分数四则混合运算(分数计算中的技巧)
- 格式:doc
- 大小:160.00 KB
- 文档页数:4
六年级分数的四则运算+简便计算专题复习一、分数四则运算的运算法则和运算顺序运算法则是:1、加减:同分母分数相加减,分母不变,分子相加减:异分母分数相加减,先通分,再分母不变,分子相加减。
2、乘法:先约分,分子乘分子作为积的分子,分母乘分母作为积的分母3、除法:除以一个数就等于乘这个数的倒数运算顺序是:1、如果是同一级运算,一般按从左往右依次进行计算 2、如果既有加减、又有乘除法,先算乘除法、再算加减 3、如果有括号,先算括号里面的4、如果符合运算定律,可以利用运算定律进行简算。
练习:1、34 -(15 + 13 )× 982、 10713151321÷⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛+-3、⎪⎭⎫⎝⎛-+614121÷121 4、 9798411÷⎪⎭⎫ ⎝⎛⨯- 5、⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛-÷109329712 6、52593145-⨯- 7、8949581÷+⨯ 8、(52-81)÷401二、分数四则运算的简便运算引言:分数乘法简便运算所涉及的公式定律和整数乘法的简便运算是一样的,基本上有以下三个:① 乘法交换律:________________________② 乘法结合律:________________________ ③ 乘法分配律:________________________做题时,我们要善于观察,仔细审题,发现数字与数字之间的关系,根据题意来选择适当的公式或方法,进行简便运算。
分数简便运算常见题型第一种:连乘——乘法交换律的应用 例题:1)1474135⨯⨯ 2)56153⨯⨯ 3)266831413⨯⨯涉及定律:乘法交换律 b c a c b a ⋅⋅=⋅⋅基本方法:将分数相乘的因数互相交换,先行运算。
第二种:乘法分配律的应用 例题:1)27)27498(⨯+ 2)4)41101(⨯+ 3)16)2143(⨯+涉及定律:乘法分配律 bc ac c b a ±=⨯±)(基本方法:将括号中相加减的两项分别与括号外的分数相乘,符号保持不变。
分数混合运算简便方法方法一:带符号搬家法当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
a+b+c=a+c+ba+b-c=a-c+ba-b+c=a+c-ba-b-c=a-c-ba×b×c=a×c×ba÷b÷c=a÷c÷ba×b÷c=a÷c×ba÷b×c=a×c÷b)方法二:结合律法(一)加括号法1.加减运算加括号时,括号前有加号,括号内有常数号,括号前有减号,括号内有变号。
2.乘除法加括号时,乘法符号在括号前,常数符号在括号内,除法符号在括号前,括号内改变符号。
(二)去括号法1.在加减法中,去掉括号时,括号前面加一个加号,括号前面加一个减号。
去掉括号时,会改变符号(括号内原来的加法现在减少了;以前是负的,现在是正的。
)。
2.乘除法中去掉括号时,括号前面加一个乘号,括号后面加一个常数号,括号后面加一个除法号(原来括号里的乘法现在要除法;以前是除法,现在要做乘法。
)。
方法三:乘法分配律法1.分配法括号里是加或减运算,与另一个数相乘,注意分配例:8×(3+7)=8×3+8×7=24+56=802.提取公因式注意相同因数的提取。
例:9×8+9×2=9×(8+2)=9×10=903.注意构造,使公式符合乘除法的条件。
例:8×99=8×(100-1)=8×100-8×1=800-8=792方法四:凑整法看到名字,就知道这个方法的含义。
用此方法时,需要注意观察,发现规律。
还要注意还哦 ,有借有还,再借不难嘛。
例:9999+999+99+9=(10000-1)+(1000-1)+(100-1)+(10-1)=(10000+1000+100+10)-4=11110-4=11106方法五:拆分法拆分法就是为了方便计算把一个数拆成几个数。
分数四则混合运算技巧数学天地1. 分数的四则运算与整数和小数的计算一样,必须按照先乘除后加减的法则进行计算,同时所有的运算法则和定律都适用于分数的四则运算。
2. 在整数和小数的四则运算基础上,分数的四则运算又有所变化和发展,表现在分数有真分数、假分数、带分数几种形式,要求能互相转化,然后再进行计算;另外有时在计算过程中,还需要将分数与小数互相转化来进行计算,因此数的相互转化是计算过程中重要的环节。
3. 特别是分数乘除法计算过程中,一般将除法改写成乘法进行计算,带分数乘法计算式,可以有两种计算方法:或者将带分数转化成假分数计算;或用乘法分配律进行计算。
4. 分数的四则运算中还会出现一些较特殊的计算,就应该采用一些特殊的运算技巧,例如约分法、代数法和裂项法等。
例1 2213851432⨯÷例2 21483415375.3⨯-÷例3 424515⨯例4 201020092009⨯例5 372314112÷⨯例6 两千多年前,古埃及人总喜欢把分数转化成分子是1的分数来计算,所以后人常把分子是1的分数称为埃及分数。
埃及分数在计算中有一些规律。
请同学们一起来探索一下! 1)43143344131⨯=⨯-=- 2) 87187788171⨯=⨯-=- 3) 2120121202021211201⨯=⨯-=- 如果b-a=1,那么你能解决下面的问题吗?a 1-b 1=()()()⨯-a =()()⨯1数学冲浪计算下面各题1. 2511524321⨯÷2. 212213544⨯÷3. 213515314⨯÷4. 52512651⨯÷5. %2521.04118.025.061.0⨯+⨯+⨯6. 1927.05.92158.3219÷+⨯+⨯7. 21225121017995.21787251312⨯⎪⎭⎫ ⎝⎛++⨯⎪⎭⎫ ⎝⎛+ 8. 48114199819978327531512.8199811÷⎪⎭⎫ ⎝⎛⨯÷+⨯9. 12519489⨯ 10. 20012001...20014200132001220011+++++11. 132-⎥⎦⎤⎢⎣⎡⨯-⨯⎪⎭⎫ ⎝⎛÷+⨯82.031182.121738.615262.3 12. 20082007200712009⨯13. 32231999319993199319++++ 14. 361181119991998819991138÷⨯+⨯15. 901177211556113421113019201712156131++++++++ 16. 1281...1618141211------ 17. 909172735657424330312021121367+++++++ 18. ⎪⎭⎫ ⎝⎛⨯+⨯-⨯+⨯÷107621310765421610768.0107612。
第1篇一、分数加法口诀分数加法,看似复杂,其实简单。
先通分,再相加,结果是关键。
以下口诀助你轻松掌握:同分母,直接加,分母不变,分子相加;异分母,通分法,分母求最小公倍数,分子相乘;最后,约分求最简,确保结果最完美。
二、分数减法口诀分数减法,方法类似,注意细节,操作简便。
以下口诀助你一臂之力:同分母,直接减,分母不变,分子相减;异分母,通分法,分母求最小公倍数,分子相乘;最后,约分求最简,确保结果最完美。
三、分数乘法口诀分数乘法,简单易行。
相乘分子,相乘分母,结果约分,最简为止。
以下口诀助你轻松掌握:分子相乘,分母相乘,结果是分数,约分求最简;乘积分子,乘积分母,结果是整数,无需约分。
四、分数除法口诀分数除法,关键是倒数。
相乘倒数,结果是分数,约分求最简。
以下口诀助你轻松应对:除以一个数,等于乘以它的倒数;相乘分子,相乘分母,结果是分数,约分求最简;乘积分子,乘积分母,结果是整数,无需约分。
五、分数四则混合运算口诀分数四则混合运算,先乘除,后加减,注意括号。
以下口诀助你一臂之力:先乘除,后加减,注意括号,顺序别乱;加减乘除,混合运算,先算括号,再算乘除;约分求最简,确保结果,正确无误。
六、特殊情况口诀特殊情况,注意处理,以下口诀助你应对:分母为零,无意义,运算不能继续;分子为零,结果是零,分母为零,无意义;分母相等,结果相等,分子相等,结果相等;分子分母同时乘以或除以相同的数(不为零),分数大小不变。
七、总结分数四则混合运算,看似复杂,实则简单。
只要掌握好以上口诀,运用得当,分数运算轻松自如。
在学习过程中,不断练习,提高计算速度和准确性,为以后的学习打下坚实基础。
祝你学习进步,早日成为数学小达人!第2篇在数学学习中,分数的四则混合运算是一个非常重要的内容。
为了帮助同学们更好地掌握分数的加减乘除运算,以下是一份详细的分数四则混合运算法则口诀,希望能对大家的学习有所帮助。
一、分数加减法口诀1. 分子分母同加减,加减符号要跟上。
1、分数的运算和凑整2、分数的乘法分配律3、约分技巧4、繁分数1、分数乘除2、分数加减课前加油站1、计算:32×511,32÷511分数四则混合运算本章知识前铺知识2、613121++3、计算:1.23×4.56+8.77×4.56(1)加法交换律:a+b=b+a(2)加(减)法结合律:(a+b)+c=a+(b+c)、a-b-c=a-(b+c)(3)乘法交换律:a ×b=b ×a(4)乘(除)法结合律:(a ×b)×c=a ×(b ×c)、a ÷b ÷c=a ÷(b ×c)题型一 同分母先加减1、计算:11813-)1152413(+-43【演练】(3-)32×72-(75-)312、32÷314-11394+-321÷3-5÷512模块1分数的运算和凑整【演练】322×838781++×531×911题型二 凑十法1、5499999549999549995499549++++【演练】989998989989898988+++(1)乘法分配律:m (a+b+c )=ma+mb+mc(2)除法性质:(a+b+c )÷m=a ÷m+b ÷m+c ÷m1、28×)281141714121(++++【演练】)27183(+×82719+模块2 分数的乘法分配律【演练】)35110121(++÷7012、7.816×1.45+3.14×2.184+1.69×7.816提示:这题是局部提取公因数。
【演练】8.1×1.3-8÷1.3+1.9×1.3+11.9÷1.3【演练】53762753162778+⨯+⨯-⨯3、32.020115.51.2011311.20⨯+⨯+⨯【演练】8525.14.741125.1÷+⨯+4、32.04868.61.36⨯+⨯提示:6.8和0.32是可以变成“补数”的。
分数四则混合运算(分数计算中的技巧)【知识概述】分享本来不属于东西,属于事,就像颜色不属于物体,属于事,就像美丽不属于物,属于事,就像爱不属于物,属于事,她依赖于人的心存在,但分享给你带来了不同的结果和感受,有这些就够了,不管是物是事,不管天荒地老,我就是需要这种感觉,谢谢你的下载与我在这个世界开始链接.(word 文档可以删除编辑)在进行分数计算时,不仅要熟练地掌握四则运算的法则和运算定律,而且还常常要根据算式中数的特点和算式结构,用运一些运算技巧,灵活选择计算方法,使一些较复杂的分数计算化难为易,化繁为简.例题精学例1、(1)3332×17 (2)28×2713 【思路点拨】观察这两道题中数的特点,第(1)题中3332比1少331,把3332写成1减331的差与17相乘,再运用乘法分配律使计算简便,同样第(2)题中28与2713中的分母相差1,把28分成27加1的和与2713相乘,再运用乘法分配律使计算简便.同步精练1、2423×19 2、36×35113、8×1514 4、253×126例2、1998÷199819991998 【思路点拨】这道题先把带分数化成假分数:199819991998=1999199819991998+⨯,先不要急着算出分子,观察数的特点,1999199819991998+⨯=1999119991998)(+⨯=199920001998⨯,再去除1998算出最后结果. 同步精练1、238÷238239238 2、1999÷199920001999例3、120001999199820001999—⨯⨯+ 【思路点拨】仔细观察分子、分母中各数的特点,我们就会发现,分子1999+2000×1998=1999+2000×(1999-1)=1999+2000×1999-2000=2000×1999-1,这样就把分子转化成与分母完全相同的式子,结果为1.1、186548362361548362—⨯⨯+ 2、119891988198719891988—⨯⨯+例4、211⨯+321⨯+431⨯+541⨯+651⨯ 【思路点拨】在这道题中,每个分数的分子都是1,分母是两个连续自然数的积.211⨯=1-21,321⨯=21-31,431⨯=31-41,……)1(1+⨯n n =n 1-11+n ,把每个分数都写成两个分数的差,使部分分数互相抵消,使计算简便.同步精练1、211⨯+321⨯+431⨯+…+100991⨯2、21+61+121+201+3013、1+21+61+121+201+301+421+561+721+901练习题计算下面各题:1、27×2617 2、4544×383、5254÷174、2002÷(2002+20032002)5、(98+710+116)÷(113+94+75)6、199619941995119961995⨯+⨯—7、971+9972+99973+999974+9999975+999999768、11101⨯+12111⨯+13121⨯+14131⨯9、199719961⨯+199819971⨯+199919981⨯+1999110、301+421+561+721+90111、14122⨯+16142⨯+18162⨯+20182⨯+。
分数四则混合运算(分数计算中的技巧)
【知识概述】
在进行分数计算时,不仅要熟练地掌握四则运算的法则和运算定律,而且还常常要根据算式中数的特点和算式结构,用运一些运算技巧,灵活选择计算方法,使一些较复杂的分数计算化难为易,化繁为简。
例题精学
例1、(1)
33
32×17 (2)28×2713 【思路点拨】观察这两道题中数的特点,第(1)题中3332比1少331,把33
32写成1减33
1的差与17相乘,再运用乘法分配律使计算简便,同样第(2)题中28与2713中的分母相差1,把28分成27加1的和与2713相乘,再运用乘法分配律使计算简便。
同步精练
1、
2423×19 2、36×35
11
3、8×
1514 4、253×126
例2、1998÷199819991998 【思路点拨】这道题先把带分数化成假分数:1998
1999
1998=1999199819991998+⨯,先不要急着算出分子,观察数的特点,1999199819991998+⨯=1999119991998)(+⨯=199920001998⨯,再去除1998算出最后结果。
同步精练
1、238÷238
239
238 2、1999÷199920001999
例3、120001999199820001999—⨯⨯+ 【思路点拨】仔细观察分子、分母中各数的特点,我们就会发现,分子1999+2000×1998=1999+2000×(1999-1)=1999+2000×1999-2000=2000×1999-1,这样就把分子转化成与分母完全相同的式子,结果为1.
1、
186548362361548362—⨯⨯+ 2、1
19891988198719891988—⨯⨯+
例4、211⨯+321⨯+431⨯+541⨯+651⨯ 【思路点拨】在这道题中,每个分数的分子都是1,分母是两个连续自然数的积。
211⨯=1-21,321⨯=21-31,431⨯=31-41,……)1(1+⨯n n =n 1-1
1+n ,把每个分数都写成两个分数的差,使部分分数互相抵消,使计算简便。
同步精练
1、
211⨯+321⨯+431⨯+…+100
991⨯
2、21+61+
121+201+301
3、1+21+61+
121+201+301+421+561+721+90
1
练习题
计算下面各题:
1、27×
2617 2、4544×38
3、5254÷17
4、2002÷(2002+2003
2002)
5、(98+
710+116)÷(113+94+75)
6、
199619941995119961995⨯+⨯—
7、971+9972+99973+999974+9999975+99999976
8、
11101⨯+12111⨯+13121⨯+14131⨯
9、
199719961⨯+199819971⨯+199919981⨯+19991
10、
301+421+561+721+901
11、14122⨯+16142⨯+18162⨯+20182⨯+201。