工业机器人机械系统设计
- 格式:doc
- 大小:158.00 KB
- 文档页数:7
简述工业机器人系统集成设计步骤
工业机器人系统集成设计的步骤如下:
1. 系统需求分析:明确工业机器人系统的需求,包括功能需求、性能需求和物理需求等,同时考虑系统的可靠性、安全性和成本等因素。
2. 确定工业机器人系统硬件:根据系统需求分析的结果,设计工业机器人系统的硬件,包括机器人本体、控制器、传感器、执行器等。
3. 确定工业机器人系统软件:设计工业机器人系统软件,包括控制系统、运动规划系统、路径导航系统、传感器数据处理系统等。
4. 集成传感器和执行器:将传感器和执行器集成到工业机器人系统中,确保其能够正常工作。
5. 集成软件和硬件:将工业机器人系统软件和硬件进行集成,进行系统测试和调试,确保系统能够正常运行。
6. 进行系统测试和调试:对工业机器人系统进行测试和调试,确保系统能够满足需求,并且能够正常工作。
7. 系统交付和使用:将工业机器人系统集成到实际生产环境中,并进行培训和支持,确保用户能够正确使用工业机器人系统。
工业机器人控制系统的设计与实现工业机器人是现代工业生产中不可或缺的装备之一,其高效、精准的工作能力为工业生产带来了巨大的提升和改善。
而工业机器人控制系统则是实现机器人自动化操作的核心,它能够对机器人进行准确、稳定的控制和指令,使得机器人能够按照设定的任务进行操作。
本文将详细介绍工业机器人控制系统的设计与实现。
首先,需求分析是工业机器人控制系统设计的基础。
在需求分析阶段,需要明确机器人的工作环境、任务要求以及运行效率等方面的要求。
对于不同类型的工业机器人,其控制系统的需求也会有所不同,比如针对装配任务的机器人需要具备较高的精度和稳定性,而针对搬运任务的机器人则需要具备较高的速度和负载能力。
其次,架构设计是工业机器人控制系统设计的重要环节。
架构设计包括了机器人控制器和机器人执行部分的设计。
机器人控制器主要负责接收、处理和分析外部输入信号,并生成相应的控制指令。
而机器人执行部分则负责将控制指令转化为实际的机器人动作。
在架构设计中,需要考虑控制器和执行部分之间的通信方式和接口标准,以及控制器的实现方式(如单片机或嵌入式系统)和执行部分的动力结构(如电机驱动系统)等。
最后,硬件实现是工业机器人控制系统设计的最后一步。
硬件实现包括了选取适当的传感器装置和执行元件,以及搭建控制器和执行部分的硬件电路。
传感器的选择要根据机器人的任务要求和工作环境来确定,比如需要高精度定位时可以采用视觉传感器或激光测距传感器,需要力控制时可以选用力传感器等。
执行元件的选择要根据机器人的负载和速度要求来确定,比如需要高速运动时可以选择步进电机,需要高负载能力时可以选择伺服电机等。
控制器和执行部分的硬件电路的设计要根据控制算法的要求和硬件接口的标准来进行,同时要考虑硬件实现的成本和实用性。
综上所述,工业机器人控制系统的设计与实现涉及了多个关键环节,包括需求分析、架构设计、控制算法设计和硬件实现等。
在设计阶段,需要全面考虑机器人的工作环境、任务要求和性能指标,以实现机器人的高效、精准操作。
工业机器人设计方案一、引言随着工业的发展和技术的进步,工业机器人在生产线上扮演着越来越重要的角色。
为了提高生产效率和质量,减少人力成本和劳动强度,设计一套高效稳定的工业机器人成为了当今的迫切需求。
本文将根据实际需求,提出一种工业机器人的设计方案。
二、方案概述本方案的工业机器人主要应用于组装生产线上的重复性工作,如螺丝拧紧、零件装配等。
该机器人将采用多关节设计,以实现多方向运动和灵活操作。
同时,为了实现高效稳定的工作,机器人将配置感知技术和控制系统,以及安全保护系统。
三、机器人结构设计1.机械结构设计机器人采用多关节结构设计,以实现多方向运动和灵活操作。
机器人的机械结构由支架、关节机构和工具端构成。
支架选择高强度的材料,以保证机器人的稳定性和承载能力;关节机构采用高精度的电机和减速器,以实现精确的运动控制;工具端根据实际需要设计相应的装配工具。
2.动力系统设计机器人的动力系统由电机、减速器和传动系统组成。
电机选择高性能的伺服电机,以实现快速精确的控制;减速器采用高精度的行星齿轮减速器,以提供足够的扭矩和速度;传动系统根据实际需要选择齿轮传动、皮带传动或直线传动等。
3.传感器和感知系统设计机器人配备各种传感器和感知系统,以实现环境感知和物体检测。
其中包括视觉传感器、力传感器、触觉传感器等。
视觉传感器用于检测工件的位置和姿态,力传感器用于检测工具与工件之间的受力情况,触觉传感器用于检测机器人与环境之间的接触。
四、控制系统设计1.控制算法设计机器人的控制系统采用基于模型的控制算法,以实现精确控制和运动规划。
通过对机器人模型进行数学建模和控制分析,设计合适的控制算法,以满足各种工作场景的需求。
2.控制器和接口设计机器人的控制系统采用计算机控制,通过控制器和接口与各个子系统进行通信和控制。
控制器选择高性能的工控机,具有强大的计算和控制能力;接口采用标准化的接口协议,以实现与各个子系统的连接和数据传输。
五、安全保护系统设计对于工业机器人来说,安全问题是至关重要的。
工业机器人设计方案一、项目背景随着制造业的发展和工业自动化的推进,工业机器人在生产线上扮演着越来越重要的角色。
机器人的运用可以提高生产效率、降低劳动成本、减少人力资源浪费等,在制造业中具有广阔的应用前景。
二、项目概述本设计方案旨在设计一种具有自动化操作能力的工业机器人。
该机器人具备运动控制、视觉检测、感知能力等多种功能,可以适应不同工作场景中的操作需求。
三、设计方案1.机械结构设计根据所需的操作能力和工作场景的特点,机械结构应具备稳定性、灵活性和可调节性。
可以采用机械臂的设计,具备多个关节,可进行多轴运动控制。
机械结构材料应选用轻量化、高强度的材料,以保证操作的稳定性和耐久性。
2.运动控制系统设计运动控制系统是机器人的核心,可以通过控制机器人的运动来实现不同的操作需求。
该系统应具备高精度、高速度的运动控制能力。
可以采用伺服电机或步进电机作为驱动装置,结合运动控制算法实现精确的运动。
3.视觉检测系统设计为了实现对环境的感知和对目标对象的识别,可以设计一个视觉检测系统。
该系统可以通过摄像头或传感器获取环境信息,并通过图像处理算法进行处理和分析。
可以使用OpenCV或其他视觉处理库进行图像处理和目标识别,以实现对工作场景和目标的感知。
4.传感器系统设计为了增加机器人的感知范围和感知能力,可以设计一个传感器系统。
该系统可以通过传感器获取环境中的各种参数和数据,以便在处理和决策过程中使用。
常用的传感器包括温度传感器、压力传感器、光传感器等,可以根据实际需求进行选择和配置。
5.控制系统设计控制系统是机器人的大脑,可以根据传感器获取的数据和图像处理结果进行处理和决策,控制机器人的运动和操作。
该系统应具备实时性、稳定性和可靠性,能够适应复杂的工业环境。
可以采用嵌入式系统或工控机等设备作为控制器,结合控制算法实现对机器人的控制。
6.安全保护系统设计为了确保机器人的安全运行,可以设计一个安全保护系统。
该系统可以通过安全传感器、急停按钮等装置,实时监测机器人的状态,当检测到异常情况时,及时采取相应的措施,保障生产和工作人员的安全。
工业机器人毕业设计引言工业机器人是现代工业生产过程中不可或缺的重要设备。
它们能够自动执行各种复杂的任务,提高生产效率,减少人工劳动,降低生产成本。
为了更好地满足工业生产的需求,本文将探讨一个关于工业机器人的毕业设计方案。
设计目标本毕业设计的目标是开发一款具有高精度、高效能的工业机器人系统。
该系统应能够执行精确的任务,如物体抓取、装配和焊接等。
同时,它还应具备智能化和自主学习的能力,可以根据环境的变化和任务的要求做出相应的调整和优化。
设计方案机器人硬件设计在机器人硬件设计方面,我们将使用最新的工业机器人技术,选择适合各种任务执行的机械臂。
这些机械臂应具备高精度、高稳定性和高载荷承受能力。
同时,我们还将配置传感器组件,以便机器人能够感知环境,并根据需要进行任务调整和优化。
机器人控制系统设计为了实现机器人的智能化和自主学习能力,我们将设计一套先进的机器人控制系统。
该系统将使用现代化的控制算法,以实现机器人的高精度运动和任务执行。
另外,该系统还应支持远程操控和监控,并具备数据传输和存储能力,以便进行数据分析和后续优化工作。
机器人操作界面设计为了方便用户与机器人进行交互,我们将设计一套友好的机器人操作界面。
该界面应具备直观、简洁的设计风格,同时提供丰富的功能和操作选项,以满足用户各种需求。
此外,我们还将考虑设计一些辅助功能,如故障诊断和故障排除等,以提高用户的使用体验。
实施计划需求分析阶段在需求分析阶段,我们将与用户进行深入的讨论和交流,了解他们对工业机器人系统的具体要求。
我们将考虑不同行业和应用领域的需求差异性,确保系统设计能够满足各种任务执行的需求。
系统设计阶段在系统设计阶段,我们将根据需求分析的结果,进行机器人硬件、控制系统和操作界面的详细设计。
我们将考虑系统的稳定性、可靠性和可扩展性等因素,确保系统的性能和功能能够满足设计目标。
实施与测试阶段在实施与测试阶段,我们将按照设计方案,采购和组装机器人硬件,并进行系统的软件开发和集成。
河南理工大学本科毕业设计(论文开题报告题目名称工业机器人机械结构设计一、选题的目的和意义:工业机器人在工业生产中能代替人做某些单调、频繁和重复的长时间作业,或是危险、恶劣环境下的作业,例如在冲压、压力铸造、热处理、焊接、涂装、塑料制品成形、机械加工和简单装配等工序上,以及在原子能工业等部门中,完成对人体有害物料的搬运或工艺操作。
广泛采用工业机器人,不仅可提高产品的质量与产量,而且可以保障人身安全,改善劳动环境,减轻劳动强度,提高劳动生产率,节约原材料消耗以及降低生产成本。
因此,研究和设计各种用途的机器人特别是工业机器人、推广机器人的应用是有现实意义的。
由于工业机器人具有一定的通用性和适应性,能适应多品种中、小批量的生产, 70年代起,常与数字控制机床结合在一起,成为柔性制造单元或柔性制造系统的组部分。
二、国内外研究综述:20世纪50年代末,美国在机械手和操作机的基础上,采用伺服机构和自动控制等技术,研制出有通用性的独立的工业用自动操作装置,并将其称为工业机器人; 60年代初,美国研制成功两种工业机器人,并很快地在工业生产中得到应用; 1969年,美国通用汽车公司用21台工业机器人组成了焊接轿车车身的自动生产线。
此后,各工业发达国家都很重视研制和应用工业机器人。
我国工业机器人起步于70年代初期,经过20多年的发展,大致经历了3个阶段: 70年代的萌芽期, 80年代的开发期和90年代的适用化期。
我国工业机器人经过20多年的发展已经初具规模。
目前我国已生产出部分机器人关键元器件,开发出弧焊、点焊、码垛、装配、搬运、注塑、冲压、喷漆等工业机器人。
一批国产工业机器人已服务于国内诸多企业的生产线上;一批机器人技术的研究人才也涌现出来。
一些相关科研机构和企业已掌握了工业机器人操作机的优化设计制造技术;工业机器人控制、驱动系统的硬件设计技术;机器人软件的设计和编程技术;运动学和轨迹规划技术;弧焊、点焊及大型机器人自动生产线与周边配套设备的开发和制备技术“乘机安全小贴士”安全出行要重视等。
六轴工业机器人控制系统的设计与实现六轴工业机器人是一种兼具高精度、高稳定性和高灵活性的机器人系统,广泛应用于自动化生产线、医疗设备和科研领域中。
其控制系统的设计和实现是决定机器人性能和效率的关键因素之一。
本论文将介绍六轴工业机器人控制系统的设计与实现,包括机械结构的建模、动力学分析、控制算法的设计和实现等方面。
1. 机械结构的建模首先,需要对六轴工业机器人的机械结构进行建模,其中包括机器人的各个关节、驱动器、执行器、传感器等部分。
建模过程中需要考虑到机器人的动态特性、稳定性和精度等因素,确保建模的准确性和可行性。
建模工作可以通过CAD软件完成,生成机器人的3D 模型并导出相关信息。
2. 动力学分析在完成机械结构的建模之后,需要对机器人的动力学特性进行分析。
动力学分析过程中需要考虑到机器人的运动学限制、惯性力、摩擦力等因素,以建立机器人模型的动态方程式。
这些方程式可用于描述机器人的运动状态和控制要求,是控制系统设计的关键基础。
3. 控制算法的设计在完成了机械结构的建模和动力学分析之后,需要设计与实现六轴工业机器人的控制算法。
这包括机器人的位置控制、速度控制、力控制等控制方法。
控制算法的选择与设计需要考虑到机器人的实际应用情况和需求,以确定最为合适的控制策略。
4. 控制器的实现控制器是六轴工业机器人控制系统的核心部件,其功能是将控制算法转换为机器人运动轨迹并实现闭环控制。
控制器通常包括硬件和软件两个部分,其中硬件主要是指电机驱动器、传感器、控制板等,而软件则需要开发相应的编码程序实现控制算法。
5. 控制系统的测试与调试设计和实现六轴工业机器人控制系统后,需要对其进行测试和调试,以检验其性能和精度。
测试过程中需要对机器人进行不同场景下的动态性能评估,包括速度、精度、稳定性等。
对于测试和调试过程中发现的问题,需要针对性地进行优化和调整,直到系统达到预期的控制效果和性能为止。
综上所述,六轴工业机器人控制系统的设计与实现是一个涵盖机械、动力学、控制算法和控制器等多个方面的复杂工作,需要系统、细致和科学的方法和手段来完成。
工业机器人的设计和应用工业机器人是一种自动化设备,它通常被用于完成重复性高、危险性大、精确度要求高的工作。
随着科技的不断发展,工业机器人已成为现代制造业的重要组成部分。
本文将介绍工业机器人的设计和应用。
工业机器人的设计工业机器人的设计主要包括机械结构、控制系统、感应器、执行器和电源等几个方面。
机械结构:机械结构是工业机器人最重要的组成部分之一。
机械结构的设计应该考虑到机器人的尺寸、质量和载荷等参数,确保机器人能够完成所需的工作。
同时,机械结构的设计也需要考虑到机器人的运动方式,例如比较常见的关节式和平移式机器人等。
此外,机械结构的设计也需要考虑到机器人的可靠性和可维护性,以便在需要时进行维护和修理。
控制系统:控制系统是工业机器人的中枢神经系统,负责控制机器人的运动和行为。
控制系统的设计需要考虑到控制算法、控制器和控制界面等因素。
其中,控制算法是控制系统的核心,主要是根据机器人的位置、姿态和运动状态等信息,计算出下一步的运动轨迹和动作。
控制器是控制系统的外围设备,负责执行控制算法,驱动机器人运动。
控制界面是指机器人与人类交互的接口,主要是通过显示屏和按钮等设备进行操作。
感应器:感应器是工业机器人进行交互和监测的设备,可以用于检测机器人的位置、姿态、力和靠近物体等参数。
感应器的类型很多,例如光电传感器、磁敏传感器和力传感器等。
在工业机器人的设计中,感应器的选择和安装位置等因素都需要考虑到机器人的工作环境和任务需求。
执行器:执行器是工业机器人进行运动和动作的设备,主要包括电动驱动器和液压/气动执行器等。
执行器的选择和设计需要考虑到机器人的尺寸、载荷和速度等参数。
电动驱动器可以提供高速、高精度的控制效果,因此常用于精密加工和测试等工作中。
液压/气动执行器则可以提供大力量、高速度的运动效果,更适合于重载和弯曲等工作中。
电源:工业机器人的电源是保证机器人正常工作的关键之一。
电源的设计需要考虑到机器人的功率和电压等参数,以及机器人工作环境的特殊需求。
简述工业机器人的设计内容与步骤工业机器人是一种用于自动化生产的机械设备,它能够完成各种复杂的操作任务,提高生产效率和质量。
设计工业机器人需要考虑多个方面,包括机器人的结构、控制系统、传感器和执行器等。
下面将详细介绍工业机器人的设计内容与步骤。
一、机器人的结构设计机器人的结构设计是工业机器人设计的重要部分,它决定了机器人的运动范围和负载能力。
在结构设计中,需要考虑机器人的关节数量、关节类型、关节传动方式等。
关节数量决定了机器人的自由度,关节类型可以根据应用需求选择,关节传动方式可以采用齿轮传动、带传动等。
二、机器人的控制系统设计机器人的控制系统设计是工业机器人设计的关键环节,它包括机器人的控制器和编程软件。
控制器是机器人的大脑,它接收传感器反馈的信号,并根据程序指令控制机器人的运动。
编程软件用于编写机器人的控制程序,实现各种操作任务。
在控制系统设计中,需要考虑机器人的运动规划、轨迹控制、碰撞检测等功能。
三、机器人的传感器设计机器人的传感器设计是工业机器人设计的重要组成部分,它能够感知周围环境的信息,为机器人的自主决策提供数据支持。
常见的传感器包括视觉传感器、力传感器、位置传感器等。
视觉传感器可以用于目标识别和定位,力传感器可以用于力控制和安全保护,位置传感器可以用于位置反馈和运动控制。
四、机器人的执行器设计机器人的执行器设计是工业机器人设计的重要组成部分,它负责机器人的运动执行。
常见的执行器包括电机、气缸、液压缸等。
电机可以用于驱动机器人的关节运动,气缸可以用于实现机器人的夹持和释放动作,液压缸可以用于实现机器人的重载操作。
工业机器人的设计步骤如下:1.需求分析:确定机器人的应用领域和工作任务,明确设计目标和要求。
2.结构设计:根据机器人的应用需求,设计机器人的结构,包括关节数量、关节类型、关节传动方式等。
3.控制系统设计:根据机器人的运动规划和控制要求,设计机器人的控制系统,包括控制器和编程软件。
工业机器人的设计及控制系统研究工业机器人,是一种能够代替人类完成繁重、危险、无聊的工作的机器人。
随着科技的不断进步,工业机器人在自动化生产中扮演着越来越重要的角色。
本文主要探讨工业机器人的设计及其控制系统的研究。
一、工业机器人的设计1、机器人结构设计工业机器人的结构设计包括机器人的机械结构、传动结构、控制系统等。
机器人的机械结构的设计需要考虑机器人的工作范围、精度、刚度和负载能力等因素。
传动机构的设计特别重要,它往往会影响机器人的定位速度和精度。
传动机构的设计主要包括电机、减速器、传动链轮等。
2、机器人的导轨设计机器人导轨的设计主要影响机器人的定位精度和重载性。
常见的导轨结构有滑块导轨、滚动导轨、直线导轨等,其中滚动导轨和直线导轨具有定位精度高、负载能力强等优点。
3、机器人的末端执行器设计机器人的末端执行器设计特别重要,因为它直接影响机器人的工作效率和工作范围。
末端执行器根据其使用环境不同,包括夹具、吸盘、钳子、电磁铁等。
末端执行器的设计需要考虑摩擦力、负载能力和定位精度等因素。
二、机器人控制系统研究1、机器人的控制方式机器人的控制方式主要有三种:手动控制、自动控制和远程控制。
其中,手动控制主要用于机器人的调试和维修等工作,自动控制主要用于生产制造线的半自动和全自动生产,而远程控制主要用于危险环境下的操作。
2、机器人的编程方式机器人的编程方式主要包括在线编程和脱机编程。
在线编程的特点是实时控制,优点是易于调试,缺点是不能对程序进行编辑和存储。
脱机编程的特点是可以对程序进行编辑和存储,但缺点是调试的难度较大。
3、机器人的控制算法机器人的控制算法主要包括手动校准、高精度运动控制算法和机器人自适应控制算法等。
手动校准主要用于机器人定位的初步校准,高精度控制算法可以保证机器人的定位精度,而自适应控制算法可以使机器人根据环境变化自动调整控制参数。
4、机器人的控制器机器人的控制器需要具备高效的工作能力、快速响应和连接稳定性等功能。
六轴工业机器人控制系统的设计与实现随着科技的不断发展,机器人技术已经在各行各业得到了广泛的应用。
六轴工业机器人具有灵活性高、适应性强、工作范围广等特点,因此在汽车制造、电子生产、航空航天等领域得到了广泛应用。
六轴机器人的控制系统是其核心部分,对于机器人的运动性能、精度、稳定性等都有着至关重要的影响。
本文将讨论六轴工业机器人控制系统的设计与实现。
一、六轴工业机器人的基本结构六轴工业机器人通常由机械结构、执行器、传感器、控制器等组成。
其基本结构由底座、腰关节、肩关节、手腕关节、手部和末端执行器等部分组成。
六个关节分别控制机器人在空间的运动,机械臂末端进行工件的抓取、移动等操作。
传感器用于实时监测机器人的位置、力度、速度等参数,以便控制系统进行实时调整。
1. 高精度:机器人的运动需要保证高精度和稳定性,尤其是在需要进行精确定位、装配等操作时,对控制系统的要求更高。
3. 多轴协同控制:六轴机器人的每个关节都需要独立控制,同时又需要协同运动,因此控制系统需要能够实现多轴联动控制。
4. 安全性:在工业生产中,机器人可能会与人类操作者进行接触,因此对于机器人的安全性有着严格的要求。
控制系统需要能够实时监测机器人的状态,避免发生意外情况。
5. 灵活性:机器人可能需要进行不同的任务,因此控制系统需要具备一定的灵活性,能够快速切换任务并进行相应的控制。
1. 控制策略选择:一般来说,六轴机器人的控制可采用基于位置控制、力控制和混合控制等策略。
在不同的应用场合,控制策略的选择将影响机器人的运动性能和控制系统的设计。
2. 控制器硬件设计:控制器是机器人控制系统的核心部分,其硬件设计需要满足高性能、高实时性的要求。
通常采用的是嵌入式系统或者工业PC等硬件平台,以满足对控制系统的高要求。
3. 控制器软件设计:控制器的软件设计包括实时控制算法的设计、运动规划算法的实现、系统安全监测等方面。
还需要实现通信接口、人机界面等功能,以便人机交互和远程监控等需求。
工业机器人机械系统设计机器人技术是利用计算机的记忆功能、编程功能来控制操作机自动完成工业生产中某一类指定任务的高新技术,是当今各国竞相发展的高技术内容之一。
它是综合了当代机构运动学与动力学、精密机械设计发展起来的产物,是典型的机电一体化产品,工业机器人由操作机和控制器两大部分组成。
操作机按计算机指令运动,可实现无人操作;控制器中计算机程序可依加工对象不同而从新设计,从而满足柔性生产的需要。
机器人应用领域广泛,包括建筑、医疗、采矿、核能、农牧渔业、航空航天、水下作业、救火、环境卫生、教育、娱乐、办公、家用、军用等方面,工业机器人在国内主要应用于危险、有毒、有害的工作环境以及产品质量要求高(超洁、同一性)的重复性作业场合,如焊接、喷涂上下料、插件、防爆等。
一、工业机器人的总体设计1.主体结构设计工业机器人主体结构设计的主要问题是选择由连杆件和运动副组成的坐标形式。
工业机器人的坐标形式主要有直角坐标式、圆柱坐标式、球面坐标式、关节坐标式等。
直角坐标式机器人主要用于生产设备的上下料,也可用于高精度的装配和检测作业。
圆柱坐标式机器人主要有三个自由度:腰转,升降,手臂伸缩。
手腕常采用两个自由度,绕手臂纵向轴转动与垂直的水平轴线转动。
手腕若采用三个自由度,机器人总自由度达到六个。
球面坐标式机器人也叫极坐标式机器人,具有较大的工作范围,设计和控制系统比较复杂。
关节坐标式主体结构的三个自由度腰转关节、肩关节、肘关节全部是转动关节,手腕的三个自由度上的转动关节(俯仰、偏转和翻转)用来最后确定末端操Cobra Series 桌面机器人Reach:600mm/800mmPayload:5.5kgRepeatability:0.02mmWeight:34/35kgDesingn Life:60 Million Cycles SmartModules 框架机器人Mas Stroke:2000mmMin Stroke:130mm Number of Axis: 1 to 3 Max Payload:60kg Max speed:1200mm/sec Repeatability:0.01mm Design Life:5000km Cartesian RobotsSize:600*450mm Payload:5.5kg Accuracy:0.025mm Weight:54kg Design Life:5000km直角坐标机器人工作台:2.传动方式传动方式选择是指选择驱动源及传动装置与关节部件的连接形式和驱动形式,主要包括:直接连接传动。
驱动源或带有机械传动装置直接与关节相连。
远距离连接传动。
驱动源通过远距离机械传动后与关节相连。
间接驱动。
驱动源经一个速比远大于1的机械装置与关节相连。
直接传动。
驱动源不经过中间环节或经过一个速比等于1的机械传动这样的中间环节与关节相连。
3.模块化结构设计模块化机器人是有一些标准化、系列化的模块件通过具有特殊功能的结合部用积木拼接的方式组成一个工业机器人系统。
模块化设计是指基本模块设计和结合部设计。
模块化工业机器人主要的特点是:经济性、灵活性4.材料的选择与一般机械设备相比,机器人结构的动力特性是十分重要的,这是材料选择的出发点。
材料选择的基本要求是:强度高、弹性模量大、重量轻、阻尼大、材料价格低。
5.平衡系统设计工业机器人是一个多刚体耦合系统,系统的平衡性是极其重要的,在工业中采用平衡系统的理由是:安全、借助平衡系统能降低因机器人结构变化而导致重力引起关节驱动力矩变化的峰值、借助平衡系统能降低因机器人运动而导致惯性力矩引起关节驱动力矩变化的峰值、借助平衡系统能减少动力学方程中内部耦合项和非线性项,改进机器人动力特性、借助平衡系统能减小机械臂结构柔性所引起的不良影响、借助平衡系统能使机器人运行稳定,降低地面安装要求。
二、传动部件设计传动部件是驱动源和机器人各个关节连接的桥梁,是工业机器人的重要部件。
机器人的运动速度、加速度(减速度)特性、运动平稳性、精度、承载能力很大程度上是取决于传动部件设计的合理性和优劣。
因此,关节传动部件的设计是工业机器人设计的关键之一。
(一).移动关节导轨工业机器人对移动导轨的要求移动关节导轨的目的是在运动过程中保证位置精度和导向,对移动导轨有如下要求:1.间隙小或者能消除间隙;2.再垂直于运动方向上的刚度高;3.摩擦系数低并不随速度变化;4.高阻尼;5.移动导轨和其辅助元件尺寸小、惯量低。
移动关节导轨主要分类:普通滑动导轨、液压动压滑动导轨、液压静压滑动导轨、气浮导轨和滚动导轨。
上面介绍的导轨中,前两种具有结果结构简单、成本低的特点,但是必须有间隙以便润滑,但是间隙的存在又将会引起坐标的变化和有效负载的变化,在低速时候容易产生爬行现象。
第三种静压滑动导轨结构能产生预载荷,能完全消除间隙,具有高刚度、低摩擦、高阻尼等优点,但是它需要单独的液压系统和回收润滑油的机构。
第四种气浮导轨不需要回收润滑油的机构,但是刚度和阻尼较低。
第五种滚动导轨在工业机器人导轨种用的是最广泛,具有很多的优点:1摩擦小,特别是不随速度变化;2尺寸小;3刚度高承载能力大;4精度和精度保持度高;5润滑简单;6容易制造成标准件;7易加预载,消除间隙,增加刚度等等。
但是,滚动导轨用在机器人机械系统也存在着缺点:1阻尼低;2对脏物比较敏感.(二).转动关节轴承转动关节轴承主要用的是球轴承,它能承受轴向和径向载荷,摩擦较小,对轴和轴承座的刚度不敏感。
主要分向心推力球轴承和“四点接触”球轴承。
(三)..传动件的定位及消隙传动件的定位主要有:1.电气开关定位2.机械挡块定位3.伺服定位系统定位传动件的消隙主要有:1.消隙齿轮2.柔性齿轮消隙3.对称传动消隙4.偏心机构消隙5.齿廓弹性覆层消隙(四). 协波传动要求:1.伺运动精度高,间隙小,能实现较高的重复定位精度。
2.回转速度稳定,无波动,运动副键摩擦小,效率高。
3.体积小,重量轻,传动扭矩大。
常用的减速机构是行星齿轮机构和谐波传动机构(五)..丝杠螺母副和滚珠丝杠传动丝杠传动机构是将旋转运动变成直线运动的重要传动部件,其优点是不会产生冲击,传动平稳,无噪声,能自锁,由较小的扭矩产生较大的牵引力;缺点是传动效率底下。
采用滚珠丝杠传动则能解决这种问题,并且传动精度和定位精度都很高,在传动时灵敏和平稳性很好,磨损小,使用寿命比较长。
1.活塞缸和齿轮齿条机构2.链传动,皮带传动,绳传动3.钢带传动三、臂部设计工业机器人臂部设计的基本要求:1.刚度高。
为了防止臂部在运动过程中产生过大的变形,手臂的截面形状要合理选择。
工字形截面弯曲刚度一般比截面大;空心管的弯曲刚度和扭转刚度都比实心轴大得多,所以常用钢管作臂杆及导向杆,用工字钢和槽钢作支撑板。
2.导向性好。
为防止手臂在直线运动中,沿运动轴线发生相对转动,或设置导向装置,或设计方形,花键等形式的臂杆。
3.重量轻。
为提高机器人的运动速度,要尽量减小臂部运动部分的重量,以减小整个手臂对回转轴的转动惯量。
4.运动平稳定位精度高。
除了臂部设计上要求力求结构紧凑,重量轻外,同时要采用一定形式的缓冲措施。
常用的臂部结构有:1.手部直线运动机构;机器人手臂的伸缩,横向移动均属于直线运动。
实现手臂往复直线运动的机构形式比较多,常用的有活塞油(气)缸,齿轮齿条机构,丝杠螺母机构以及连杆机构等。
由于活塞(气)缸的体积小,重量轻,因而在机器人结构中应用的比较多。
2.手臂回转运动机构实现机器人手臂回转运动的机构形式是多样的,常用的有叶片式回转缸,齿轮传动机构,链轮传动机构,活塞缸和连杆机构等。
一类新颖的致动设备(例如致动器、发动机、发电机等)正在步入商业化。
它们基于在受到电刺激时会改变形状的聚合物。
数十年前,构建致动器或者致动设备的工程师就已经为肌肉找到了一种人造替代物。
作为对神经刺激的响应,肌肉只须改变长度就能够准确地控制其施加的力量,例如眨眼睛或举起杠铃。
同时,肌肉还表现出比例恒定的属性:对于各种尺寸大小的肌肉,其机理都一样,相同的肌肉组织既可以给昆虫、也能够为大象赋予力量。
因此,对于难以制作电动马达的驱动设备,某种类似肌肉的东西也许会有用武之地。
EPAs号称要成为未来的人造肌肉。
研究人员已经在雄心勃勃地工作,希望能够为许多当代的技术寻找基于EPA的可选方案,而且不害怕将他们的发明物与自然物竞争。
几年前,有几个人,包括来自美国加州帕萨迪纳喷气推进实验室(JPL)的高级科学家Yoseph Bar-Cohen,向电活化聚合物研究团体发起了一项挑战,以激发人们对该领域的兴趣:展开一项竞赛,看谁能够最先制造出EAP驱动的机器人手臂,而且必须在与人的手臂的一对一掰手腕比赛中取胜。
在压电材料中,机械应力可导致晶体电极化,而且反之亦然。
用电流刺激这种材料将使其变形;通过改变其形状可以产生电。
塑料对电的反应响应电流而改变形状的聚合物可分为两类:离子型和电子型,其优势和劣势正好互补。
离子型EAPs(包括离子聚合物凝胶体、离子性高分子如金属复合材料、导电性高分子以及碳纳米管)是在电化学的基础上工作——即正负离子的移动和扩散。
它们可以直接用电池带动,因为即便一个个位(single-digit)电压也能够使它们大幅度弯曲。
不足之处在于,离子型EAPs通常必须是湿的,因此应当密封在挠性薄层中。
许多离子型EAPs的另一个主要缺陷在于只要电流接通,该材料就会一直运动,如果电压超过一定值,将会产生电解,从而给材料造成无法修复的损坏。
相反,电子型EAPs(例如铁电聚合物、电介体、电绝缘橡胶以及电致伸缩移植橡胶)则由电场驱动。
它们需要相对较高的电压,因此会产生让人不舒服的电击。
但是,作为回报,电子型EPAs能够迅速作出响应,并且传递较强的机械力。
它们不需要保护薄层,而且几乎不需要电流就能够保持某个定位。
SPR的人造肌肉材料属于电子型EAP类型。
它的成功开发经历了漫长曲折的道路,而且多少带有一些偶然性,可以称得上是奇思怪想式技术创新的一个经典范例。
四、机身及行走机构设计人的下肢主要功能是承受体重和走路。
对于静止直立时支承体重这一要求,机器人还容易做到,而在像人那样用两足交替行走时,平衡体重就存在着相当复杂的技术问题了。
首先让我们分析一下人的步行情况。
走路时,人的重心是在变动的,人的重心在垂直方向上时而升高,时而下降;在水平方向上亦随着左。
右脚交替着地而相对应地左、右摇动。
人的重心变动的大小是随人腿迈步的大小、速度而变化的。
当重心发生变化时,若不及时调整姿势,人就会因失去平衡而跌倒。
人在运动时,内耳的平衡器官能感受到变化的情况,继而通知人的大脑及时调动人体其他部分的肌肉运动,巧妙地保持人体的平衡.而人能在不同路面条件下(包括登高、下坡、高低不平、软硬不一的地面等)走路,是因为人能通过眼睛来观察地面的情况,最后由大脑来决策走路的方法,指挥有关肌肉的动作。