2016年学而思年测五年级数学解析
- 格式:pdf
- 大小:518.55 KB
- 文档页数:7
绝密★启用前第十届学而思综合考试时间:90分钟考生须知1.请考生务必认真2.请使用蓝色或黑色3.请将答案写在答题在此特别感谢:成康王申,张侠,一、填空题(每题5分,共50分)1.计算:(1+2+3+4+5+6+7+8+7+6+5【分析】考点:计算;原式28128=÷=2.一个三位数除以11余1,除以10【分析】考点:数论同余;根据题意,3.如图,长方形ABCD 上有三个点面积为________.【分析】考点:几何图形;割补法,面积4.十个足球队进行单循环比赛,每两个结束后,十个球队的总得分最多是【分析】考点:体育比赛;共要比赛453135⨯=分.5.如下左图,将110 这10个自然数质数.【分析】考点:数阵图;10的两侧只能是能是4和6(如下图,填出一组即可思综合素质测评—五年级数学(答案版考试科目:五年级数学总分:真填写试卷上的考生信息以方便正常通知;或黑色签字笔或者钢笔作答;在答题纸上,在试卷上作答无效;考试结束后需上交答题纸。
成康达,顾伯特,李行,秦祖梁,侍春雷,苏昊,,赵竞择,郑巍等老师为本卷所提供的试题!+6+5+4+3+2+1)128=÷________.1280.52=0也余1.这个数最小是________.,该数最小应为11110111+⨯=.,,E F G ,已知3DE AF ==,4CG =,BC EG =面积为58432232(45)52⨯-⨯÷-⨯÷-+⨯÷每两个队只比一场,规定胜者得3分,负者得0分,平局各多是________分.比赛109245⨯÷=场,若每场都决出胜负,则总得分然数填入圈中,其中1已经填好,要求使得任意相邻两只能是1和3,9的两侧只能是2和4,8的两侧只能是即可).答案版):100分。
,5G =,则三角形EFG 的8.5=平局各得1分.所有比赛得分就最多,最多得分两数之和都是小于16的能是3和5,7的两侧只或6.如上右图,这是一个333⨯⨯的立体的共可以构成________个三角形.【分析】考点:图形计数;我们知道,要构成一个三角形需要3个顶从图中33327⨯⨯=个点中任选3个点,但是如果三点共线的情况就不能构成三角从每个方向(上下、左右、前后)看去面对角线有23318⨯⨯=条;体对角线有4条;这样三点共线有2718449++=条.这些点“·”为顶点,一共可以构成292547.学学、思思、乐乐、康康四个大胃王要保证大家都能吃饱,大饼共有____【分析】考点:插板计数;每人先分每个人至少1张,插板法,共有36C =8.从1至30这30个自然数中取出若干个________个数.【分析】考点:抽屉原理;根据自然数被4个,余4共4个,余5共4个,余共和余6的数不能一起取;同理,余么最多可以取前3类的所有数字以及第或或立体的点阵(每条连线上相邻两个点的距离相等),以这个顶点;,有3272726252925321C ⨯⨯==⨯⨯种选法.成三角形,看去,都有9条平行的连线,共9327⨯=条;25492876-=个三角形.胃王喜欢吃大饼,现共有39张大饼,每人至少要吃________种分配方案.8张大饼,还剩39847-⨯=张大饼,问题转化为65420321⨯⨯=⨯⨯种.若干个数,使其中任意两个数的和都不能被7整除.请问然数被7除的余数,把130 分为7类,余1的有5个,64个,余0的有4个.为了让任意两个数的和不为2和余5的,余3和余4的不能一起取.而能被7整除的第7组的1个数字,共554115+++=个.以这些点“·”为顶点,一9张大饼才能吃饱.若为7张大饼分给四个人,请问:最多能取出,余2有5个,余3共不为7的倍数,那么余1整除的数只能取一个.那9.若“6433学而思”所代表的七位数是【分析】考点:数的整除;201331161=⨯⨯;如果一个数是2013的倍数,那么这个数一∵2013|6433学而思;∴33|6433学而思;33|6433106+++=+++学而思学而∵1063337÷= ,“学+而+思”最小∴33726=998++=-=+学而思经过试算,64839392013÷=649383920133227÷= 所以只有998=⎧⎪=⎨⎪=⎩学而思符合,即学而思10.一个101010⨯⨯的正方体由1000个小称一个1110⨯⨯的长方体为一个“101010⨯⨯的正方体中每个“条子写的正整数是3,现在我们把小正方体的总和是________.【分析】考点:容斥原理;20110⨯二、解答题(每题10分,共50分)11.以下小数按照一定规律排列:0.10.100,…,0.299,0.300,⑴这串数列的前9个数的和是多少⑵这串数列的前9个数的乘积化成最点后有多少位?【分析】考点:小数与数论;⑴这串数列的前9个数的和0.10.2+()0.100.110.990.100.99+++=+ 前100个数的和是()0.10.20.90++++ ⑵9514÷= ;129⨯⨯⨯ 的乘积中有1个因数5;129⨯⨯⨯ 的乘积的末尾有1个0;这串数列的前9个数的乘积化成最简小数300560÷=,60512÷=,125÷= 12300⨯⨯⨯ 的乘积中有60122++12300⨯⨯⨯ 的乘积的末尾有74个1~300一共有919022013792⨯+⨯+⨯前300个数的乘积化成最简小数,小数点数是2013的倍数,那么“学而思”所代表的三位数是_____个数一定是31133⨯=的倍数;思;最小是0000++=,最大是99927++=;+;322166 ,888,649393820133226÷=;998=.00个小正方体拼接而成,在每一个小正方体内部都填有条子”,我们称一个11010⨯⨯的长方体为一个“面子”中的数之和都是201.对于该正方体中的某个小正方正方体A 所在的“面子”全部去掉.那么余下的所有小正0102011032013314670⨯-⨯⨯+⨯-=.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.301,….请问:多少?前100个数的和是多少?化成最简小数,小数点后有多少位?前300个数的乘积化()0.90.10.992 4.5++=+⨯÷= .90249.05⨯÷=;()0.100.110.990.100 4.549.050.1++++=++ 简小数,小数点后918-=位.22;74=个因数5;0;=个数字;小数点后有79274718-=位.________.填有一个正整数.我们子”.现在已知这个小正方体A ,已知A 中填有小正方体里面的正整数0.10,0.11,…,0.99,乘积化成最简小数,小数53.65=.12.甲、乙两人骑自行车从环形公路上同一钟.如果第一次相遇时甲骑了1440【分析】考点:行程问题;因为()24006400/min V V m +=÷=甲乙,13.一个露天水池底部有若干同样大小的果打开24根进水管,5分钟能注满水多少分钟能将水池注满?【分析】考点:牛吃草问题;设1根进水管池容量为24585160⨯+⨯=,如果打开14.如图,长方形ABCD 的边AD 上有一于点N ,在AE 上取点G ,连接F 求阴影部分的面积.【分析】考点:等积变形;由割补法等积15.现有红、白、黑3种颜色的珠子足够多转或翻转后若相同,则看作同一种项【分析】考点:分类计数;进行分类讨论:1)1种颜色:3种;2)2种颜色:3618⨯=种;3)3种颜色(共18种):1红1白3黑(2红1白2黑(4种);综上:共有3181839++=种.上同一地点同时出发,背向而行.这条公路长2400米440米.问:乙骑一圈需要多少分钟?()240010240/min V m =÷=甲,所以1440t =相遇所以()400-240160/min V m ==乙,则乙骑行一圈需要大小的进水管.这天蓄水时恰好赶上下雨,每分钟注入水池注满水池;如果打开12根进水管,8分钟能注满水池;如果进水管1分钟进水1份,则雨水的注水速度为(24512⨯打开8根进水管160(88)10÷+=分钟能将水池注满.上有一点E ,BC 上有一点F ,连接,BE AF 交于点,BG FG ,在DE 上取点H 连接,CH FH ,若ABM S c ∆法等积变形得2235S cm =+=阴.足够多,以这些为原料做成有5颗珠子的项链,可做几种一种项链)(2种);1红2白2黑(4种);1红3白1黑(种2红2白1黑(4种);3红1白1黑(2种)0米,甲骑一圈需要10分()2406min ÷=,又因为需要()240016015min ÷=。
【五年级奥数举一反三—全国通用】测评卷02《等差数列》试卷满分:100分考试时间:100分钟姓名:_________班级:_________得分:_________一.选择题(共6小题,满分12分,每小题2分)1.(2分)(2011•其他模拟)有20个数,第一个数是9,以后每一个数都比前一个数大2,第20个数是()A.47 B.49 C.51 D.53【分析】由于第一个数是9,从第二个数起,每一个数都比前一个数大2,所以第20个数比9大19个2.【解答】解:9+(20﹣1)×2=9+19×2=9+38=47.答:第20个数是47.故选:A.2.(2分)下面一列数5、8、11、14、…、第()个数为2015.A.667 B.668 C.669 D.671【分析】此题首项是5,末项是2015,公差是3,求第几个数为2015,即求项数,根据等差数列的通项公式进行求解即可.【解答】解:首项是5,末项是2015,公差是3,(2015﹣5)÷3+1=2010÷3+1=671答:第671个数为2015.故选:D.3.(2分)(2015•创新杯)从小到大排列99个数,每两个相邻数的差都相等,第7个与第93个的和为262,则这列数的第50个数为()A.50 B.51 C.120 D.131【分析】因为一共有99个,所以正中间的一个数是50,这个数就是这个数列之和的平均数.第93个数是倒数第7个数,所以此题常采用画图的方法解决.【解答】解:262÷2=131故选:D.4.(2分)(2014•迎春杯)一个12项的等差数列,公差是2,且前8项的和等于后4项的和,那么,这个数列的第二项是()A.7 B.9 C.11 D.13【分析】找出前8项数字和与后4项数字和相等,列出关系式,求出其中一项即可.【解答】解:根据题意后4项和前8项数字和相等可知,这个数列是递增数列,(a1+a8)×8÷2=(a9+a12)×4÷2,因为a8=a1+14,a9=a1+16,a12=a1+22,所以代入得(a1+a1+14)×8÷2=(a1+16+a1+22)×4÷2,解得a1=5,所以a2=a1+2=7.故选:A.5.(2分)5个连续自然数的和是315,那么紧接在这5个自然数后面的5个连续自然数的和是()A.360 B.340 C.350 D.无法求出【分析】这些自然数是等差数列,紧接在这5个自然数后面的5个连续自然数的和比315多5×5,然后进一步解答即可.【解答】解:315+5×5=315+25=340故选:B.6.(2分)(2011•其他模拟)有10只盒子,44只羽毛球.能不能把44只羽毛球放到盒子中去,使各个盒子里的羽毛球不相等?()A.能B.不能C.不确定【分析】这是一个等差数列的应用题,解题关键是由已知数列所有项的个数按最少量算出它们的总和,然后与题意中给的羽毛球的总数44相比较,如果相等,就说明能够将44只羽毛球放到10个盒子中去,且使各盒子里的羽毛球数不相等;否则就不能.【解答】解:由题意,要使10个盒子中羽毛球的数量不相等,最少的放法是:0,1,2…9.计算总和:0+1+2+…+9=9×5=45,因为45>44,所以原题不能.答:不能使各个盒子里的羽毛球数不相等.故选:B.二.填空题(共12小题,满分31分)7.(2分)(2017•走美杯)一箱苹果60个,第一天大家一起吃了17个,以后我每天吃1个,过了几天发现只剩下16个,苹果怎么少这么快?有人告诉我,小张每天都去偷偷地拿2个.请你算一算:这几天小张共拿了18个苹果.【分析】可以先用总数减去大家吃的苹果数和剩下的苹果数,再除以我每天吃的苹果数和小张偷的苹果数之和,就能求得天数,就能知道小张偷了几天,不难求得小张偷拿了多少苹果.【解答】解:根据分析,先求得小张偷拿苹果的天数,故有:(60﹣17﹣16)÷(2+1)=9(天),小张共偷了:9×2=18个.故答案是:18.8.(2分)(2016•学而思杯)表中每行,每列分别从左至右、从上至下构成等差数列,那么m×n=300.4 89 1512 nm25【分析】首先,确定第一行公差,填全第一行;从第二列确定公差,确定m;同样从第四列,确定n.【解答】解:第一行公差为(8﹣4)÷2=2,第一行数字为:4、6、8、10;确定第二列确定公差为12﹣9=3,确定m=12+3=15;同样确定n=20.m×n=300即:填3009.(2分)(2018•陈省身杯)小明去麦当当打暑期工,连续工作了5天后共挣了180元,如果这5天里他每一天所挣的钱都比前一天多6元.那么第1天小明挣了24元.【分析】根据等差数列的规律,第三天小明挣了180÷5=36元,公差是6,所以第一天小明挣了36﹣6×2=24元,据此解答即可.【解答】解:180÷5=36(元)36﹣6×2=24(元)故答案为:24.10.(2分)(2017•其他杯赛)小明希望通过做一些数学题目来巩固知识,他每天都会比前一天多做2道题目.如果小明第一天做了2道题目,那么前七天他共做了56道题目.【分析】首项是2,末项是2+(7﹣1)×2=14,然后利用等差数列求和公式:(首项+末项)×项数÷2求出结果.【解答】解:2+(7﹣1)×2=14(道)(2+14)×7÷2=56(道)故填56.11.(2分)(2017•小机灵杯)从1,2,3,4,…,50中取5个不同的数,使这5个数构成一个等差数列,那么,可以得到不同的等差数列的个数为576.【分析】根据题意,分析当得到的等差数列公差为1、2、3时,可以得到的等差数列的数目,依此类推,发现其数目的变化规律,进而根据等差数列的前n项公式计算可得答案.【解答】解:根据题意,当得到的等差数列公差为1时,有1、2、3、4、5,…,46、47、48、49、50,共46种情况;当其公差为2时,有1、3、5、7、9,…,42、44、46、48、50,共42种情况;…当其公差为12时,有1、13、25、37、49,2、14、26、38、50,共2种情况;综上所述,共有2+6+…+46==288种,考虑到等差数列也可以是从大到小,所以共有288×2=576种不同的等差数列,故答案为576.12.(2017•春蕾杯)九只小猴子依次去摘桃子,每一只都比前一只多摘2个桃子,摘得最多的一只猴子摘了25个桃子,那么这些猴子一共摘了153个桃子.【分析】九只小猴子摘桃子数,构成一个等差数列,公差是2,末项是25,那么首项是25﹣2×(9﹣1)=9,然后根据高斯求和公式解答即可.【解答】解:25﹣2×(9﹣1)=9(个)(9+25)×9÷2=153(个)故答案为:153.13.(2016•迎春杯)帅帅背了7天单词,从第2天开始每天都比前一天多背1个单词,且前4天所背单词个数的和等于后3天所背单词个数的和,那么帅帅这7天一共背了单词84个.【分析】首先表示出这7天的数量关系,然后根据前4天等于后3天的数量列出等式,求出每天的数量相加即可.【解答】解:依题意可知:设帅帅背单词的数量为:a,a+1,a+2,a+3,a+4,a+5,a+6共7天a+a+1+a+2+a+3=a+4+a+5+a+6解:a=9.共背9+10+11+12+13+14+15=84故答案为:8414.(2015•走美杯)梯形的上底、高、下底依次构成一个等差数列,其中高是12,那么梯形的面积是144.【分析】首先根据梯形的上底、高、下底依次构成一个等差数列,可得:上底+下底=高×2,据此求出梯形的上底和下底的和是多少;然后根据:梯形的面积=(上底+下底)×高÷2,求出梯形的面积是多少即可.【解答】解:(12×2)×12÷2=24×12÷2=288÷2=144答:梯形的面积是144.故答案为:144.15.(2018•迎春杯)四位同学一起讨论一个由无数个自然数组成的等差数列:小叶说:这个等差数列的第一项是个两位数.小刚说:数列中不大于215的数有20多个.小王说:数列的公差小于5.小红说:数列前两项的平均数是102.这四位同学的话中只有一句是错的,那么这个等差数列的第100项是496.【分析】如果小叶和小红说得对,那么前两项的和是102×2=204,根据小叶说的,可以确定第一个数最大是99,那第二个数就是105,说明公差至少是105﹣99=6,与小王说的相矛盾,因此可以判断出小叶、小红和小王三人之中肯定有一个是错的,那么小刚说的话肯定是对的.根据小刚说的,那说明公差一定不大于215÷20≈10,假设小王说的是错的,则说明公差大于或等于6,根据小叶和小红说的话可以确定公差是一个偶数,因此接下来验证公差是6、8、10的情况.如果公差是6,则第1项是99,第2项是105,那么第21项就是99+20×6=219,大于215,所以公差不是6;如果公差是8,那么第1项就是98,第21项就是98+20×8>215,所以公差也不是8,同样的道理公差也不是10,由此可以判断出小王说的话是对的.那只有小叶和小红两人有一个说错了.根据公差小于5,说明公差最大是4,那第一个数最大是215﹣28×4=103,最小是215﹣28×4﹣3=100,说明小叶说错了;同样根据公差是3、2、1,也能得出第一个数是三位数.根据前两项的和的平均数是102,说明这两个数可能是100和104,也可能是101和103,如果是100和104,那么第100项就是100+99×4=496;如果前两项是101和103,那么215之前就不止20多个数,故不对.【解答】解:根据上面的推理可以知道是小叶说错了.102×2=100+104=101+103如果公差是104﹣100=4,则第100项是100+99×4=496;如果公差是103﹣101=2,则第30项是101+29×2=159<215,与小刚说的话矛盾.故答案为:496.16.(2016•创新杯)已知数列a1,a2,…,a n为一等差数列,平均数为71,把相邻的4个数相加,其和为新的一列数,这新一列数的总和为28400,则n=103.【分析】由题意,a1+a2+…+a n﹣1+a n=71n①,a1+2a2+3a3+4a4+4a5+…+4a n﹣4+4a n﹣3+3a n﹣2+﹣2a n﹣1+a n=28400②,②﹣①可以得到a2+2a3+3a4+3a5+…+3a n﹣4+3a n﹣3+2a n﹣2+a n﹣1=28400﹣71n③,依次利用①式进行变换最后得出a4+a5+…+a n﹣4+a n﹣3=28400﹣71(3n﹣6)⑤,利用等差数列的求和公式,即可得出结论.【解答】解:由题意,a1+a2+…+a n﹣1+a n=71n①,a1+2a2+3a3+4a4+4a5+…+4a n﹣4+4a n﹣3+3a n﹣2+﹣2a n﹣1+a n=28400②,②﹣①可得a2+2a3+3a4+3a5+…+3a n﹣4+3a n﹣3+2a n﹣2+a n﹣1=28400﹣71n③,a2+a3+…+a n﹣2+a n﹣1=71(n﹣2)④,③﹣④可得a3+2a4+2a5+…+2a n﹣4+2a n﹣3+a n﹣2=28400﹣71(2n﹣2)⑤,a3+a4+…+a n﹣3+a n﹣2=71(n﹣4)④,⑤﹣④可得a4+a5+…+a n﹣4+a n﹣3=28400﹣71(3n﹣6)⑤,(n﹣3﹣4+1)×71=28400﹣71(3n﹣6),解得n=103,故答案为:103.17.(2014•其他模拟)艾丽斯工作5天后,共挣了65元,其中每一天所挣的都比前一天多2元.她第一天挣了9元.【分析】每天的钱数构成一个公差为“2”的等差数列,首项是要求的数,项数为5.因此本题根据高斯求和公式“S n=na1+n(n﹣1)÷2”进行计算即可:【解答】解:设她第一天挣了x元,5x+5×(5﹣1)×2÷2=655x+20=655x=45x=9故答案为:9.18.一个电影院的第一排有15个座位,以后每排都比前排多2个座位,最后一排有53个座位,这个电影院共有20排座位.【分析】把座位数可以看作是一个等差数列:首项是15,末项是53,公差是2,求这个电影院共有几排座位,就相当于等差数列的项数,列式是(53﹣15)÷2+1=20,然后解答即可求出一共有的排数.【解答】解:根据分析可得,(53﹣15)÷2+1,=38÷2+1,=20(排),答:这个电影院共有20排座位.故答案为:20.三.计算题(共1小题,满分3分,每小题3分)19.92+90+88+ (2)【分析】根据等差数列通项公式:项数=(末项﹣首项)÷公差+1,(首数+尾数)×项数÷2=和解答即可.【解答】解:(2+92)×[(92﹣2)÷2+1]÷2=94×46÷2=2162四.解答题(共12小题,满分54分)20.(4分)(2012•其他模拟)把一堆苹果分给8个朋友,要使每个人都能拿到苹果,而且每个人拿到苹果个数都不同的话,这堆苹果至少应该有几个?【分析】由题意可知,要使8个人中的每个人都能拿到苹果,而且每个人拿到苹果个数都不同,则分到苹果最少的应为1个,而其他人至少分别分到2,3…8个苹果.那么这堆苹果应有的个数为:1+2+3+…+8.计算这个公差为1的等差数列的和即可.【解答】解:1+2+3+4+5+6+7+8=(1+8)×8÷2=9×8÷2=72÷2=36(个).答:这堆苹果至少应有36个.21.(4分)小张看一本故事书,第一天看了25页,以后每天比前一天多看5页,最后一天看55页,刚好看完,这本故事书一共有多少页?【分析】根据题意,可得小红每天看故事书的页数是一个等差数列,数列的首项是25,末项是55,公差是5,所以求出等差数列的项数,即可求出这本故事书共多少页.【解答】解:(55﹣25)÷5+1=30÷5+1=7(25+55)×7÷2=80×7÷2=280(页)答:这本故事书一共有280页.22.(4分)已知一个等差数列第9项等于131,第10项等于137,这个数列的第1项是多少?第19项是多少?【分析】由题可知,本题是一个公差为137﹣131=6的等差数列,因此本题根据高斯求和的有关公式解答即可:末项=首项+(项数﹣1)×公差,首项=末项﹣(项数﹣1)×公差.【解答】解:公差:137﹣131=6第1项:131﹣(9﹣1)×6=131﹣48=83第19项:83+(19﹣1)×6=83+18×6=83+108=191答:这个数列的第1项是83,第19项是191.23.(4分)某电影院有26排座位,后一排比前一排多1个座位,最后一排有45个座位,求这个影院一共有多少个座位?【分析】因后一排在比前一排多1个座位,可看作是看作一个等差数列,末项是45,所以首项是45﹣26+1=20,本题可根据高斯求和公式解答即可.【解答】解:45﹣26+1=20(个)(20+45)×26÷2=845(个)答:这个影院一共有845个座位.24.(4分)有一堆粗细均匀的圆木,最上面一层有6根,每向下一层增加一根,如果最下面一层有98根,那么共堆了多少层?【分析】每层的根数构成了一个等差数列,首项是6,公差是1,末项是98,求项数,根据“项数=(末项﹣首项)÷公差+1”解答即可.【解答】解:(98﹣6)÷1+1=92+1=93(层)答:共堆了93层.25.(4分)求1,5,9,13,…,这个等差数列的第30项.【分析】首先求出1,5,9,13,…,这个等差数列的公差,然后根据:a n=a1+(n﹣1)d(a1、a n、d 分别是等差数列的第1项、第n项、公差),求出这个等差数列的第30项即可.【解答】解:1+(30﹣1)×(5﹣1)=1+29×4=1+116=117答:这个等差数列的第30项是117.26.(5分)(2012•其他杯赛)把90米长的一条绳子分成三段,要使后一段都比前一段多3米.三段绳子的长度各是多少?【分析】设第一段绳子长x米,那么第二段,第三段绳子的长度分别是:(x+3)米,(x+3+3)米,根据三段绳子的长度是90米列方程,依据等式的性质即可解答.【解答】解:设第一段绳子长x米,x+(x+3)+(x+3+3)=90,3x+9=90,3x+9﹣9=90﹣9,3x=81,3x÷3=81÷3,x=27,27+3=30(米),27+3+3,=30+3,=33(米),答:第一段绳子长27米,第二段绳子长30米,第三段绳子长33米.27.(5分)(2009•两岸四地)张师傅做一批零件,第一天做了20个,以后每天都比前一天多做2个,第30天做了78个,正好做完.这批零件共有几个?【分析】第一天20个,根据“以后每天都比前一天多做2个”,求得第二天是22个,第三天为24个,第30天为78个,设s=20+22+24+…+76+78 ①,则s=78+76+74+…+24+22+20 ②,①+②得,2s=(20+22+24+…+76+78)+(78+76+74+…+24+22+20 )=(20+78)+(22+76)+…+(76+22)+(78+20)=98×30,求得问题的答案.【解答】解:因为第一天20个,第二天是22个,第三天为24个,•,则第30天为78个,设s=20+22+24+…+76+78 ①,则s=78+76+74+…+24+22+20 ②,①+②得,2s=(20+22+24+…+76+78)+(78+76+74+…+24+22+20),=(20+78)+(22+76)+…+(76+22)+(78+20),=98×30,=2940,所以s=1470.答:这批零件共有1470个.28.(5分)(2016•学而思杯)若一个三位数的三个数字a、b、c按从小到大排列后,怡好可组成一个等差数列(公差可以为0),这我们将这样的三位数叫做“和谐数”,如375,102,….(1)100至199之间,有多少个“和谐数”?(2)总共有多少个“和谐数”?(3)将所有的“和谐数”排成一列,546排在第几位?【分析】将公差分类,求出相应的“和谐数”,即可得出结论.【解答】解:(1)公差为0:111;公差为1:102,120,123,132;公差为2:135,153;公差为3:147,174;公差为4:159,195,所以100至199之间,有11个“和谐数”;(2)公差为0:111,222, (999)公差为1,(0,1,2),(1,2,3),…,(7,8,9),共8组,第1组有四种情况,其它组有6种情况,4+7×6=46个;公差为2,(0,2,4),(1,3,5),…,(5,7,9),共6组,第1组有四种情况,其它组有6种情况,4+5×6=34个;公差为3,(0,3,6),(1,4,7),(2,5,8),(3,6,9),共4组,第1组有四种情况,其它组有6种情况,4+3×6=22个;公差为4,(0,4,8),(1,5,9),共2组,第1组有四种情况,其它组有6种情况,4+1×6=10个;总共有9+46+34+22+10=121个“和谐数”;(3)将所有的“和谐数”排成一列,100~199:11个;200~299:公差为0:222;公差为1:201,210,213,231,234,243;公差为2:204,240,246,264;公差为3:258,285,共13个;300~399:公差为0:333;公差为1:312,321,324,342,345,354;公差为2:315,351,357,375;公差为3:306,360,369,396,共15个;400~499:公差为0:444;公差为1:423,432,435,453,456,465;公差为2:402,420,426,462,468,486;公差为3:417,471;公差为4:408,480,共17个;500~599:公差为0:555;公差为1:534,543,546,564,567,576;公差为2:513,531,537,573,579,597;公差为3:528,582;公差为4:519,591,共17个;11+13+15+17+8=64,所以546排在第64位.29.(5分)从一列数1,5,9,13,…,93,97中,任取14个数.证明:其中必有两个数的和等于102.【分析】首先根据题意可知这列数是一组公差是4等差数列,根据项数=(末项﹣首项)÷公差+1,求出这组等差数列一共有几项,据此分析解答即可.【解答】解:(97﹣1)÷4+1=25(个)将这25个组分成13组:{1},{5,97},{9,93},{13,89},…,{45,57},{49,53}.在这25个数中任取14个数来,必有二数属于上述13组中的同一组,故这一组二数之和是102.30.(5分)一个项数是偶数的等差数列,奇数项和偶数项的和分别是240和300.若最后一项超过第一项105,那么,该等差数列有多少项?【分析】设给出的数列有2n项,由偶数项的和减去奇数项的和等于n倍的公差,再根据最后一项比第一项多105得到一个关于项数和公差的式子,联立后可求项数.【解答】解:假设数列有2n项,公差为d,因为奇数项之和与偶数项之和分别是240与300所以S偶﹣S奇=300﹣240=nd,即nd=60①.又因为a2n﹣a1=105即a1+(2n﹣1)d﹣a1=105所以(2n﹣1)d=105②.联立①②得:n=4.则这个数列一共有2n项,即8项.答:该等差数列有8项.31.(5分)一堆电线杆,共有5层,第一层有8根,下面每层比上层多一根,这堆电线杆一共有多少根?【分析】根据题意,把第一层的根数看作梯形的上底,最下层的根数看作梯形的下底,层数看作梯形的高,由梯形的面积公式就可以求出结果.【解答】解:根据题意可得最下面的一层的根数是:8+5﹣1=12(根),由梯形的面积公式可得:这垛电线杆的总数为:(12+8)×5÷2=100÷2=50(根);答:这一堆电线杆共有50根.。
2016
2、数一数,下图中共有__________颗五角星.
【难度】☆
举行,本次奥运会一共举行__________天.
【难度】☆☆
4、把一张正方形的纸按照下图对折
到的是下面的__________图.(填字母选项)
【难度】☆☆
第__________页开始看.
【难度】☆☆
7、根据下图推断,
9、在下面□中填上6个不同的数字,让等式成立.
【难度】☆☆
10、观察下图,回答问题.(图形可旋转)
【难度】☆☆☆
73.
【考查知识点】枚举法
14、请沿着虚线,把下图分成形状大小相同的八份,要求每一份中恰好包含一个字母“A”.(同一份中的图形用相同数字标记,比如)
【难度】☆☆☆
答案不唯一
【分析】先计算出所有小三角形为24个,那分成8份,24÷8=3(个),再按照这个依次去__________.
【难度】☆☆☆☆
【答案】15
【分析】通过枚举尝试,找到这四个数分别为1、2、5、7,并且数字可以互换位置【考查知识点】数阵图
【体系衔接】一年级春季《数阵图》,二年级春季《数阵图进阶》。
2013 年第三届全国学而思综合能力测评(学而思杯)数学试卷(五年级)详解一.填空题(每题5 分,共20 分)1. 两个质数的和是9,那么这两个质数的乘积是.【考点】数论,质数性质【难度】☆【答案】14【分析】两质数和为奇数,必有偶质数2,另一质数为7,故答案为2 ⨯ 7 = 14 .2. 如右图,共有个正方形.【考点】组合,几何计数【难度】☆【答案】10【分析】1⨯1的正方形有4 个,2 ⨯ 2 的正方形有5 个,4 ⨯ 4 的正方形有1 个,共10 个.3. 学而思教研部一共购买了300 本书,其中有五分之二是数学书,三分之一是语文书,其余是英语书.那么,英语书共有本.【考点】应用题,分数应用题【难度】☆【答案】80【分析】300 ⨯ (1 - 2-1) = 300 - 120 - 100 = 80 (本).5 34. 如右图,正方形ABCD 边长为40 厘米,其中M、N、P、Q 为所在边的中点;分别以正方形的顶点为圆心,以边长的一半为半径做直角扇形,那么形成图中阴影部分的面积是平方厘米.(π取3.14)【考点】几何,圆与扇形面积【难度】☆☆【答案】344【分析】阴影面积的实质是整体减空白:边长40 厘米的正方形面积减去半径为20 厘米的圆的面积(4 个扇形刚好拼成一个整圆),故答案为402 - 3.14 ⨯ 202 = 400 ⨯ (4 - 3.14) = 344 平方厘米.5. 对一个大于1 的自然数进行如下操作:如果是偶数则除以2,如果是奇数则先减去1 再除以2,如此进行直到得数为1,操作停止.那么,所有经过3 次操作结果为1 的数中,最大的数是.【考点】数论,奇偶性,倒推【难度】☆☆【答案】15【分析】从1 向前倒推,寻找原数的最大值;但发现若上一步是偶数,则须本数⨯2 ;若上一步是奇数,则须本数⨯2 + 1 ;明显每次向前推出奇数可使原数更大,倒推过程为:1→3→7→15;故15 为原数的可能达到的最大值.6. 定义:∆( A, B,C, D) = A ⨯ 4 + B ⨯ 3 + C ⨯ 2 + D ⨯1 ,那么,∆(2, 0,1, 3) =_ .【考点】计算,定义新运算【难度】☆【答案】13【分析】按定义式,∆(2, 0,1,3) = 2 ⨯ 4 + 0 ⨯ 3 + 1⨯ 2 + 3 ⨯1 = 13 .7. 一项工程,由甲队单独做10 天后,乙队加入,甲、乙两队又合作了8 天完成;这项工程,如果全部由乙队单独做,20 天可以完成.那么,如果全部由甲队单独做,天可以完成.【考点】应用题,工程问题【难度】☆☆【答案】30【分析】把总工作量看做单位“1”,则乙队的工作效率为每天做120,故可在甲乙合作的条件中求出甲队的工作效率为每天做(1 - 1⨯ 8) ÷ (10 + 8) =3÷18 =1;故答案为30.20 5 308. 如右图,大正方体的棱长为2 厘米,两个小正方体的棱长均为1厘米,那么,组合后整个立体图形的表面积为平方厘米.【考点】几何,立体几何,表面积【难度】☆☆【答案】32【分析】三个立方体原总表面积为12 ⨯ 6 + 12 ⨯ 6 + 22 ⨯ 6 = 36 平方厘米,之后放在一起时缺失了4 个1⨯1 的表面,故答案为36 - 12 ⨯ 4 = 32 平方厘米;或者可用三视图法求表面积:(5 + 5 + 6) ⨯ 2 = 32 平方厘米.9.甲、乙、丙 3 人共有 2013 块巧克力,甲拿走了乙、丙各 3 块巧克力后,甲、乙、丙 3 人的巧克 力数比为 4: 2: 5 ,那么,甲原.有.【考点】应用题,比例应用题 【难度】☆☆☆ 【答案】726块巧克力.【分析】之后甲的巧克力块数易由 3 人的块数比求得,为 2013 ⨯732 - 3 ⨯ 2 = 726 块.4 4 + 2 + 5= 732 块,故甲原有巧克力10. 在 5×5 的方格中,将其中的一些小方格染成红色,使得对于图中任意的2×2 的方格中,均有至少 1 个小方格是红色的.那么,至少要将个小方格染成红色. 【考点】组合,构造与论证 【难度】☆☆ 【答案】4【分析】论证:为了保证 4 个角上的互不重叠的 4 个 2 ⨯ 2 的方格中都至少有 1个红色方格,可知答案必不小于 4; 构造:如右图,4 是可能的; 综上,答案为 4.11. 一个五位数,各.位.数.字.互.不.相.同.,并且满足:从左往右,第一位是 2 数是 3 的倍数,前三位组成的三位数是 5 的倍数,前四位组成的四位数是 7 的倍数,这个五位数 是 11 的倍数.那么,这个五位数最小是 .【考点】数论,整除特征,最值 【难度】☆☆☆ 【答案】21076【分析】考虑最值确定各位数字:万位是 2 的倍数,故万位最小应为 2; 前两位组成的数是 3 的倍数,故前两位最小应为 21; 前三位组成的数是 5 的倍数,故前三位最小应为 210;前四位组成的数是 7 的倍数,最小为 2100,但要求各位数字不同,故应为 2107; 这个五位数是 11 的倍数,故此数应为 21076.12. 右边的乘法竖式中,相.同.汉字代表相.同.数字,不.同.汉字代表不.同.数字,那么,“大自然”代表的三位数是.【考点】数论,数字谜【难度】☆☆☆☆【答案】958我爱大自然⨯ 4 大自然爱我【分析】由个位可知“我”为偶数,再分析最高位即可知“我”只能为2;故“然”为3 或8;(还可分析知五个汉字所代表的数字之和必为3 的倍数,这个小结论可以辅助之后的分析)若“然”= 8,①则分析万位知“大”只能为9,故千位“爱”乘以4 后向万位进1,可知“爱”为3 或4;②若“爱”= 4,此时十位:“自⨯4 + 3 ”的末位数字为4,这表示“自⨯4 ”的末位数字为1,奇偶性矛盾!故确定“爱”只能为3;③若“爱”= 3,此时十位:“自⨯4 + 3 ”的末位数字为3,这表示“自⨯4 ”的末位数字为0,“自”为0或5;若“自”= 0,千位要接受进位8,这不可能;若“自”= 5,则有答案23958 ⨯ 4 = 95832 ;若“然”= 3,①分析万位知“大”为9 或8;②若“大”= 9,则千位“爱”乘以4 后向万位进1,可知“爱”只能为4;此时十位:“自⨯4 + 1 ”的末位数字为4,这表示“自⨯4 ”的末位数字为3,奇偶性矛盾!故知只能“大”= 8;③若“大”= 8,分析十位可知“爱”为奇数,再分析千位可知“爱”= 1;④此时无论十位的“自”为0 还是为5,式子的百位和千位都是错误的(21803 ⨯ 4 = 80312 错误;21853 ⨯ 4 = 85312 错误),故知“然”= 3 时无解;综上,本数字谜只有唯一解:23958 ⨯ 4 = 95832 ,本题答案为958.四.填空题(每题8 分,共32 分)13. 有A、B、C、D、E、F 六个人围坐在圆桌吃饭,A 会讲英语,1B 会讲汉语、英语和法语,C 会讲汉语、英语和德语,D 会讲6 2汉语和德语,E 会讲汉语,F 会讲法语和德语.如果每个人都能与他相邻的两个人交流,那么,共有种不同的排座位方式.(经过旋转、对称后重合的方式不.算.做.一.种.)【考点】组合,逻辑推理 5 3【难度】☆☆☆4【答案】24【分析】本题突破口在于A,由于A 只会说英语,英语也只有A、B、C 三人会说,故座位顺序中必然有紧邻的BAC(或CAB),此时分析F 可知F 必须与B 或C 中的一个相邻,E 必须在D、F 的中间;综上,得到两种圆排列方式:①BACEDF;②BACFDE;每种圆排列方式都有旋转、对称的12 种排座方式,故答案为12 ⨯ 2 = 24 种.⎨ ⎩ Q14. A 、B 两地相距 120 千米.甲、乙从 A 地,丙从 B 地同时出发,相向而行.当甲、丙相遇时,乙行了 20 千米.甲到达 B 地后立即原路返回,当乙、丙相遇在途中 C 地时,甲也恰好到达 C 地. 那么,当丙到达 A 地时,乙共行了 千米.【考点】行程问题,比例法解行程问题 【难度】☆☆☆ 【答案】72【分析】本题关键点在于甲丙速度之和与乙的速度之比为 120 : 20 = 6 :1 ;设甲、乙、丙三人到达 C 点⎧z + y = 120时各走了 x 、y 、z 千米,则有方程组:⎪x - z = 120,解得 y = 3 (可以解出 x 、y 、z 的具体值, ⎪(x + z ) : y = 6 :1 z 5但其实不必要);故丙走了 120 千米时,乙走了120 ⨯ 3= 72 千米.515. 如右图,三角形 ABC 是直角三角形,M 是斜边 BCA 的中点,MNPQ 是正方形,N 在 AB 上,P 在 AC 上. NP如果,AB 的长度是 12 厘米,AC 的长度是 8 厘米. 那么,正方形 MNPQ 的面积是 平方厘米.Q【考点】几何,面积,弦图 BMC【难度】☆☆☆ 【答案】20【分析】如下图,过 M 点作 AB 的垂线,垂足为 D ;以 AD 为外围正方形的一边,做出以 MNPQ 为内含正方形的弦图,;则 MD 为△ABC 的中位线, MD = AC = 4cm , AD = AB= 6cm ;故弦图中外2 2围正方形边长为 6cm , AN = MD = 4cm , DN = 6 - 4 = 2cm ;故所求面积为 62 - 2 ⨯ 4⨯ 4 = 20cm 2 .2AANP NPDD FBMCMQE16. 有一个自然数A,它的平方有9 个约数,老师把9 个约数写在9 张卡片上,发给学学三张、思思三张.学学说:“我手中的三个数乘积是A3 .”思思说:“我手中的三个数乘积就是A2 ,而且我知道你手中的三个数和是625.”那么,思思手中的三个数和是.【考点】数论,约数个数定理,幻方【难度】☆☆☆☆☆【答案】55【分析】A2 有9 个约数,故由约数个数定理可逆推出:A 的质因数分解形式为p4 或pq (p、q 为不相同的质数);若A = p4 ,那么可把A2 的9 个约数写成如下的表格形式(幻方):学学手中必拿到了一行或一列或一条对角线;思思手中拿到的可能是(1、p 、p7 )(1、p2 、p6 )(1、p3 、p5 )(p 、p2 、p5 )(p 、p3 、p4 );只有后两组才能确定学学手中的牌,但后两组所确定的数需要1 + p4 + p8 = 625 或1 + p5 + p7 = 625 ,可是这两种情况p 均无解;故知A 的质因数分解形式不能为p4 ,只能为pq ;若A = pq ,那么可把A2 的9 个约数写成如下的表格形式思思手中拿到的可能是(1、p 、pq2 )(1、q 、p2 q )(1、p2 、q2 )(p 、q 、pq );经分析可知,只有当思思拿到(p、q、pq)时,才一定能确定学学手中的牌,此时学学手中的牌为(1、p2 q 、pq2 ),故1 + p2 q + pq2 = 625 ,(可用枚举法,或因数分析)解得A 的两个质因数p、q 为3 和13,故思思手中的牌为(3、13、39),所求答案为3 + 13 + 39 = 55 .五. 解答题(每题 8 分,共 16 分)17. 计算:(1) 0.27 ⨯103 + 0.19 (4 分)(2) 2013⨯ 2.3+ 201 3÷ 0.4 - 2013 ⨯ 1(4 分) 10 4 【考点】计算、巧算 【难度】☆☆ 【答案】28;4697【分析】(1)原式 = 0.27 ⨯100 + (0.27 ⨯ 3 + 0.19) = 27 + 1 = 28 ;(2)原式 = 2013 ⨯ 7 + 2013 ÷ 4 - 2013 ÷ 4 = 2013 ⨯ 7= 4697 .3 318. 解方程:(1) 4(2x - 1) - 3(x - 2) = 7 (4 分) (2) 2 x + 5 = 4 x - 7 (4 分) 3 5【考点】计算、解方程【难度】☆☆ 【答案】 x = 1 ; x = 23【分析】(1)注意去第 2 个括号时要变号;原方程化为: 8x - 4 - 3x + 6 = 7 ,即 5x = 5 ,解得 x = 1 ;(2)通分,原方程化为:5(2x + 5) = 3(4x - 7) ,即10x + 25 = 12x - 21 ,即 2x = 46 ,解得 x = 23 .六.解答题(每题 15 分,共 30 分)19. 如图,将 1、2、3……按规律排成一个沙漏型的数表,那么,12 13 14 15上 3 行(1)下 5 行从左向右数的第 5 个数是多少?(4 分) (2)上 6 行最左边的数是多少?(4 分)(3)2013 排在哪一行的从左向右数的第多少个?(7 分) 【考点】计算、数列与数表6 7 82 3 1 5 4 11 10 9上 2 行 上 1 行 0 行下 1 行下 2 行 【难度】☆☆☆☆【答案】37;42;上 44 行从左向右第 34 个19 18 17 16下3 行【分析】(1)下 n 行从左向右第 (n + 1) 个数(即最右数)为 (n + 1)2 ;故下 5 行从左向右第 6 个数为 36,下 5 行从左向右第 5 个数为 37;(2)上 n 行从左向右第 1 个数(即最左数)为 n (n + 1) ;故上 6 行最左数为 42; (3)上 44 行从左向右第 1 个数为 44 ⨯ 45 = 1980 ,故 2013 为上 44 行从左向右第2013 - 1980 + 1 = 34 个数.20. 思思编了一个计算机程序,在屏幕上显示所有由0、1、2、3 组成的四位编码(数字可以重复使用),每个四位编码都是红、黄、蓝、绿四种颜色中的一种.并且,如果两个编码的每一位数字均不相同,那么这两个编码的颜色也不相同.如果,0000 是红色的、1000 是黄色的、2000 是蓝色的,那么:(1)下列编码中,一定不是红色的是()(2 分)A. 0102B. 0312C. 2222D. 0123(2)编码3111 是什么颜色的?(5 分)(3)编码2013 是什么颜色的?(8 分)【考点】组合,构造与论证【难度】☆☆☆☆【答案】C;绿色;蓝色【分析】(1)2222 与0000 的每一位数字均不相同,故2222 一定不是红色的,选C;(2)3111 与0000、1000、2000 的每一位数字均不相同,故3111 不是红色的,不是黄色的,也不是蓝色的,故3111 是绿色的;(3)0222 与1000、2000、3111 的每一位数字均不相同,故0222 是红色的;1222 与0000、2000、3111 的每一位数字均不相同,故1222 是黄色的;3222 与0000、1000、2000 的每一位数字均不相同,故3222 是绿色的;2013 与0222、1222、3222 的每一位数字均不相同,故2013 是蓝色的.。
第1页 共4页 第2页 共4页2015—2016年深圳学而思 超常班选拔考试五年级 数学考 生 须 知1.本试卷共4页,20道题,满分150分,考试时间90分钟. 2.在试卷上认真填写学校名称、班级和姓名.3.答案填写在答题卡上,写在试卷上无效,请用黑色字迹签字笔作答.6分,共96分,将答案填在下面的空格处) .计算:5.627856.2 2.2⨯+⨯=__________. .计算:412141+24+7137713⨯⨯⨯=__________..若A 和B 都是质数,且99A B +=,则A B ⨯=__________. .若用“⊙”表示一种运算,且满足如下关系:5x y nx y =+ ,(其中n 是一个确定的数),已知3240= ,那么56= __________. .如图,长方形ABCD 的面积是32,:5:8AB BC =,将长方形沿着B 点逆时针旋转45度得到长方形BEFG ,则阴影部分的面积是__________..小明买3支铅笔和7支钢笔需要22元,买6支铅笔和2支钢笔需要14元,则1支铅笔和1支钢笔需要__________元. .数一数,下图中有__________个正方形..已知一个没有重复数字的四位数abcd 与它的反序数dcba 的和等于9999,这个四位数最大是__________.9.在一只口袋中装有5个红色小球、6个黄色小球、7个蓝色小球、8个黑色小球,这些小球大小一样,一次最少要从中取出__________个小球,方能保证其中至少含有2个黄球.10.把一根200厘米的木棍截成若干段,每段长度都是整数厘米,要求任意三段不能组成三角形,那么这个木棍最多可以截成__________段.11.正方形ABCD 的边长是10厘米,正方形CEFG 的边长是6厘米,连接BD 、BF ,阴影部分的面积是__________平方厘米.12.一副扑克一共有54张牌(包含大小王),从中抽取3张扑克,如果3张扑克数码是相同的,例如:3张10,或3张A ,这样的牌称为“豹子”,抽到大小王可以任意代替想要的扑克,例如:抽到大王和2张8,可以说自己的牌是“豹子”,如果从这副扑克中随机抽取3张扑克,这3张扑克是“豹子”的情况有__________种. 13.将1至2015的所有正整数按顺序排成一行123456789101112131420142015 ,再将这个多位数从左往右每三个数码一组分割开,得到一串三位数123、456、789、101、112、…,请问分割得到的第99个三位数是__________.14.有些数能表示成3个连续自然数的和,又能表示成4个连续自然数的和,还能表示成5个连续自然数的和,那么1000以内满足上述要求的数的总和是__________.15.甲、乙和丙三人沿着400米环形跑道进行1000米跑比赛,当甲跑1圈时,乙比甲多跑17圈,丙比甲少跑17圈.如果他们各自跑步的速度始终不变,那么,当乙到达终点时,甲在丙前面__________米.16.小明喝一杯水,第一天喝了30毫升,第二天喝了剩下的13,第三天喝了剩下的14,第四天喝了剩下的15,…,第十天喝了剩下的111,此时还剩30毫升水没有喝,这杯水一共有__________毫升.C第3页 共4页 第4页 共4页二、解答题(一共4题,共54分,写出必要步骤,否则不得分) 17.阅读题目,回答下面两个问题.(12分) (1)1~2000这2000个整数中是3的倍数或5的倍数或7的倍数一共有多少个?(2)1001~2000这1000个整数中,既不是3的倍数,也不是5的倍数和7的倍数的数有多少个?18.两年前,弟弟年龄占哥哥和弟弟年龄之和的411,两年后,弟弟的年龄占哥哥和弟弟年龄之和的38,回答下列两个问题.(12分)(1)求两年前弟弟与哥哥的年龄比,和两年后弟弟与哥哥的年龄比;(2)今年弟弟的年龄是多少岁?19.甲、乙两船分别在一条河的A ,B 两地同时相向而行,甲顺流而下,乙逆流而上。
2016年南京五年级学而思杯答案解析1.2016年清明节是在4月4日星期一,明年的清明节恰好也在4月4日,那么明年清明节是星期__________.【考点】周期问题【答案】星期二【解析】今年4月4日到明年4月4日,一共365天,365÷7=52……1,因此明年清明节是星期二.2.学校组织同学郊游,星星收了9名同学的费用(每人交的钱一样多)交给老师,老师给了星星一张纸条,上面写着“交来郊游费136□元”.其中有一滴墨水,把方格处的数字污染得看不清了.明明看了看,很快就算出了方格处的数字.那么方格处的数字应该是__________.【考点】数论问题,9的整除特征【答案】8【解析】根据题目意思,136□是9的倍数,那么其数字和为9的倍数,那么□=8.3.中国古代使用的铜钱,无论大小,都是圆形中间有一个正方形的孔眼,如图所示.如果铜钱直径为28毫米,内部正方形的边长为8毫米,那么该铜钱的面积是__________.(其.中.π.取.3.计算..)【考点】几何问题,求面积方法【答案】524平方毫米【解析】阴影部分面积相当于圆面积减去正方形面积,22148524π⨯-=平方毫米.4.下面图形中,共有__________个三角形.【考点】计数问题【答案】155.在144、253、80、64、200、361、450、687、1111中,有__________个完全平方数.【考点】数论问题,完全平方数【答案】3个【解析】214412=,2648=,236119=.6.A 、B 两地之间相距360千米,甲、乙两人分别从两地同时出发,相向而行.甲每小时走80千米,乙每小时走100千米,那么两人相遇的时候乙比甲多走__________千米.【考点】行程问题请计算:4!!6!!3!!5!!+=__________.【考点】定义新运算【答案】8815【解析】根据题意直接计算4!!6!!42642848883!!5!!3153131515⨯⨯⨯+=+=+=⨯⨯⨯.13.红光小区中的每一户人家都至少订了A、B、C三种报纸中的一种,已知订了A报纸的有50户,订了B报纸的有40户,订了C报纸的有35户,至少订阅两种报纸的有20户,三种报纸都订阅的有8户,那么红光小区中共有__________户人家.【考点】容斥原理【答案】97户正方形BCDE和正方形ACFG【考点】几何问题【答案】50【解析】如图二,过点C作边AB的高CM,设AM=x,MB=y,那么x+y=24,在直角三角形AMC 中,2222505CM AC AM x =-=-,在直角三角形BMC 中,2222169CM BC BM y =-=-,那么可以得到方程组2224505169x y x y +=⎧⎨-=-⎩,解得195x y =⎧⎨=⎩,利用勾股定理可以得到CM =12.(1)求FO :OC ;(2)如果6OEC S ∆=平方厘米,那么梯形ABCD 的面积是多少?【考点】几何问题【答案】(1)1:1;(2)72平方厘米【解析】连接BF 和EF ,△BEF 是平行四边形ABED 的一半,△BEC 也是ABED 的一半,因此::1:1BEF BEC FO OC S S ∆∆==;如果6OEC S ∆=,那么6OEF S ∆=,12EFD S ∆=,由于F 是AD 中点,那么ABED 的面积为48,BEC 的面积为24,所以梯形ABCD 的面积为72平方厘米.。