的拟合函数,因此需要更多的建模经验和计算资源。
在实践中,非线性回归常常与深度学习相结合,以辅助建模和预测。
深度学习可以自动选择和训练适当的模型和数据特征,从而提高预测的准确性和可靠性。
三、分类和聚类分类和聚类是常用的数据挖掘技术。
它们可用于将数据分为不同的类别或组,以便更好地理解和分析数据。
分类和聚类可以用于市场调研、客户分析、图像识别和自然语言处理等方面。
在分类和聚类中,我们需要选择合适的算法和特征工程,以识别和分类数据。
例如,在图像识别中,我们可以使用卷积神经网络 (CNN) 将图像分为不同的类别。
在文本分类中,我们可以使用词袋模型 (Bag of Words) 分析词频和共现关系,以便确定文本的主题和情感。
四、时间序列分析时间序列分析是研究时间序列数据的一种方法。
时间序列数据是一组按时间顺序排列的测量结果,例如天气、股票交易和实验数据等。
时间序列分析可以用于预测趋势、周期性和周期性波动。
时间序列分析中,我们需要进行时间序列的平稳性检验和趋势分析,以便找到相关模型和参数。
科海拾贝—回归分析在客观世界中普遍存在着变量之间的关系。
变量之间的关系一般来说可分为确定性的与非确定性的两种。
确定性关系是指变量之间的关系可以用函数关系来表达的。
另一种非确定性的关系即所谓相关关系。
例如,人的身高与体重之间存在着关系,一般来说,人高一些,体重要重一些,但同样高度的人的体重往往不相同。
人的血压与年龄之间也存在着关系,但同年龄的人的血压往往不相同。
气象中温度与湿度之间的关系也是这样。
这是因为涉及的变量(如体重、血压、湿度)是随机变量。
上面说的变量关系是非确定性的。
回归分析是研究相关关系的一种数学方法。
使用这种方法可以用一个变量取得的值去估计另一个变量所取的值,或者使用一个变量去解释另外一个变量变化的原因。
这两个量,我们分别称为自变量和因变量。
回归分析是数学建模的有力工具,那么我们要建立回归分析的数学模型,需要以下几个步骤:1、收集一组包含因变量和自变量的数据;2、选定因变量与自变量之间的模型,利用数据,按照最小二乘准则计算模型中的系数;3、利用统计分析方法对不同的模型进行比较,找出与数据拟合地最好的模型;4、判断得到的模型是否适合于这组数据,诊断有无不适合回归模型的异常数据;5、利用模型对因变量做出预测或解释。
注:在第二步中,选定因变量与自变量的模型时,一般是凭经验选取模型,所以此模型又称为经验公式。
回归分析主要包括一元线性回归,多元线性回归以及非线性回归,这里主要是介绍一元线性回归的MA TLAB实现。
实验目的:1、了解回归分析的基本原理,掌握MATLAB的实现方法;2、联系实际用回归分析方法解决实际问题。
一、一元线性回归模型例:用切削机床加工时,为实时地调整机床需测定刀具的磨损程度,先每隔一小时测量刀具的厚度得到以下的数据:试建立刀具厚度关于切削时间的回归模型,对模型和回归系数进行检验,预测15小时后刀具的厚度。
分析:首先对原始数据进行观察,确定回归模型,然后通过计算最终确定模型和模型参数,并对模型和回归系数进行检验。