李庆扬-数值分析第五版第5章习题答案(20130808)
- 格式:docx
- 大小:295.70 KB
- 文档页数:13
矩阵与数值分析课后答案【篇一:李庆扬-数值分析第五版第5章习题答案(20130808)】>【篇二:李庆扬-数值分析第五版第5章与第7章习题答案】>【篇三:数值分析习题】(1) 为便于算法在计算机上实现,必须将一个数学问题分解为 (2) 在数值计算中为避免损失有效数字,尽量避免两个数作减法运算;为避免误差的扩大,也尽量避免分母的绝对值分子的绝对值; (3) 误差有四大来源,数值分析主要处理其中的; (4) 有效数字越多,相对误差越2. 用例1.4的算法计算,迭代3次,计算结果保留4位有效数字.3. 推导开平方运算的误差限公式,并说明什么情况下结果误差不大于自变量误差.4. 以下各数都是对准确值进行四舍五入得到的近似数,指出它们的有效数位、误差限和相对误差限.x1?0.3040, x2?5.1?109, x3?400, x4?0.003346,x5?0.875?10?55. 证明1.2.3之定理1.1.6. 若钢珠的的直径d的相对误差为1.0%,则它的体积v的相对误差将为多少。
(假定钢珠为标准的球形)7. 若跑道长的测量有0.1%的误差,对400m成绩为60s的运动员的成绩将会带来多大的误差和相对误差.8. 为使20的近似数相对误差小于0.05%,试问该保留几位有效数字.9. 一个园柱体的工件,直径d为10.25?0.25mm,高h为40.00?1.00mm,则它的体积v的近似值、误差和相对误差为多少. 10 证明对一元函数运算有?r(f(x))?k??r(x), 其中k?xf?(x)f(x)并求出f(x)?tanx,x?1.57时的k值,从而说明f(x)?tanx在x?11. 定义多元函数运算?2时是病态问题.s??cixi,其中?ci?1,?(xi)??,i?1i?1nn求出?(s)的表达式,并说明ci全为正数时,计算是稳定的,ci有正有负时,误差难以控制. 12. 下列各式应如何改进,使计算更准确:(1) y?11?x?,1?2x1?x(x?1)(x?1)1-cos2x(3) y?,(x?1)x(2) y?(4) y?p,(p?0,q?0,p?q)习题21. 填空题(1) gauss消元法求解线性方程组的的过程中若主元素为零会发生 ;. 主元素的绝对值太小会发生 ;(2) gauss消元法求解线性方程组的计算工作量以乘除法次数计大约为平方根法求解对称正定线性方程组的计算工作量以乘除法次数计大约为;(3) 直接lu分解法解线性方程组时的计算量以乘除法计为追赶法解对角占优的三对角方程组时的计算量以乘除法计为; (4) a????11??,a1?, a2?, ?(a)?; ??02??t0???,t?1 ?(a)cond2(a)?0t??(5) a????a???b(6) a???,c?b?a?0 ?(a)cond2(a)?; ?c???2.用gauss消元法求解下列方程组ax?b?11?1???(1)a??12?2?,??211????4??1????3b??0?, (2)a??2?1?????1?321??1????432??1?,b? ???343?1?????1?234????3.用列主元消元法解下列方程组ax?b.??326???(1)a??10?70?,?5?15???4. 用gauss-jordan消元法求:01??02?0??????4???2232????2?b??7?(2)a??,b????7?4?301?6????????61?6?5??6??????11?1????210? ?1?10???5.用直接lu分解方法求1题中两个矩阵的lu分解,并求解此二方程组. 6.用平方根法解方程组ax?b?321??4?????a??221?,b??3??111??6?????7.用追赶法解三对角方程组ax?b?1?2?1000??1???????12?100??0?a??0?12?10?,b??0? ?????00?12?1??0??000?12??0?????8.证明:(1)单位下三角阵的逆仍是单位下三角阵.(2)两个单位下三角阵的乘积仍是单位下三角阵.9.由l?l1l2?ln?1,(见(2.18)式),证明:?1?1?1?1??l211?ll3231?l?????????l?n1ln210.证明向量范数有下列等价性质:1???1ln3?ln,n?1????? ???1??(1)(2)(3)x2?x1?nxxx??2?x1?nx???x2?nx11.求下列矩阵的a1,a2,a?,??a?.?1??13?a???;?12???2??513???a??1102?.?326???12.求cond2?a??10099?1a?????;?9998?13.证明:?cos?2a?????sin??sin???. cos??(1)若a是正交矩阵,即ata?i, 则cond2?a??1;(2)若a是对称正定阵,?1是a的最大特征值,?n是最小特征值,则cond2?a???1. ?n习题31. 填空题:(1) 当a具有严格对角线优势或具有对角优势且ax=b用jacobi迭代法和gauss-seidel迭代法均收敛;(2) 当线性方程组的系数矩阵a对称正定时.(3) 线性方程组迭代法收敛的充分必要条件是迭代矩阵的小于1; sor法收敛的必要条件是 ;(4) 用迭代法求解线性方程组,若q = ? (b), q, q接近时收敛较快, q接近时收敛较慢; (5)?11?a???,bj?;bs?; ??bj????bs???12?2.用jacobi迭代法和gauss-seidel迭代法求解方程组?210??x1??3???????(1) ?121??x2????5?;(2)?012??x??4????3???1??x1??1???81??????1?51???x2???16? ?1????1?4????x3??7?各分量第三位稳定即可停止.3.用sor法解方程组,取??0.9,与取??1 (即gauss-seidel法)作比较.?321??x1???5????????573???x2???13?. ?2?57??x??3??? ?3???性?521????12?(1)?132?; (2)??32??;???112???00???21??212??0??1?21??(3)?121?;(4)?; ?01?21??212??????001?2????5???1(5)??1???1?5.方程组?1?1?1?1??1122?10?1?1??11?1; (6)2?. ?2?15?1??111??????1?110??a11a12??x1??b1????a???x?????b??a?2122??2??2?,a11?0,a22?0证明用jacobi迭代法收敛的充要条件是:r?6.设a12a21?1. a11a22?1aa???a??a1a?,a为实数;?aa1???(1)若a正定,a的取值范围;(2)若jacobi迭代法收敛,a的取值范围.习题41. 填空题:(1) 幂法主要用于求一般矩阵的jacobi旋转法用于求对称矩阵的特征值;(2) 古典的jacobi法是选择的一对元素将其消为零;(3) qr方法用于求特征值的和求出对应的. 2.用幂法求矩阵. ?621???4140?????⑴?231?,⑵??5130???102??111?????按模最大的特征值和对应的特征向量,精确到小数三位. ??11111???9?2? 3.已知: a??11?1?213???。
WORD格式.分享第5章复习与思考题1、用高斯消去法为什么要选主元?哪些方程组可以不选主元?k答:使用高斯消去法时,在消元过程中可能出现a的情况,这时消去法无法进行;即kkk时主元素0和舍入增长a,但相对很小时,用其做除数,会导致其它元素数量级的严重kk计误差的扩散,最后也使得计算不准确。
因此高斯消去法需要选主元,以保证计算的进行和算的准确性。
当主对角元素明显占优(远大于同行或同列的元素)时,可以不用选择主元。
计算时一般选择列主元消去法。
2、高斯消去法与LU分解有什么关系?用它们解线性方程组Ax=b有何不同?A要满足什么条件?答:高斯消去法实质上产生了一个将A分解为两个三角形矩阵相乘的因式分解,其中一个为上三角矩阵U,一个为下三角矩阵L。
用LU分解解线性方程组可以简化计算,减少计算量,提高计算精度。
A需要满足的条件是,顺序主子式(1,2,⋯,n-1)不为零。
3、楚列斯基分解与LU分解相比,有什么优点?楚列斯基分解是LU分解的一种,当限定下三角矩阵L的对角元素为正时,楚列斯基分解具有唯一解。
4、哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定?具有对称正定系数矩阵的线性方程可以使用平方根法求解。
,切对角元素恒为正数,因此,是一个稳定的平方根法在分解过程中元素的数量级不会增长算法。
5、什么样的线性方程组可用追赶法求解并能保证计算稳定?对角占优的三对角方程组6、何谓向量范数?给出三种常用的向量范数。
向量范数定义见p53,符合3个运算法则。
正定性齐次性三角不等式x为向量,则三种常用的向量范数为:(第3章p53,第5章p165)设n||x|||x|1ii11n22||x||(x)2ii1||x||max|x i|1in7、何谓矩阵范数?何谓矩阵的算子范数?给出矩阵A=(a ij)的三种范数||A||1,||A||2,精品.资料WORD格式.分享||A||∞,||A||1与||A||2哪个更容易计算?为什么?向量范数定义见p162,需要满足四个条件。
第一章 绪论1.设0x >,x 的相对误差为δ,求ln x 的误差。
解:近似值*x 的相对误差为*****r e x x e x x δ-=== 而ln x 的误差为()1ln *ln *ln **e x x x e x =-≈进而有(ln *)x εδ≈2.设x 的相对误差为2%,求n x 的相对误差。
解:设()n f x x =,则函数的条件数为'()||()p xf x C f x = 又1'()n f x nx-=Q , 1||n p x nx C n n-⋅∴==又((*))(*)r p r x n C x εε≈⋅Q 且(*)r e x 为2((*))0.02n r x n ε∴≈3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, *456.430x =,*57 1.0.x =⨯解:*11.1021x =是五位有效数字; *20.031x =是二位有效数字; *3385.6x =是四位有效数字; *456.430x =是五位有效数字; *57 1.0.x =⨯是二位有效数字。
4.利用公式(2.3)求下列各近似值的误差限:(1) ***124x x x ++,(2) ***123x x x ,(3) **24/x x . 其中****1234,,,x x x x 均为第3题所给的数。
解:*41*32*13*34*151()1021()1021()1021()1021()102x x x x x εεεεε-----=⨯=⨯=⨯=⨯=⨯***124***1244333(1)()()()()1111010102221.0510x x x x x x εεεε----++=++=⨯+⨯+⨯=⨯ ***123*********123231132143(2)()()()()1111.10210.031100.031385.610 1.1021385.6102220.215x x x x x x x x x x x x εεεε---=++=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯≈**24****24422*4335(3)(/)()()110.0311056.430102256.43056.43010x x x x x x x εεε---+≈⨯⨯+⨯⨯=⨯=5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少?解:球体体积为343V R π=则何种函数的条件数为23'4343p R V R R C V R ππ===g g(*)(*)3(*)r p r r V C R R εεε∴≈=g又(*)1r V ε=Q故度量半径R 时允许的相对误差限为1(*)10.333r R ε=⨯≈6.设028Y =,按递推公式1n n Y Y -= (n=1,2,…)计算到100Y 27.982≈(5位有效数字),试问计算100Y 将有多大误差?解:1n n Y Y -=Q10099Y Y ∴=9998Y Y =9897Y Y =……10Y Y =依次代入后,有1000100Y Y =-即1000Y Y =27.982≈, 100027.982Y Y ∴=-*310001()()(27.982)102Y Y εεε-∴=+=⨯100Y ∴的误差限为31102-⨯。
第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。
[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x xx x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。
2、设x 的相对误差为2%,求n x 的相对误差。
[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。
3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。
[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。
4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。
(1)*4*2*1x x x ++;[解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。
第一章 绪论1.设0x >,x 的相对误差为δ,求ln x 的误差。
解:近似值*x 的相对误差为*****r e x x e x x δ-=== 而ln x 的误差为()1ln *ln *ln **e x x x e x =-≈ 进而有(ln *)x εδ≈2.设x 的相对误差为2%,求n x 的相对误差。
解:设()n f x x =,则函数的条件数为'()||()p xf x C f x = 又1'()n f x nx-=, 1||n p x nx C n n-⋅∴== 又((*))(*)r p r x n C x εε≈⋅ 且(*)r e x 为2((*))0.02n r x n ε∴≈3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, *456.430x =,*57 1.0.x =⨯解:*1 1.1021x =是五位有效数字; *20.031x =是二位有效数字; *3385.6x =是四位有效数字; *456.430x =是五位有效数字; *57 1.0.x =⨯是二位有效数字。
4.利用公式(2.3)求下列各近似值的误差限:(1) ***124x x x ++,(2) ***123x x x ,(3) **24/x x . 其中****1234,,,x x x x 均为第3题所给的数。
解:*41*32*13*34*151()1021()1021()1021()1021()102x x x x x εεεεε-----=⨯=⨯=⨯=⨯=⨯***124***1244333(1)()()()()1111010102221.0510x x x x x x εεεε----++=++=⨯+⨯+⨯=⨯ ***123*********123231132143(2)()()()()1111.10210.031100.031385.610 1.1021385.6102220.215x x x x x x x x x x x x εεεε---=++=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯≈**24****24422*4335(3)(/)()()110.0311056.430102256.43056.43010x x x x x x xεεε---+≈⨯⨯+⨯⨯=⨯=5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少?解:球体体积为343V R π=则何种函数的条件数为23'4343p R V R R C V R ππ===(*)(*)3(*)r p r r V C R R εεε∴≈= 又(*)1r V ε=故度量半径R 时允许的相对误差限为1(*)10.333r R ε=⨯≈6.设028Y =,按递推公式1n n Y Y -= (n=1,2,…)计算到100Y 27.982≈(5位有效数字),试问计算100Y 将有多大误差?解:1n n Y Y -=10099Y Y ∴=-9998Y Y =9897Y Y =……10Y Y =-依次代入后,有1000100Y Y =-即1000Y Y =27.982≈, 100027.982Y Y ∴=-*310001()()(27.982)102Y Y εεε-∴=+=⨯100Y ∴的误差限为31102-⨯。
数值分析课程第五版课后习题答案李庆扬等在学习数值分析这门课程的过程中,课后习题的练习与答案的参考对于我们深入理解和掌握知识点起着至关重要的作用。
李庆扬等编写的《数值分析》第五版教材,其课后习题涵盖了丰富的知识点和多种解题思路。
下面,我将为大家详细解析部分课后习题的答案。
首先,让我们来看一道关于插值法的习题。
题目是:给定函数值$f(0)=0$,$f(1)=1$,$f(2)=4$,利用线性插值和抛物插值分别计算$f(15)$的值。
对于线性插值,我们设直线方程为$L_1(x)=ax + b$。
将已知的两个点$(0,0)$和$(1,1)$代入,可得方程组:$\begin{cases}b = 0 \\ a + b = 1\end{cases}$解得$a = 1$,$b = 0$,所以$L_1(x) = x$。
则$f(15) \approxL_1(15) = 15$。
对于抛物插值,设抛物线方程为$L_2(x)=ax^2 + bx + c$。
将三个点$(0,0)$,$(1,1)$,$(2,4)$代入,得到方程组:$\begin{cases}c = 0 \\ a + b + c = 1 \\ 4a + 2b + c =4\end{cases}$解这个方程组,可得$a = 1$,$b = 0$,$c = 0$,所以$L_2(x) = x^2$。
则$f(15) \approx L_2(15) = 225$。
接下来是一道关于数值积分的题目。
求积分$\int_{0}^{1} x^2 dx$的数值解,分别使用梯形公式和辛普森公式。
梯形公式为:$T =\frac{b a}{2} \times f(a) + f(b)$,代入$a = 0$,$b = 1$,$f(x) = x^2$,可得:$T =\frac{1 0}{2} \times 0^2 + 1^2 = 05$辛普森公式为:$S =\frac{b a}{6} \times f(a) + 4f(\frac{a + b}{2})+ f(b)$,代入可得:$S =\frac{1 0}{6} \times 0^2 + 4 \times (\frac{1}{2})^2 + 1^2 =\frac{1}{3}$再看一道关于解线性方程组的习题。
第2章 复习与思考题01ii i ii kx x x x 的基函数称为主要性质有 0,()1,k i kx i k()1n l x、什么是牛顿基函数?它与单项式基答:牛顿差值基函数为00101x ),(x x )(x x ),...,(x x )(x x )...(x x )}n 牛顿差值基函数中带有常数项01,,...n x x x ,这有单项式基不同。
阶均差?它有何重要性质 01n 2n 01n 2n -11[,,...,,][,,...,,]n n f x x x f x x x x x xk j 0j 0j-1j j+1j -k x x x x x x x ()...()()...()和k 阶均差的性质0101k-10[,,...,][,,...,]k kf x x x f x x x x x (分子前项多xk )[a,b]上存在阶导数,且节点2n ,[a,b]x ,则1()!f n0()nn n ik k kk k i i ki kx x y l x y x x ,(j 1,2,....,n)个点的牛顿插值多项式01[,,...,]k f x x x ,(k 1,2,....,n)两者的主要差异是未知数不一致。
拉格朗日插值多项式是系数知道,但基函数不知道。
牛顿插值多项式是函数知道,但系数不知道。
与一般多项式基本相同。
y ,其中系数矩阵用下列基底作多项式插值时,120001211112222121...1...1 (1)...n n n n n nnx x x x x x x x x x x x ,无非零元素。
)拉格朗日基底为01{(),(),...,()}n l x l x l x ,已知数为未知数为01{(),(),...,()}n l x l x l x ,则系数矩阵为00101x ),(x x )(x x ),...,(x x )(x x )...(x x )}n ,已,未知数为012{,,,...,}n a a a a ,则系数矩阵为102020211010100...010...01()()...0...............1()()...()n nnnnj j x x x x x x x x x x x x x x x x ,为下三角矩阵,矩阵的上三角元0。
数值分析课程第五版课后习题答案李庆扬等数值分析作为一门重要的数学课程,对于许多理工科学生来说是必须掌握的知识。
李庆扬等编著的《数值分析》第五版教材备受青睐,而课后习题的答案则成为了同学们检验自己学习成果、加深对知识理解的重要参考。
在学习数值分析的过程中,课后习题起到了巩固和拓展知识的关键作用。
通过完成这些习题,我们能够更加深入地理解数值分析中的各种算法和概念,如插值法、数值积分、常微分方程数值解法等。
而准确的答案则能够帮助我们及时发现自己的错误和不足,从而有针对性地进行改进和提高。
以插值法这一章节的习题为例,我们可能会遇到要求用拉格朗日插值多项式、牛顿插值多项式等方法来构造插值函数,并计算给定节点处的函数值。
在解答这类问题时,需要我们熟练掌握插值公式的推导和计算过程,同时要注意误差的分析和控制。
答案中会详细展示每一步的计算过程,让我们能够清晰地看到如何从给定的节点数据得到最终的插值结果。
对于数值积分部分的习题,可能会涉及到梯形公式、辛普森公式等不同的数值积分方法。
在求解过程中,需要准确确定积分区间和节点,计算相应的系数,并最终得到积分的近似值。
答案会给出具体的计算步骤和结果,同时还会对不同方法的精度和误差进行比较和分析,帮助我们更好地理解各种数值积分方法的特点和适用范围。
常微分方程数值解法的习题则通常要求我们运用欧拉方法、改进的欧拉方法、龙格库塔方法等求解给定的初值问题。
这需要我们对这些方法的原理和公式有深入的理解,并能够正确地进行编程实现或手算求解。
答案中会详细讲解每一种方法的应用过程,以及如何根据给定的精度要求选择合适的解法。
在求解课后习题的过程中,我们不能仅仅满足于得到答案的结果,更要注重理解答案背后的思路和方法。
比如,在遇到错误答案时,要认真分析自己的解题过程,找出错误的原因,并通过与正确答案的对比,加深对知识点的理解。
同时,我们还可以尝试对答案进行拓展和延伸,思考如何将所学的知识应用到实际问题中,提高自己解决实际问题的能力。
第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。
[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x x x x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。
2、设x 的相对误差为2%,求n x 的相对误差。
[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而n x 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。
3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。
[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。
4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。
(1)*4*2*1x x x ++; [解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。
第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。
[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x x x x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。
2、设x 的相对误差为2%,求n x 的相对误差。
[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而n x 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。
3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。
[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。
4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。
(1)*4*2*1x x x ++; [解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。