拉曼光谱法
- 格式:docx
- 大小:24.36 KB
- 文档页数:7
拉曼光谱法的原理和应用1. 拉曼光谱法的基本原理拉曼光谱法是一种非常重要的光谱分析方法,它基于拉曼散射的原理。
拉曼散射是指当入射光与样品发生相互作用时,一部分光子的能量被转移给样品分子,然后以不同的频率重新散射出来。
这种重新散射的光子所具有的能量差值既可以是正的,也可以是负的,分别对应着被称为斯托克斯线和反斯托克斯线的拉曼散射光。
•斯托克斯线:当光子从较高的能级跃迁到较低的能级时,拉曼散射光的频率减小,能量减小,波长增加。
•反斯托克斯线:当光子从较低的能级跃迁到较高的能级时,拉曼散射光的频率增加,能量增加,波长减小。
2. 拉曼光谱法的应用领域拉曼光谱法具有广泛的应用领域,包括但不限于以下几个方面。
2.1. 材料科学•物质成分分析:拉曼光谱法可以用于材料的组成分析,通过比对样品的拉曼光谱图与数据库中的标准光谱进行比对,可以准确分析样品中的成分。
•结构表征:拉曼光谱法可以提供物质的分子结构信息,该信息可以用于研究材料的晶体结构、化学键的构型等重要参数。
•表面增强拉曼光谱:通过表面增强效应,可以提高样品的散射和检测灵敏度。
这种技术可以应用于纳米材料、生物分析、化学传感等领域。
2.2. 化学分析•溶液分析:拉曼光谱法可以用于溶液中化学物质的浓度和组成分析,具有快速、无需特殊处理的优势。
•反应动力学研究:通过监测反应溶液中物质浓度的变化,可以推断反应的动力学过程和速率常数。
2.3. 生物医学•药物分析:拉曼光谱法可以用于药物的质量控制、纯度检测等方面,具有快速、无损、无需特殊处理的特点。
•生物分子分析:拉曼光谱法可用于蛋白质、DNA、RNA等生物分子的结构和成分分析,可以研究生物分子的结构、功能和相互作用。
2.4. 环境监测•气体分析:拉曼光谱法可以用于空气污染物的检测和分析,例如检测有毒气体、工业废气等。
•土壤和水质分析:拉曼光谱法可以用于土壤和水质中的有机物、无机物的检测和分析,具有快速、无损的特点。
⼀⽂读懂拉曼光谱“昨天咱们讲了紫外分光光度计,今天就说⼀说拉曼光谱法。
”分⼦振动也可能引起分⼦极化率的变化,产⽣拉曼光谱。
拉曼光谱不是观察光的吸收, ⽽是观察光的⾮弹性散射。
⾮弹性散射光很弱,过去较难观测。
激光拉曼光谱的出现使灵敏度和分辨⼒⼤⼤提⾼,应⽤⽇益⼴泛。
拉曼散射效应的进展1928年,印度物理学家拉曼(C.V.Raman)⾸次发现曼散射效应,荣获1930年的诺贝尔物理学奖。
1928-1940年,拉曼光谱成为研究分⼦结构的主要⼿段。
1960年以后,激光技术的发展使拉曼技术得以复兴。
由于激光束的⾼亮度、⽅向性和偏振性等优点,成为拉曼光谱的理想光源。
随探测技术的改进和对被测样品要求的降低,⽬前在物理、化学、医药、⼯业等各个领域拉曼光谱得到了⼴泛的应⽤,越来越受研究者的重视。
什么是拉曼光谱分析法拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与⼊射光频率不同的散射光谱进⾏分析以得到分⼦振动、转动⽅⾯信息,并应⽤于分⼦结构研究的⼀种分析⽅法。
拉曼光谱仪原理当光线照射到分⼦并且和分⼦中的电⼦云及分⼦键结产⽣相互作⽤,就会发⽣拉曼效应。
对于⾃发拉曼效应,光⼦将分⼦从基态激发到⼀个虚拟的能量状态。
当激发态的分⼦放出⼀个光⼦后并返回到⼀个不同于基态的旋转或振动状态。
在基态与新状态间的能量差会使得释放光⼦的频率与激发光线的波长不同。
如果最终振动状态的分⼦⽐初始状态时能量⾼,所激发出来的光⼦频率则较低,以确保系统的总能量守衡。
这⼀个频率的改变被名为Stokes shift。
如果最终振动状态的分⼦⽐初始状态时能量低,所激发出来的光⼦频率则较⾼,这⼀个频率的改变被名为Anti-Stokes shift。
拉曼散射是由于能量透过光⼦和分⼦之间的相互作⽤⽽传递,就是⼀个⾮弹性散射的例⼦。
关于振动的配位,分⼦极化电位的改变或称电⼦云的改变量,是分⼦拉曼效应必定的结果。
极化率的变化量将决定拉曼散射强度。
第5章_拉曼光谱分析法拉曼光谱分析法是一种基于光散射现象的分析方法,利用样品与激光束相互作用产生的散射光谱进行定性和定量分析。
它具有非接触、无损、无需特殊处理样品等优点,可以广泛应用于材料科学、化学、生物学等领域。
拉曼光谱是一种特殊的光散射现象,它是指当光线通过样品时,与样品中的分子或晶体发生相互作用,产生了与入射光不同频率的光线。
这种频率差异所产生的光谱称为拉曼光谱。
拉曼光谱的频率差值与样品的化学成分和结构有关,因此可以通过分析拉曼光谱来确定样品的组成和结构信息。
拉曼光谱分析法的原理是基于拉曼散射的特点。
当激光束照射到样品上时,部分光会被样品吸收,其余部分则会发生拉曼散射。
拉曼散射有两个主要成分:斯托克斯散射和反斯托克斯散射。
斯托克斯散射是指散射光的频率低于入射光的情况,而反斯托克斯散射是指散射光的频率高于入射光的情况。
拉曼光谱分析主要包括拉曼散射光谱的测量和数据的处理与解析两个步骤。
在测量过程中,首先要选择合适的激光源和光谱仪器,激光的选择应该能够激发样品的拉曼散射,并且要避免与样品产生共振散射的情况。
光谱仪器则需要具备高分辨率和高灵敏度,以获取清晰的拉曼散射光谱。
数据的处理与解析是拉曼光谱分析的关键步骤。
首先需要对所得的拉曼光谱进行预处理,包括去除背景噪声、波峰的校正和峰的归一化等。
然后可以通过对光谱进行拟合和峰的分析来获得样品的组成和结构信息。
常用的数据处理方法包括主成分分析、偏最小二乘法和支持向量机等。
拉曼光谱分析法在材料科学领域有着广泛的应用。
例如,可以利用拉曼光谱分析法对纳米材料的大小、形状和晶格结构进行表征;可以通过拉曼光谱分析法对药物的纯度和杂质进行检测;可以利用拉曼光谱分析法对生物标志物进行快速识别和检测等。
此外,拉曼光谱也可以应用于环境监测、食品安全和法医学等领域。
综上所述,拉曼光谱分析法是一种非常有价值的分析手段,它通过测量样品的拉曼散射光谱来获得样品的组成和结构信息。
它具有非接触、无损、无需特殊处理样品等优点,可以应用于多个领域。
激光拉曼光谱法的原理和应用实例1. 原理激光拉曼光谱法是通过激发样品中的分子振动使其发生光散射,进而通过分析散射光子的能量变化来确定样品的组成和结构。
其原理主要涉及以下几个方面:1.1 拉曼散射拉曼散射是光与分子相互作用产生的光散射现象。
当光与样品分子相互作用时,部分光子的能量会发生改变,这种能量变化即为拉曼散射。
拉曼散射分为斯托克斯拉曼散射和反斯托克斯拉曼散射两种,其中斯托克斯拉曼散射的光子能量减小,反斯托克斯拉曼散射的光子能量增大。
1.2 激发光源激光是产生拉曼散射的关键光源。
激光具有单色性、高亮度和狭窄线宽等特点,能够提供足够的功率和光子密度。
常用的激光光源包括氦氖激光器、固体激光器和半导体激光器等。
1.3 散射光子激发样品后,样品发射出的散射光子包含了拉曼散射光子。
这些散射光子的能量在激发光子的基础上发生了变化,通过测量散射光子的能量变化可以推断出样品的振动模式和化学成分。
2. 应用实例激光拉曼光谱法在许多领域中都有广泛的应用,下面列举了几个典型的应用实例。
2.1 材料科学激光拉曼光谱法在材料科学中被用于材料的组成和结构分析。
通过测量散射光子能量的变化,可以得到材料中不同化学键的振动信息,从而确定其组成和结构。
这对于材料的研发和分析具有重要意义。
2.2 生物医学激光拉曼光谱法在生物医学领域中被广泛应用于生物分子的定量和定性分析。
通过测量生物样品中的拉曼散射光子能量变化,可以获得样品中不同化学物质的信息,包括蛋白质、核酸和脂类等。
这对于研究疾病的发生机制和诊断具有重要意义。
2.3 环境监测激光拉曼光谱法在环境监测中可用于检测和分析土壤、水和大气等环境样品中的化学物质。
通过测量散射光子的能量变化,可以确定样品中的有机物、无机物和污染物等成分,从而评估环境污染状况。
2.4 食品安全激光拉曼光谱法在食品安全检测中起到重要作用。
利用激光拉曼技术可以检测食品中的农药残留、添加剂和污染物等有害物质,确保食品的质量和安全。
拉曼光谱的原理及应用拉曼光谱由于近几年来以下几项技术的集中开展而有了更广泛的应用。
这些技术是:CCD检测系统在近红外区域的高灵敏性,体积小而功率大的二极管激光器,与激发激光及信号过滤整合的光纤探头。
这些产品连同高口径短焦距的分光光度计,提供了低荧光本底而高质量的拉曼光谱以及体积小、容易使用的拉曼光谱仪。
〔一〕含义光照射到物质上发生弹性散射和非弹性散射. 弹性散射的散射光是与激发光波长一样的成分.非弹性散射的散射光有比激发光波长长的和短的成分, 统称为拉曼效应当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大局部的光会按原来的方向透射,而一小局部则按不同的角度散射开来,产生散射光。
在垂直方向观察时,除了与原入射光有一样频率的瑞利散射外,还有一系列对称分布着假设干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。
由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。
因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。
目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子构造的研究谱线特征〔二〕拉曼散射光谱具有以下明显的特征:a.拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关;b. 在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧, 这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的能量。
c. 一般情况下,斯托克斯线比反斯托克斯线的强度大。
这是由于Boltzmann 分布,处于振动基态上的粒子数远大于处于振动激发态上的粒子数。
〔三〕拉曼光谱技术的优越性提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。
此外1 由于水的拉曼散射很微弱,拉曼光谱是研究水溶液中的生物样品和化学化合物的理想工具。
0421拉曼光谱法1拉曼光谱法是研究化合物分子受光照射后所产生的散射, 散射光与入射光能级差及化合 物振动频率、转动频率间关系的分析方法。
与红外光谱类似,拉曼光谱是一种振动光谱技术。
所不同的是,前者与分子振动时偶极 矩变化相关,而拉曼效应则是分子极化率改变的结果,被测量的是非弹性的散射辐射。
拉曼光谱采用激光作为单色光源, 将样品分子激发到某一虚态, 随后受激分子弛豫跃迁 到一个与基态不同的振动能级,此时,散射辐射的频率将与入射频率不同。
这种“非弹性散 射”光被称之为拉曼散射,频率之差即为拉曼位移(以 cm-1 为单位),实际上等于激发光的 波数减去散射辐射的波数, 与基态和终态的振动能级差相当。
频率不变的散射称为弹性散射, 即所谓瑞利散射。
如果产生的拉曼散射频率低于入射频率,则称之为斯托克散射。
反之,则 称之为反斯托克散射。
实际上,几乎所有的拉曼分析都是测量斯托克散射。
用散射强度对拉曼位移作图得到拉曼光谱图。
由于功能团或化学键的拉曼位移与它们在 红外光谱中的吸收波数相一致,所以谱图的解析也与红外吸收光谱相同。
然而,通常在拉曼 光谱中出现的强谱带在红外光谱中却成为弱谱带甚至不出现,反之亦然。
所以,这两种光谱 技术常互为补充。
拉曼光谱的优点在于它的快速,准确,测量时通常不破坏样品(固体,半固体,液体或 气体),样品制备简单甚至不需样品制备。
谱带信号通常处在可见或近红外光范围,可以有 效地和光纤联用;这也意味着谱带信号可以从包封在任何对激光透明的介质(如玻璃,塑料 内)或将样品溶于水中获得。
现代拉曼光谱仪使用简单,分析速度快(几秒到几分钟),性 能可靠。
因此, 拉曼光谱与其他分析技术联用比其他光谱联用技术从某种意义上说更加简便 (可以使用单变量和多变量方法以及校准)。
除常规的拉曼光谱外,还有一些较为特殊的拉曼技术。
它们是共振拉曼光谱,表面增强 拉曼光谱,拉曼旋光,相关-反斯托克拉曼光谱,拉曼增益或减失光谱以及超拉曼光谱等。
拉曼光谱法
拉曼光谱法是一种无损化学分析技术,可进行化学鉴定,验证以及筛选。
它是特定物质所独有的,被称为拉曼光谱。
拉曼光谱法是一种常用的分子特征光谱分析技术,可用于测量各种有机物、无机物以及金属等物质的结构和性质。
但是,因为拉曼光谱测量的复杂性有限,不能满足碳纳米管结构的复杂性。
碳纳米管是由碳原子排列成球状结构的一种纳米结构,它的结构比拉曼光谱中测量的元素结构更为复杂,因此拉曼光谱无法准确测量碳纳米管。
拉曼光谱法也无法测量碳纳米管的高度有序的结构,因此,。
相反,碳纳米管的研究可通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)和热重分析(TGA)等技术来完成。
扫描电子显微镜可用于检测碳纳米管的形状和粗糙度,TEM可用于检测碳纳米管的原子结构,XRD可用于检测碳纳米管的高度有序的结构,而TGA可以用于检测碳纳米管的热特性。
拉曼光谱的测试方法拉曼光谱是一种非破坏性的测试方法,使用激光照射在样品上,并测量反散射光的频率和强度来确定样品的化学成分和结构。
以下是拉曼光谱测试的步骤:1. 准备样品:将样品放在透射性好的样品支架上,并保持样品表面干净。
2. 照射样品:使用一束激光照射样品。
激光的功率应适当,不要太强,以免烧掉样品。
3. 收集反散射光:收集样品反散射光的频率和强度。
可以使用拉曼光谱仪,该仪器是一种特殊的光谱仪,可以将反散射光分散成不同的波长,并测量它们的强度和频率。
4. 处理数据:使用计算机处理数据,得出样品的拉曼光谱图。
该图可以帮助分析样品的化学成分和结构。
拉曼光谱测试方法的优点包括:1. 非破坏性:拉曼光谱测试不会破坏样品,可以对样品进行多次测试。
2. 高灵敏度:拉曼光谱测试可以检测到非常小的化学变化,如杂质的存在或样品受到的环境影响。
3. 非侵入性:拉曼光谱测试可以在不破坏样品或改变样品性质的情况下进行。
4. 即时测试:拉曼光谱测试可以快速进行,并可以在几分钟内得到测试结果。
5. 广泛应用:拉曼光谱测试可以用于分析多种样品,如液体、固体、气体和生物样品等。
虽然拉曼光谱测试具有许多优点,但也有一些缺点,例如:1. 灵敏度限制:对于某些样品,拉曼光谱测试可能无法提供足够的灵敏度。
2. 仪器成本:相对于其他测试方法,拉曼光谱仪的价格较高。
3. 处理复杂样品:拉曼光谱测试可能无法处理非常复杂的样品,因为反散射光的频率和强度可能会受到多种因素的影响。
总体而言,拉曼光谱测试是一种重要的化学分析工具,可以用于研究化学成分、材料学和生物学等多个领域的研究。
拉曼光谱和紫外光谱的区别主要体现在以下两个方面:
1. 吸收波长:拉曼光谱法中,样品吸收的是拉曼散射产生的电磁辐射,而紫外光谱法中,样品吸收的是
紫外波段的电磁辐射。
2. 产生的机制:拉曼光谱是由分子中电子能级,振动和转动能级的变化产生的,表现为带光谱。
紫外光
谱则是基于物质与辐射能作用时,测量由物质内部发生量子化的能级之间的跃迁产生的发射、吸收或者散射辐射的波长和强度进行分析的方法。
以上信息仅供参考,如需了解更多信息,建议查阅专业书籍或咨询专业人士。
总的来说,拉曼光谱和紫外光谱的主要区别在于它们所研究的电磁辐射的波长范围以及这些光谱是如何产生的。
拉曼光谱法0421拉曼光谱法1拉曼光谱法是研究化合物分子受光照射后所产生的散射,散射光与入射光能级差及化合物振动频率、转动频率间关系的分析方法。
与红外光谱类似,拉曼光谱是一种振动光谱技术。
所不同的是,前者与分子振动时偶极矩变化相关,而拉曼效应则是分子极化率改变的结果,被测量的是非弹性的散射辐射。
拉曼光谱采用激光作为单色光源,将样品分子激发到某一虚态,随后受激分子弛豫跃迁到一个与基态不同的振动能级,此时,散射辐射的频率将与入射频率不同。
这种“非弹性散射”光被称之为拉曼散射,频率之差即为拉曼位移(以cm-1 为单位),实际上等于激发光的波数减去散射辐射的波数,与基态和终态的振动能级差相当。
频率不变的散射称为弹性散射,即所谓瑞利散射。
如果产生的拉曼散射频率低于入射频率,则称之为斯托克散射。
反之,则称之为反斯托克散射。
实际上,几乎所有的拉曼分析都是测量斯托克散射。
用散射强度对拉曼位移作图得到拉曼光谱图。
由于功能团或化学键的拉曼位移与它们在红外光谱中的吸收波数相一致,所以谱图的解析也与红外吸收光谱相同。
然而,通常在拉曼光谱中出现的强谱带在红外光谱中却成为弱谱带甚至不出现,反之亦然。
所以,这两种光谱技术常互为补充。
拉曼光谱的优点在于它的快速,准确,测量时通常不破坏样品(固体,半固体,液体或气体),样品制备简单甚至不需样品制备。
谱带信号通常处在可见或近红外光范围,可以有效地和光纤联用;这也意味着谱带信号可以从包封在任何对激光透明的介质(如玻璃,塑料内)或将样品溶于水中获得。
现代拉曼光谱仪使用简单,分析速度快(几秒到几分钟),性能可靠。
因此,拉曼光谱与其他分析技术联用比其他光谱联用技术从某种意义上说更加简便(可以使用单变量和多变量方法以及校准)。
除常规的拉曼光谱外,还有一些较为特殊的拉曼技术。
它们是共振拉曼光谱,表面增强拉曼光谱,拉曼旋光,相关-反斯托克拉曼光谱,拉曼增益或减失光谱以及超拉曼光谱等。
其中,在药物分析应用相对较多的是共振拉曼和表面增强拉曼光谱法。
⑴ 共振拉曼光谱法当激光频率接近或等于分子的电子跃迁频率时,可引起强列的吸收或共振,导致分子的某些拉曼谱带强度急剧增强数百万倍,这就是共振拉曼效应。
许多药物在紫外-可见光区有强的电子跃迁。
某些含发色团化合物的拉曼光谱因共振而增强,而其基体物质的光谱却不会增强。
共振拉曼技术与常规拉曼光谱技术不同之处在于要求光源可变,可调谐染料激光器是获得共振拉曼光谱的必要条件。
有些化合物可通过化学反应改变其结构,使之最大吸收峰接近激发光频率,如生成有色化合物,然后再进行共振拉曼光谱测定也是一个提高灵敏度的有效方法。
共振拉曼技术由于灵敏度高而特别适用于药物和生物大分子的研究。
但伴随样品本身或由杂质引起的荧光,以及对仪器如激光光源的更高要求,限制了共振拉曼光谱的应用。
⑵ 表面增强拉曼光谱法(SERS)吸附在极微小金属颗粒表面或其附近的化合物(或离子)的拉曼散射要比该化合物的常 3 6 规拉曼散射增加10 ~10 倍。
这种表面增强拉曼散射(SERS)在银表面上最强,在金或铜的表面上也可观察到。
SERS 现象主要由金属表面基质受激而使局部电磁场增强所引起,效应的强弱取决于与光波长相对应的表面粗糙度大小,以及和波长相关的复杂的金属电介质作用的程度。
许多SERS 基质可以用于药物分析,最常用的包括溶胶,电极,电介质表面金属膜等。
1本法由原指导原则改为测定方法收载,并对个别处的文字进行修改。
带孤对电子或π 电子云的分子呈现的SERS 效应最强,其他芳氮或含氧化合物,如芳胺和酚,也具有强的SERS 活性,这一效应在其他电负性功能团如羧酸中也能观察到。
从少数分子获得大量结构信息的可能性使得SERS 可用于解决高灵敏度化学分析的许多问题。
在表面增强拉曼光谱中,荧光的干扰可有效地得到抑制。
定性和含量测定1、定性鉴别拉曼光谱可提供样品分子中存在何种功能团的结构信息,所以可用于鉴别试验和结构解析。
在相同的测定条件下,绘制供试品与对照品的拉曼光谱并进行比对,若相同,即可鉴别为同一化合物。
如遇多晶现象,可参照红外鉴别的相关内容进行处理。
2、含量测定拉曼谱带的强度与待测物浓度的关系遵守比尔定律:IV = KLCI 0其中IV 是给定波数处的峰强,K 代表仪器和样品的参数,L 是光路长度,C 是样品中特定组分的摩尔浓度, I 0 是激光强度。
实际工作中,光路长度被更准确的描述为样品体积,这是一种描述激光聚焦和采集光学的仪器变量。
上述等式是拉曼光谱用于定量的基础。
3、影响定量测定的因素最主要的干扰因素是荧光、样品的热效应和基质或样品自身的吸收。
在拉曼光谱中,荧光干扰表现为一个典型的倾斜宽背景。
因此,荧光对定量的影响主要为基线的偏离和信噪比的下降,荧光的波长和强度取决于荧光物质的种类和浓度。
与拉曼散射相比,荧光通常是一种量子效率更高的过程,甚至很少量不纯物质的荧光也可以导致显著的拉曼信号降低。
使用更长的波长例如 785nm 或 1064nm 的激发光可使荧光显著减弱。
然而,拉曼信号的强度与λ-4 成比例,λ是激发波长。
通过平衡荧光干扰、信号强度和检测器响应可获得最佳信噪比。
测量前将样品用激光照射一定时间,固态物质的荧光也可得以减弱。
这个过程被称为光致漂白,是通过降解高吸收物质来实现的。
光致漂白作用在液体中并不明显,可能是由于液体样品流动性,或荧光物质不是痕量。
样品加热会造成一系列的问题,例如物理状态的改变(熔化),晶型的转变或样品的烧灼,这是有色的、具强吸收或低热传导的小颗粒物质常出现的问题。
样品加热的影响通常是可观察的,表现在一定时间内拉曼光谱或样品的表观变化。
除了减少激光通量,有许多种方法可用来降低热效应,例如在测量过程中移动样品或激光,或者通过热接触或液体浸入来改善样品的热传导。
基质或样品本身也可吸收拉曼信号。
在长波傅里叶变换拉曼系统中,拉曼信号可以与近红外的泛频吸收重叠。
这种影响与系统的光学以及样品的形态有关。
装填和颗粒大小的差异而引起的固体散射的可变性与这种效应有关。
然而,由于在拉曼光谱中样品的有限穿透深度和相对狭窄的波长范围,所有这些效应的大小都没有近红外光谱严重。
定量拉曼光谱与许多其它的光谱技术不同,它是单光束零背景测量。
谨慎地进行样品测定以及使用设计合理的仪器可以使这种变异减到最小,但是并不能全部消除。
所以,绝对的拉曼信号强度很难直接用于待测物的定量。
变异的潜在来源是样品的不透明性和样品的不均匀性、照射样品的激光功率的变化以及光学几何学或样品位置的变化。
这些影响可以通过能重复的或有代表性的样品处置方式予以减小。
由于拉曼信号绝对强度的波动,使用内标是最普通和有效的减少可变性的方法。
内标方法有几种变通选择。
可以有目的地加入一种内标,该内标应具有与待测物互不干扰的独特谱带以便检测。
在溶液中,也可利用溶剂的独特谱带,因为溶剂随样品不同将相对保持不变。
另外,在制剂中,如果赋形剂量大大超过待测组分,则可以使用该赋形剂的峰。
在假设激光和样品定位的改变将会同等地影响全光谱的前提下,全光谱同样可以用作参比。
样品测定中需考虑的重要因素还有光谱的污染。
拉曼是一种可以被许多外源影响掩蔽的弱效应。
普通的污染源包括样品支持物(容器或基质)和周围光线。
通常,这些问题可以通过细致的实验方法来识别和解决。
仪器装置根据获得光谱的方式,拉曼光谱仪可分为FT 拉曼光谱仪和色散型拉曼光谱仪,但所有的现代拉曼光谱仪均包括激光光源、样品装置、滤光器、单色器(或干涉仪)和检测器等。
⑴ 激光光源表 1 列出几种在药学应用中经常使用的激光。
紫外激光有时也有特殊应用,但是由于种种原因在常规分析中很少采用。
表 1:药学应用中的主要激光光源激光波长λ ,纳米(近似整数)近红外激光 1064 785 紫外-可见光 488–632.8 紫外-可见离子气和固态,双频率激光染料激光器可调在紫外和可见光区可调荧光风险最大 1W 488–781 荧光风险固态(钕:YAG)最大 3W 二极管最大 1075–1563 791–1027 常在傅里叶变换仪器中使用在多数色散拉曼仪中配置 500MW 类型激光典型功率波长范围(纳米)斯托克区域(100cm ~3000 cm )–1 –1注释⑵ 样品装置可有各种各样的样品放置方式,包括直接的光学界面,显微镜,光纤探针(不接触或光学浸入)和样品室(包括特殊的样品盛器和自动样品转换器)。
样品光路也可设计成能获得偏振相关拉曼光谱,这种光谱通常包含附加信息。
样品装置的选择应根据待测物的具体情况(如样品的状态、体积等)以及测量的速度,激光的安全性和样品图谱的质量要求等决定。
⑶ 滤光装置激光波长的散射光(瑞利光)要比拉曼信号强几个数量级,必须在进入检测器前滤除。
普遍采用的是陷波滤波器,它具有滤波效果好和体积小等优点。
另外,为防止样品不被外辐射源(如房间灯光、激光等离子体)照射,需要设置适宜的滤波器或者物理屏障。
⑷ 光波处理装置光波信号可通过色散或者干涉(傅里叶变换)来处理。
任何合格仪器都适用于定性鉴别。
然而,选择定量测定用仪器时,应注意色散和线性响应可能在整个波谱范围内并不均衡(例如当使用阶梯光栅分光镜时)。
⑸ 检测器硅质 CCD 是色散仪器中最常用的检测器。
这种冷却的阵列检测器允许在低噪声下快速全光谱扫描,常与通常使用的 785 纳米二极管激光器配合使用。
傅里叶变换仪器通常采用单通道锗或铟-镓-砷化合物(InGaAs)检测器以配合钕:钇-铝-石榴红(Nd:YAG)1064 纳米的激光器在近红区使用。
仪器校正拉曼仪器的校准包括三个要素:初始波长(X 轴)、激光波长以及强度(Y 轴)。
仪器供应商应提供可由用户可以执行的对仪器相关参数校准的方法。
除另有规定外,使用者应根据仪器所提供的校准方法制定具体的SOP,并严格按照SOP 对上述参数进行验证。
特别需要注意的是,激光波长变化可影响仪器的波长精度和光度(强度)精度。
即使是最稳定的激光器,在使用过程中其输出波长也会有轻微变化。
所以,激光波长必须经校正以确保拉曼位移的准确性。
可以使用仪器供应商提供的拉曼位移标准参考物质进行定期校正。
某些仪器可以用一种拉曼内标物与初级光路分离,外在校准装置通过散射辐射准确地重现这一光路。
推荐使用外部参考标准对仪器进行校正。
方法验证必须对方法进行验证,至少应考察准确度、精密度等主要指标。
但这些指标受诸多可变因素的影响,其中荧光可能是影响方法适用性的主要因素。
样品中荧光杂质的存在完全随样品而异。
所以,方法必须能适应不同的样品体系,必须足以将杂质的影响降到最小。
检测器的线性必须适应可能的信号水平范围。
荧光可能使信号基线比验证时高,这时必须设法将荧光减弱或者使验证的方法适应较高的荧光水平。
这一要求对方法的精密度,检测限(LOD)和定量限(LOQ)同样适用,因为基线噪声的增加会对这些数值产生影响。