控制图类型
- 格式:docx
- 大小:106.02 KB
- 文档页数:8
控制图的类型2011-5-12 16:54|发布者: 小编H|查看: 2293|评论: 5摘要: 4.2.1 均值极差图――对于计量型数据而言,这是最常用最基本的控制图。
它用于控制对象为长度、重量、强度、纯度、时间和生产量等计量值的场合...4.2.1 均值极差图――对于计量型数据而言,这是最常用最基本的控制图。
它用于控制对象为长度、重量、强度、纯度、时间和生产量等计量值的场合。
Xbar控制图用于观察分布均值的变化,R控制图用于观察分布的分散情况或变异度的变化,Xbar-R图将二者联合运用,用于观察分布的变化。
4.2.2 均值极差图――控制图是用标准差图(S图)代替极差图(R图)。
极差计算简便,故R图得到广泛应用,但当样本大小n>10或n>12,这时用极差估计总体标准差的效率降低,要用S图来代替R图。
4.2.3 中位数极差图――用中位数图(Xmed图)代替均值图(Xbar图)。
中位数指一组按大小顺序排列的数列中居中的数。
例如,在数列2、3、7、13、18,中位数为7,在数列2、3、7、9、13、18,有偶数个数据,中位数规定为中间两个数的均值,即=8。
中位数的计算比均值简单,多用于现场需要把测定数据直接记入控制图进行控制的场合,为了简便,规定用奇数个数据。
4.2.4 单值移动极差图――用于对每一个产品都进行检验,采用自动化检查和测量;取样费时、昂贵以及化工过程,样品均匀,多抽样也无太大意义的场合。
X-Rs不能获得较多的信息,判断过程变化的灵敏度要差一些。
4.2.5 指数权重移动均值图4.2.6 运行图――运行图不是控制图,它只直接反映产品质量特性数据的变化情况,而没有反应过程统计受控的稳定控制线。
仅仅供掌握测量值的变化曲线。
4.2.7 预控图――它根据用户给定的控制百分率来确定控制线的一种控制图,该控制图分别以红,黄,绿三种颜色区域表示过程失控,警戒和受控状态。
控制线计算简单方便,控制图清晰醒目。
系统集成项目管理工程师教程各种图的总结目录帕累托图 (3)一、定义 (3)二、最优 (3)三、最优的条件 (4)四、定律 (4)鱼骨图 (6)一、定义 (6)二、鱼骨图的三种类型 (6)三、鱼骨图制作 (6)四、鱼骨图使用步骤 (7)五、鱼骨图案例分析 (8)六、用统计工具软件MINTAB制作鱼骨图 (8)散点图 (9)条形图 (10)一、简介 (10)二、描绘条形图的要素 (10)直方图 (12)一、科技名词定义 (12)二、百科名片 (12)三、目录 (12)四、直方图的绘制方法 (13)五、用直方图来观察和分析生产过程质量状况 (13)六、如何判断直方图是否正常的形状: (14)七、直方图在摄影上的应用 (16)趋势图 (17)一、简介 (17)二、柱形图 (17)控制图 (20)一、百科名片 (20)二、定义 (20)三、作用 (21)四、控制图的预防原理 (21)五、统计过程控制的实质 (21)六、计量值控制图 (22)七、计数值控制图 (22)八、判断稳态的准则 (23)九、应用控制图需要考虑的问题 (24)十、基本结构 (25)十一、详细分类 (25)十二、扩展阅读 (25)帕累托图一、定义帕累托图又叫排列图、主次图,是按照发生频率大小顺序绘制的直方图,表示有多少结果是由已确认类型或范畴的原因所造成。
它是将出现的质量问题和质量改进项目按照重要程度依次排列而采用的一种图表。
可以用来分析质量问题,确定产生质量问题的主要因素。
按等级排序的目的是指导如何采取纠正措施:项目班子应首先采取措施纠正造成最多数量缺陷的问题。
从概念上说,帕累托图与帕累托法则一脉相承,该法则认为相对来说数量较少的原因往往造成绝大多数的问题或缺陷。
帕累托图排列图用双直角坐标系表示,左边纵坐标表示频数,右边纵坐标表示频率.分析线表示累积频率,横坐标表示影响质量的各项因素,按影响程度的大小(即出现频数多少)从左到右排列,通过对排列图的观察分析可以抓住影响质量的主要因素.帕累托法则往往称为二八原理,即百分之八十的问题是百分之二十的原因所造成的。
控制图应用的原理1. 什么是控制图控制图是一种用来监控和分析过程质量的统计工具。
它通过收集和绘制过程数据,帮助我们了解过程中的变化情况,并提供了一种方法来判断是否存在特殊原因变异。
2. 控制图的作用控制图可以帮助我们:•监控过程质量:通过绘制并分析控制图,我们可以及时发现过程中的变化,并采取相应措施来提高质量。
•判断过程稳定性:通过控制图上的控制限,我们可以判断过程是否处于稳定状态。
•辨别特殊原因变异:控制图能够帮助我们识别特殊原因变异,即那些超出正常变异范围的异常情况。
•提供数据分析依据:控制图上的数据可以用于统计分析,帮助我们识别并改进问题。
3. 控制图的常见类型控制图根据数据类型可以分为多种类型,常见的控制图有:•X-bar 控制图:用于监控样本均值的变化情况。
•R 控制图:用于监控样本范围(极差)的变化情况。
•S 控制图:用于监控样本标准差的变化情况。
•P 控制图:用于监控样本不良品率的变化情况。
• C 控制图:用于监控样本计数的变化情况。
4. 控制图的原理控制图的原理是基于统计学中的过程稳定性概念和常见分布假设。
4.1 过程稳定性过程稳定性是指一个过程在一段时间内保持在稳定状态,即可预测性和可控性。
如果一个过程是稳定的,其输出会在一个可预测的范围内波动。
控制图通过绘制上下控制限来判断过程是否稳定。
如果数据点落在控制限内,说明过程在统计上是稳定的;如果数据点超出控制限,说明过程可能出现了特殊原因变异。
4.2 正态分布假设控制图利用正态分布假设来判断过程的稳定性。
根据中心极限定理,当样本数量足够大时,样本平均值会近似服从正态分布。
绘制控制图时,我们通常假设样本平均值的分布是正态的,并以此为基础计算控制限。
4.3 控制限的计算方法控制限是用于判断过程稳定性的参考线。
通常情况下,控制限由平均线、上控制限和下控制限组成。
上控制限和下控制限的计算方法通常有以下几种:•3σ原则:上控制限等于平均值加上3倍标准差,下控制限等于平均值减去3倍标准差。
控制图控制图(Control chart)又称为管理图、休哈特图。
由美国贝尔实验室的休哈特博士于1924年发明。
控制图是以假设检验原理为基础设置统计控制线,按照时间坐标记录独立测量值、平均值或其他统计量的折线图,用以区分过程中的异常波动与正常波动,并判断过程是否处于统计过程控制状态的一种工具。
一. 控制图的类型根据控制图在过程控制中所处的阶段,可将控制图分为分析用控制图和管理用控制图,如图1所示。
分析用控制图主要用于分析过程是否处于统计过程控制状态,并对过程的总体参数进行估计。
若分析表明过程处于统计过程控制状态且满足预期的要求,则将分析用控制图的控制界限延长,用作管理用控制图,实现对产品生产过程进行连续监控,及时发现过程的异常波动。
图1 平均值-极差控制图控制图可以用来显示各种不同数据类型的质量特性的波动,常用的控制图类型与适用场合如表1所示。
表1 常用控制图类型与适用场合二. 控制图的基本原理控制图的设计原理可以概括为“正态性”假定、“3σ”原则、“小概率事件不发生”原理和“统计反证推断”思想。
具体说就是,假定所收集的质量特性数据服从正态分布,在此假定下,过程特性值落在分布中心上下各三倍标准差范围内的概率是99.73%,也就是说质量特性值落在上下三倍标准差之外的概率仅为0.27%,这是一个小概率事件,而“小概率事件不发生”原理认为小概率事件在一次观测中不发生,因此,一旦控制图出现“小概率事件发生”的现象,则表明过程发生了异常变化,这就是“统计反证推断”思想。
表2和表3分别表示计量值控制图和计数值控制图的中心线和控制界限的公式,以及样本量的确定。
表2 计量值控制图的中心线和控制界限表3 计量值控制图的中心线和控制界限三. 控制图的应用控制图显示随时间采集的数据和由这些数据计算出的波动;控制图与过程能力分析结合在一起称为统计过程控制(SPC)。
图2是一个典型的SPC的应用流程。
图2 典型的SPC的应用流程。
过程质量控制常用10种工具控制图常见的图形及原因分析过程质量控制常用10种工具一,矩阵图把问题及与其有对应关系的各因素按数学矩阵形式排列,并在其交点处标出三者之间关系程度,从中确定关键点。
是中、高层管理人员计划,控制的管理方法之一。
二,水平对比法利用量化的标准,寻找行业“最佳做法”,将过程和结果,效益同公认的处于领先地位的竞争者的过程,结果和效益进行比较,从而认清目标,并据此进行过程和系统化的改进。
是高层管理人员的重要管理工具。
三,平衡记分卡通过由顾客(下过程,下工序),过程管理,效益(质量)指标和学习、能力成长等四个项目组成的四维度矩阵表,将企业的目标,岗位的职能任务逐一转化为量化的指标和初始行动,从而进行全面评价和考核,避免片面性。
是企业绩效评价和考核的基本模式工具。
四,过程决策程序图为了完成某个项目业务或达到某个目标,在制定行动计划或方案设计时,预测可能出现的障碍和结果。
并相应提出各种应变计划的方法,这样在计划执行过程中遇到不利情况时,仍能按其他方案顺利进行,以达到预定的计划目标。
是中、高曾管理决策,组织领导的基本工具。
五,统筹法(网络图)把推进计划所必须的各过程和作业,按顺序,占用时间,从属关系,用网络形式表示出矢线走向,找出影响工作计划进度的关键和非主导因素,从而进行统筹,协调。
取得最佳结果。
是计划管理非常有效的控制工具,方法。
六,因果图用来揭示过程的输出,缺陷和问题,与其潜在原因的关系,表述并分析其因果关系。
是管理和作业中进行偏差纠正的重要方法。
七,排列图帕累托原则:80%的结果源于20%的原因。
比较不同的问题原因和问题类型所导致缺陷产生的频率及其生产的影响,选出最重要的改进项中的优先项目,确定关键变量或决定主要原因,进行解决。
是管理工作中找出关键点的基本数据分析方法。
八,散步图验证因果假设的一种途径,从若干成对数据中验证自变量与因变量之间是否存在相关关系。
是管理层对工作过程输出结果进行数据分析的基本工具。
控制图的类型及用途
1.Xbar-R控制图Xbar-R.zip
对于计量数据而言,这是常用最基本的控制图。
它的控制对象为长度、重量、纯度、时间和生产量等计量值的场合。
2.Xbar-S控制图Xbar-S.zip
当样本大小n>10或12,这时应用极差估计总体标准差的效率降低,需要用S 图来代替R图。
3.Me-R控制图Me-R.zip
用中位数图代替均值图。
由于中位数的计算觉得,所以多用于现场需要把测定的数据直接记人控制图进行控制的场合,这时为了简便,当然规定奇数个数据。
4.X-Rs,控制图X-Rs.zip
多用于下列场合:对每一个产品都进行检验,采用自动化检查和测量的场合;取样费时、昂贵的场合以及如化工等过程,样品均匀,多抽样也无太大的意义的场合。
由于它不像前三种那样能取得较多的信息,所以它判断过程变化的灵敏都也要差一些。
5.p控制图p-chart.zip
用于控制对象为不合格品率或合格率等计数值质量指标的场合。
常见的不良率有不合格品率、废品率、交货延迟率、缺勤率、差错率等等。
6.np控制图np-chart .zip
用于控制对象为不合格品数的场合。
由于计算不合格品率需要进行除法,比较麻烦,所以样本大小相同的情况下,用此图比较方便。
7.C控制图c-chart .zip
用于控制一部机器,一个部件一定的长度,一定的面积或任一定的单位中所出现的缺陷数目。
8.U控制图u-chart .zip
当样品的大小保持不变时可用C控制图,而当样品的大小变化时则应换算为平均每单位的缺陷数后再使用U控制图。
控制图控制图就是对生产过程的关键质量特性值进行测定、记录、评估并监测过程是否处于控制状态的一种图形方法。
根据假设检验的原理构造一种图,用于监测生产过程是否处于控制状态。
它是统计质量管理的一种重要手段和工具。
英文control chart定义控制图又称为管制图。
第一张控制图诞生于1924年5月16日,由美国的贝尔电话实验所的休哈特(W.A.Shewhart)博士在首先提出管制图使用後,管制图就一直成控制图为科学管理的一个重要工具,特别方面成了一个不可或缺的管理工具。
它是一种有控制界限的图,用来区分引起的原因是偶然的还是系统的,可以提供系统原因存在的资讯,从而判断生产过於受控状态。
控制图按其用途可分为两类,一类是供分析用的控制图,用来控制生产过程中有关质量特性值的变化情况,看工序是否处於稳定受控状;再一类的控制图,主要用於发现生产过程是否出现了异常情况,以预防产生不合格品。
作用在生产过程中,产品质量由于受随机因素和系统因素的影响而产生变差;前者由大量微小的偶然因素叠加而成,后者则是由可辨识的、作用明显的原因所引起,经采取适当措施可以发现和排除。
当一生产过程仅受随机因素的影响,从而产品的质量特征的平均值和变差都基本保持稳定时,称之为处于控制状态。
此时,产品的质量特征是服从确定概率分布的随机变量,它的分布(或其中的未知参数)可依据较长时期在稳定状态下取得的观测数据用统计方法进行估计。
分布确定以后,质量特征的数学模型随之确定。
为检验其后的生产过程是否也处于控制状态,就需要检验上述质量特征是否符合这种数学模型。
为此,每隔一定时间,在生产线上抽取一个大小固定的样本,计算其质量特征,若其数值符合这种数学模型,就认为生产过程正常,否则,就认为生产中出现某种系统性变化,或者说过程失去控制。
这时,就需要考虑采取包括停产检查在内的各种措施,以期查明原因并将其排除,以恢复正常生产,不使失控状态延续而发展下去。
通常应用最广的控制图是W.A.休哈特在1925年提出的,一般称之为休哈特控制图。
控制图类型的绘制引言控制图是一种用于监控和评估过程稳定性的图表工具。
它能够帮助我们识别过程中的特殊因素和异常情况,从而及时采取措施进行调整和改进。
控制图有许多类型,每种类型都适用于不同的情况和数据类型。
本文将介绍几种常见的控制图类型,并详细介绍它们的绘制方法和解读方法。
1. 均值图均值图是用于监控数据的中心趋势的一种控制图。
它通过绘制数据的均值和控制线来反映过程的稳定状态。
下面是均值图的绘制步骤:1.收集数据,计算每组数据的平均值。
2.确定控制线的位置。
通常有一个中心线(平均值的线)和上下限,上下限可以通过计算平均值的标准差得到。
3.将数据的平均值绘制在均值图上。
4.根据控制线的位置,判断数据的稳定性。
均值图的解读方法是观察数据是否在控制线内波动,如果有超出控制线的数据点出现,则可能表示过程存在特殊因素。
2. 范围图范围图是用于监控数据的变异性的一种控制图。
它通过绘制数据的范围和控制线来反映过程的稳定状态。
下面是范围图的绘制步骤:1.收集数据,计算每组数据的范围(最大值减去最小值)。
2.确定控制线的位置。
通常有一个中心线和上下限,上下限可以通过计算范围的标准差得到。
3.将数据的范围绘制在范围图上。
4.根据控制线的位置,判断数据的稳定性。
范围图的解读方法是观察数据的范围是否在控制线内波动,如果有超出控制线的范围出现,则可能表示过程存在特殊因素。
3. 标准差图标准差图是用于监控数据的离散程度的一种控制图。
它通过绘制数据的标准差和控制线来反映过程的稳定状态。
下面是标准差图的绘制步骤:1.收集数据,计算每组数据的标准差。
2.确定控制线的位置。
通常有一个中心线和上下限,上下限可以通过计算标准差的标准差得到。
3.将数据的标准差绘制在标准差图上。
4.根据控制线的位置,判断数据的稳定性。
标准差图的解读方法是观察数据的标准差是否在控制线内波动,如果有超出控制线的标准差出现,则可能表示过程存在特殊因素。
4. p图p图是用于统计控制的一种控制图。
控制图与过程能力分析控制图是一种用于监控过程稳定性和一致性的工具,它通过监控产品或过程的变异性来确保产品质量以及生产效率。
在工业生产中,控制图被广泛应用于监控制造过程中的变异性,以便及时发现和纠正问题,从而确保产品的稳定性和一致性。
与此同时,过程能力分析则是用于评估制造过程的稳定性和一致性的工具,它可以帮助企业确定其生产过程是否能够满足产品质量要求。
因此,控制图与过程能力分析在生产管理中扮演着至关重要的角色。
控制图的原理和类型控制图是一种通过统计方法来监控过程稳定性的工具,它可以帮助生产者及时发现和纠正生产过程中的问题。
控制图的原理是将生产过程中的数据进行分类,然后根据统计学方法对数据进行分析,以便确定过程是否处于稳定状态。
控制图的基本原理是将数据按照时间顺序绘制在图表上,并根据统计学规则来判断生产过程的稳定性。
常见的控制图类型包括X-bar图、R 图、P图和C图等,每种类型的控制图都有着不同的应用范围和适用条件。
X-bar图是一种用于监控过程平均值的控制图,它可以帮助生产者了解生产过程的变异情况。
R图则是用于监控过程变异性的控制图,它可以帮助生产者了解生产过程的一致性。
P图和C图则是用于监控不合格品率的控制图,它们可以帮助生产者了解生产过程的品质情况。
通过绘制这些不同类型的控制图,生产者可以全面了解生产过程的稳定性和一致性,从而及时发现和纠正生产过程中的问题。
过程能力分析的原理和方法过程能力分析是一种用于评估生产过程稳定性和一致性的工具,它可以帮助企业确定其生产过程是否能够满足产品质量要求。
过程能力分析的原理是通过统计方法对生产过程的数据进行分析,以便评估过程的稳定性和一致性。
常见的过程能力指标包括过程能力指数(Cp)、过程能力指数(Cpk)以及过程性能指数(Pp)和过程性能指数(Ppk)等,它们可以帮助企业全面了解生产过程的稳定性和一致性。
通过计算这些过程能力指标,企业可以全面了解生产过程的稳定性和一致性,从而确定生产过程是否能够满足产品质量要求。
控制图控制图(Control Chart )又称管理图、休哈特图,是一种将显著性统计原理应用于控制生产过程的图形方法。
控制图是区分过程中正常波动和一场波动,并判断过程是否处于控制状态的一种工具。
正常波动是由普通原因(偶然因素、随机因素)造成的,这些因素在生产过程中大量存在,对产品质量经常发生影响,但它造成的质量波动往往比较小,在生产过程中是允许存在的,如材料成分的微小变化、设备的轻微震动、刃具的正常磨损、夹具的弹性变型等;一场波动是由特殊原因(异常因素、系统因素造成的。
这些因素在生产过程中并不大量存在,对产品质量也不经常发生影响,一旦存在,它对产品质量的影响就比较显著,如机器设备带病运转,操作者违章操作等。
控制图的控制界限就是用来区分正常波动和异常波动的。
1、控制图的基本结构1)以随时间推移而变动着的样品号为横坐标,以质量特性值或其统计量为纵坐标; 2)三条具有统计意义的控制线:上控制线UCL 、中心线CL 、下控制线LCL ; 3)一条质量特性值或其统计量的波动曲线。
2、控制图原理的解释 第一种解释:“点出界就判异”小概率事件原理:小概率事件实际上不发生,若发生即判异常。
控制图就是统计假设检验的图上作业法。
第二种解释:“抓异因,弃偶因”控制限就是区分偶然波动与异常波动的科学界限。
休哈特控制图的实质就是区分偶然因素与异常因素的。
UCLLCL样本统计量数值x 或R14 15 16 17 18按用途分类1)分析用控制图——用于质量和过程分析,研究工序或设备状态;或者确定某一“未知的”工序是否处于控制状态;2)控制用控制图——用于实际的生产质量控制,可及时的发现生产异常情况;或者确定某一“已知的”工序是否处于控制状态。
4、R X -图的绘制1)确定控制对象(统计量)一般应选择技术上最重要的、能以数字表示的、容易测定并对过程易采取措施的、大家理解并同意的关键质量特性进行控制。
2)选择控制图对于计量数据而言,R X -控制图是最常用最基本的。
控制图(Control Chart)又叫管制图,是对过程质量特性进行测定、记录、评估,从而监察过程是否处于控制状态的一种用统计方法设计的图。
有三条平行于横轴的直线:中心线(CL,Central Line)、上控制线(UCL,Upper Control Line)和下控制线(LCL,Lower Control Line),并有按时间顺序抽取的样本统计量数值的描点序列。
UCL、CL、LCL统称为控制线(Control Line),通常控制界限设定在±3标准差的位置。
根据控制图使用目的不同,控制图可分为:分析用控制图和控制用控制图。
根据统计数据的类型不同,控制图可分为:计量控制图和计数控制图(包括计件控制图和计点控制图)。
计量型控制图平均数与极差控制图( -X-R Chart )平均数与标准差控制图( -X-S Chart )中位数与极差控制图( ~X-R Chart )个別值与移动极差控制图( X-Rm Chart )计数值控制图不良率控制图(P chart)不良数控制图(nP chart,又称np chart 或d chart)缺点数控制图(C chart)单位缺点数控制图(U chart) 控制图种类及应用场合控制图的分析与判定应用控制图的目的,就是要及时发现过程中出现的异常,判断异常的原则就是出现了“小概率事件”,为此,判断的准则有两类。
第一类:点子越出界限的概率为0.27% 。
准则1属于第一类。
第二类:点子虽在控制界限内,但是排列的形状有缺陷。
准则2-8属于第二类。
控制图八大判异准则(口诀)2/3A (连续3点中有2点在中心线同一侧的B区外<即A区内>)4/5C (连续5点中有4点在中心线同一侧的C区以外)6连串(连续6点递增或递减,即连成一串)8缺C (连续8点在中心线两侧,但没有一点在C区中)9单侧(连续9点落在中心线同一侧)14交替(连续14点相邻点上下交替)15全C (连续15点在C区中心线上下,即全部在C区内1界外(1点落在A区以外)▶ 2/3A (连续3点中有2点在中心线同一侧的B区外<即A区内>)判读:1、控制过严;2、材料品质有差异;3、检验设备或方法之大不相同;4、不同制程之资料绘于同一控制图上;5、不同品质材料混合使用。
控制图的原理及其分类引言控制图是一种常用的质量管理工具,在工业生产和过程控制中广泛应用。
控制图可以用于监测和分析过程的稳定性、变异性和质量水平,从而帮助企业进行控制和改进。
本文将介绍控制图的原理及其分类。
首先,我们将解释控制图的基本原理,然后详细讨论三种常用的控制图分类:X-Bar 控制图、R 控制图和P 控制图。
控制图的原理控制图的原理基于统计过程控制(SPC)理论。
SPC 理论认为,任何可测量的过程或系统都存在一定的变异性。
控制图通过对过程数据的统计分析,判断这种变异性是否超出可接受的范围,从而帮助工程师获取关于过程的可靠信息。
控制图的构建基于以下几个关键原则:1.任何过程可测量的特性都可以用统计数据来描述:控制图的基础是使用统计数据描述过程的变异性。
2.过程的变异性存在常态分布:根据中心极限定理,大部分过程的变异性都可以近似地呈现正态分布。
3.随机变异与特殊原因变异:过程变异性可以分为两种类型,随机变异(常态变异)和特殊原因变异(非常态变异)。
控制图的目标是从这两种变异中区分出来。
4.过程的稳定性:稳定的过程是指在统计范围内,没有特殊原因导致的变异性。
控制图的作用是监控过程的稳定性,及时发现过程中的异常情况。
5.控制上下限:控制图上下限的选择是基于统计数据,目标是覆盖大部分的随机变异,并确定过程不受特殊原因的影响。
X-Bar 控制图X-Bar 控制图是最常用的控制图之一,用于监控过程的平均值。
X-Bar 控制图的构建步骤如下:1.收集样本数据:从过程中选择一组样本,并记录样本的平均值。
2.计算平均值和范围:计算所有样本的平均值,并计算样本平均值的平均值和范围。
3.衡量中心线和控制限:根据样本平均值的平均值和范围来确定中心线和控制限。
4.绘制控制图:根据计算结果,将中心线和控制限绘制在控制图上。
通过观察样本平均值是否在控制限范围内,可以判断过程的稳定性。
如果样本平均值超出控制限,表示过程存在特殊原因变异,需要进行调查和纠正。
控制图的类型2011-5-12 16:54|发布者: 小编H|查看: 2293|评论: 5摘要: 4.2.1 均值极差图――对于计量型数据而言,这是最常用最基本的控制图。
它用于控制对象为长度、重量、强度、纯度、时间和生产量等计量值的场合...4.2.1 均值极差图――对于计量型数据而言,这是最常用最基本的控制图。
它用于控制对象为长度、重量、强度、纯度、时间和生产量等计量值的场合。
Xbar控制图用于观察分布均值的变化,R控制图用于观察分布的分散情况或变异度的变化,Xbar-R图将二者联合运用,用于观察分布的变化。
4.2.2 均值极差图――控制图是用标准差图(S图)代替极差图(R图)。
极差计算简便,故R图得到广泛应用,但当样本大小n>10或n>12,这时用极差估计总体标准差的效率降低,要用S图来代替R图。
4.2.3 中位数极差图――用中位数图(Xmed图)代替均值图(Xbar图)。
中位数指一组按大小顺序排列的数列中居中的数。
例如,在数列2、3、7、13、18,中位数为7,在数列2、3、7、9、13、18,有偶数个数据,中位数规定为中间两个数的均值,即=8。
中位数的计算比均值简单,多用于现场需要把测定数据直接记入控制图进行控制的场合,为了简便,规定用奇数个数据。
4.2.4 单值移动极差图――用于对每一个产品都进行检验,采用自动化检查和测量;取样费时、昂贵以及化工过程,样品均匀,多抽样也无太大意义的场合。
X-Rs不能获得较多的信息,判断过程变化的灵敏度要差一些。
4.2.5 指数权重移动均值图4.2.6 运行图――运行图不是控制图,它只直接反映产品质量特性数据的变化情况,而没有反应过程统计受控的稳定控制线。
仅仅供掌握测量值的变化曲线。
4.2.7 预控图――它根据用户给定的控制百分率来确定控制线的一种控制图,该控制图分别以红,黄,绿三种颜色区域表示过程失控,警戒和受控状态。
控制线计算简单方便,控制图清晰醒目。
4.2.8 不合格品率图(P图)――属于计数类控制图,不合格品率图是由每一组数据不合格品率组成的连线图。
不合格品率图由数据点、数据线、控制线、判异线组成.控制线、判异线均可通过属性菜单选择。
4.2.9 不合格品数图(Pn图)――属于计数类控制图,不合格品数图是由每一组数据不合格品数组成的连线图。
不合格品数图由数据点、数据线、控制线、判异线组成.控制线、判异线均可通过属性菜单选择。
4.2.10 不合格数图(C图)――属于计数类控制图,不合格数图是由每一组数据不合格数组成的连线图。
不合格数图由数据点、数据线、控制线、判异线组成.控制线、判异线均可通过属性菜单选择。
4.2.11 单位不合格数图(U图)――属于计数类控制图,不合格数图是由每一组数据平均不合格数组成的连线图。
不合格数图由数据点、数据线、控制线、判异线组成.控制线、判异线均可通过属性菜单选择。
4.2.12 直方图――是由每一区间的频数组成的柱状图。
计数和计量类参数都可以做直方图。
直方图的数据取决于前一图的数据。
对于计量类参数,可以做均值直方图、中位数直方图、单值直方图。
对于计数类型参数可以做不合格品率直方图、不合格品数直方图、不合格数直方图、单位不合格数直方图。
直方图可以显示控制线(需设定)、规范线、合理线、目标线等信息。
4.2.13 个体直方图――是由每一区间的频数组成的柱状图。
计量类参数可以做个体直方图。
直方图的数据为录入的每一个数据。
直方图可以显示控制线(需设定)、规范线、合理线、目标线等信息。
4.2.14 原因排列图――将各类异常原因出现的次数从高到低排列的柱状图。
通过原因排列图用户可以很方便找出重要的原因,为企业进行决策。
计量和计数类参数均可做原因排列图。
4.2.15 措施排列图――将各类纠正措施出现的次数从高到低排列的柱状图。
计量和计数类参数均可做措施排列图。
4.2.16 备注排列图――将各类备注信息出现的次数从高到低排列的柱状图。
计量和计数类参数均可做备注排列图。
4.2.17 DPTO图――将各类缺陷信息的占质量特性的总数的百分比值从高到低排列的柱状图。
只有缺陷类型的计数参数可做DPTO图。
缺陷类型可以在系统管理中进行定义。
4.2.18 DPMO图――将各类缺陷信息的占质量特性的总数的百分比放大100万倍的数据从高到低排列的柱状图。
只有缺陷类型的计数参数可做DPMO图。
缺陷类型可以在系统管理中进行定义。
4.3 图形属性图形属性界面分基本和可选两页。
界面如下:基本页用于设置图形线的颜色和点的形状。
可以设置的颜色有:数据线的颜色、正常点的颜色、异常点的颜色、控制线(UCL,CL,LCL)、规范线、合理限、目标线、判异线颜色、柱状条、柱状条标记颜色。
颜色设定操作流程:下拉颜色组合框――〉选择要改变颜色的对象――〉单击颜色显示区右边的按钮-――〉在颜色对框中选定颜色――〉单击设定按钮,即可生效。
另外还可以设置点的形状和大小,该设置仅对数据点有效。
可选页面中可以设置图形区域中显示Y轴数据的范围。
当选为所有数据可见时,则只有图形数据点范围内的数据可见。
当选择控制线范围可见时,则数据显示的上下范围分别为UCL和LCL。
当选择两者时,控制线和数据都将显示。
选择手工,可设定数据的显示范围:设置显示的数据点数可以控制水平方向上显示的范围。
通过右侧的可选按钮可以控制某些数据线的显示与不显示。
当图形为直方图时,可设定直方图的分组数。
4.4判异4.4.1 判异规则当现场数据不满足用户或者管理者定义的判异规则时,图形区域中的相关点会以异常色彩标出。
用户定义的判异规则有八种基本情况:(1)n个点出界;(2)连续n个点落在中心线同一侧;(3)连续n个点递增或者递减;(4)连续点n中相邻点交替上下;(5)连续n点中有m点落在中心线同一侧的B区以外;(6)连续n点中有m点落在中心线同一侧的C区以外;(7)连续n点落在中心线两侧的C区内;(8)连续n点落在中心线两侧且无一在C区内。
用户基于这八种基本情况进行任意延伸形成符合用户需求的判异规则。
当数据出现异常且该点为失控点时,单击该点可以察看异常信息,关联点以异常色标注。
4.4.2失控点与关联点以数据顺序进行判断,当不符合判异规则的情形出现时所对应的点即为失控点,该规则在判断时所涉及的点为相关点。
一个点可能有多处异常。
各异常信息会在点的拾取界面中显示出来。
4.4.3控制线(1)关于控制线设定控制线的设定影响到了判异。
控制线主要有三种设定方式:指定控制线、按照理论值计算控制线、按照公式计算方式。
若设为指定控制线,则在作图前请指定控制线。
指定控制线有两种方式:在系统管理中指定,即在参数设定时指定。
另外可在现场监控中指定控制线。
其操作流程为:选择主菜单中的“工具“――〉选择设置控制线菜单项――〉在下拉组合框中选择图形类型(如均值极差图)――〉填写控制线的值(对于双图的图形类型,需要同时设定主副图的控制线)。
若设为按理论值计算控制线。
对于不同的图形,其相关的理论参数也不同。
对于均值标准差图、均值极差图、中位数极差图、单值移动极差图需要指定参数的期望值(µ)、方差(σ)对于EWMA图需要指定目标值和方差(σ).对于不合格品图、不合格品数图需要指定不合格品率(p)、对于缺陷图(不合格数图、单位不合格数图)需要指定不合格数(c)若设为公式计算方式,作图时系统会按照指定的公式计算出控制线。
(2)关于判异所有的判异都是基于控制线进行的。
通常将中心线与上控线之间分为三等分,分别称之为C区、B区、A区。
下方也同样。
可以在图形属性界面中选中使用判异线,清楚的察看异常情况。
4.5 点的拾取在图形界面左键单击数据点即可弹出点的拾取界面。
点的拾取界面由点的本身数据信息、关联数据信息、控制线信息、标签信息、异常信息组成,同时还提供数据异常时,异常原因、纠正措施的选择备注信息的登记和点的剔除功能。
选择剔除当前点后,该点将不会参与作图、判异和计算。
在点的拾取界面界面的操作(追加原因、措施、备注、剔除点)均针对特定子组。
因此在计量参数点的拾取界面剔除一个点,则该组数据全被剔除。
SPC控制图详解什么是控制图?控制图是对过程质量加以测定、记录从而进行控制管理的一种用科学方法设计的图。
控制图的应用控制图中包括三条线1.控制上限(UCL)2.中心线(CL)3.控制下限(LCL)控制图的种类数据:是能够客观地反映事实的资料和数字数据的质量特性值分为:计量值可以用量具、仪表等进行测量而得出的连续性数值,可以出现小数。
计数值不能用量具、仪表来度量的非连续性的正整数值。
计量型数据的控制图Xbar-R图(均值-极差图)Xbar-S图(均值-标准差图)X-MR图(单值-移动极差图)X-R(中位数图)计数型数据的控制图P图(不合格品率图)np图(不合格品数图)c图(不合格数图)u图(单位产品不合格数图)控制图的判异控制图可以区分出普遍原因变差和特殊原因变差1.特殊原因变差要求立即采取措施2.减少普遍原因变差需要改变产品或过程的设计错误的措施1.试图通过持续调整过程参数来固定住普通原因变差,称为过渡调整,结果会导致更大的过程变差造成客户满意度下降。
2.试图通过改变设计来减少特殊原因变差可能解决不了问题,会造成时间和金钱的浪费。
控制图可以给我们提供出出现了哪种类型的变差的线索,供我们采取相应的措施。
控制图上的信号解释有很多信号规则适用于所有的控制图(Xbar图和R图),主要最常见的有以下几种:规则1:超出控制线的点规则2:连续7点在中心线一侧规则3:连续7点上升或下降规则4:多于2/3的点落在图中1/3以外规则5:呈有规律变化SPC控制图建立的步骤1.选择质量特性2.决定管制图之种类3.决定样本大小,抽样频率和抽样方式4.收集数据5.计算管制参数(上,下管制界线等)6.持续收集数据,利用管制图监视制程SPC控制图选择的方法1.X-R控制图用于控制对象为长度、重量、强度、纯度、时间、收率和生产量等计量值的场合。
X控制图主要用于观察正态分布的均值的变化,R控制图主要用于观察正态分布分散或变异情况的变化,而X-R控制图则将二者联合运用,用于观察正态分布的变化。
2.X-s控制图与X-R图相似,只是用标准差(s)图代替极差(R)图而已。
3.Me-R控制图与X-R图也很相似,只是用中位数(Me)图代替均值(X)。
4.X-Rs控制图多用于对每一个产品都进行检验,采用自动化检查和测量的场合。
5.p控制图用于控制对象为不合格品率或合格品率等计数质量指标的场合,使用p图时应选择重要的检查项目作为判断不合格品的依据;它用于控制不合格品率、交货延迟率、缺勤率、差错率等。
6.np控制图用于控制对象为不合格品数的场合。
设n为样本,p为不合格品率,则np为不合格品数。