3.2.2 函数模型的应用实例
- 格式:doc
- 大小:36.00 KB
- 文档页数:2
3.2.2 函数模型的应用实例(A)200只 (B)300只 (C)400只 (D)500只解析:由题意,繁殖数量y(只)与时间x(年)的关系为y=alog3(x+1),这种动物第2年有100只,所以100=alog3(2+1),所以a=100,所以y=100log3(x+1),所以当x=8时,y=100log3(8+1)=100×2=200.4.(2019·海淀区高一月考)2019年12月,某人的工资纳税额是245元,若不考虑其他因素,则他该月工资收入为( A )级数全月应纳税所得额税率(%)1 不超过1 500元 32 1 500~4 500元10注:本表所称全月应纳税所得额是以每月收入额减去3 500元(起征点)后的余额.(A)7 000元 (B)7 500元 (C)6 600元 (D)5 950元解析:设此人该月工资收入为x元.1 500×3%=45元.(x-3 500-1 500)×10%=245-45,得x=7 000元.5.某商店迎来店庆,为了吸引顾客,采取“满一百送二十,连环送”的酬宾促销方式,即顾客在店内花钱满100元(可以是现金,也可以是奖励券或两者合计),就送20元奖励券;满200元,就送40元奖励券;满300元,就送60元奖励券;…当日花钱最多的一位顾客共花出现金70 040元,如果按照酬宾促销方式,他最多能得到优惠( C )(A)17 000元 (B)17 540元(C)17 500元 (D)17 580元解析:这位顾客花的70 000元可得奖励券700×20=14 000(元),只有这位顾客继续把奖励券消费掉,也才能得到最多优惠,但当他把14 000元奖励券消费掉可得140×20=2 800(元)奖励券,再消费又可得到28×20=560(元)奖励券,560元消费再加上先前70 040中的40元共消费600元应得奖励券6×20=120元.120元奖励券消费时又得20元奖励券.所以他总共会得到14 000+2 800+560+120+20=17 500(元)优惠.故选C.6.(2019·泉州高一月考)在某种新型材料的研制中,实验人员获得了下列一组实验数据:现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是( B )x 1.992 3 4 5.15 6.126 y 1.517 4.041 8 7.5 12 18.01 (A)y=2x-2 (B)y=(x2-1)(C)y=log2x (D)y=lo x解析:由题意可得表中数据y随x的变化趋势.函数在(0,+∞)上是增函数,且y的变化随x的增大越来越快.因为A中函数是线性增加的函数,C中函数是比线性增加还缓慢的函数,D中函数是减函数,所以排除A,C,D;所以B中函数y=(x2-1)符合题意.7.(2019·湖北宜昌一中月考)把物体放在冷空气中冷却,如果物体原来的温度是θ1℃,空气的温度是θ0℃,t min后物体的温度θ℃可由公式θ=θ0+(θ1-θ0)e-0.24t求得.把温度是100 ℃的物体,放在10 ℃的空气中冷却t min后,物体的温度是40 ℃,那么t的值约等于.(保留三位有效数字,参考数据:ln 3取 1.099,ln 2取0.693)解析:依题意将θ1=100,θ0=10,θ=40代入公式θ=θ0+(θ1-θ0)e-0.24t 可得,e-0.24t=,即-0.24t=ln ,解得t=≈4.58.答案:4.588.现测得(x,y)的两组值为(1,2),(2,5),现有两个拟合模型,甲:y= x2+1,乙:y=3x-1,若又测得(x,y)的一组对应值为(3,10.2),则应选用作为拟合模型较好.解析:对于甲:x=3时,y=32+1=10,对于乙:x=3时,y=8,因此用甲作为拟合模型较好.答案:甲9.为了发展电信事业,方便用户,电信公司对移动电话采用不同的收费方式,其中所使用的“如意卡”与“便民卡”在某市范围内每月(30天)的通话时间x(分)与通话费用y(元)的关系如图所示.(1)分别求出通话费用y1,y2与通话时间x之间的函数解析式;(2)请帮助用户计算在一个月内使用哪种卡便宜.解:(1)由题中图象可设y1=k1x+29,y2=k2x,把点B(30,35),C(30,15)分别代入y1,y2的解析式,得k1=,k2=.所以y1=x+29(x≥0),y2=x(x≥0).(2)令y1=y2,即x+29=x,则x=96.当x=96时,y1=y2,两种卡收费一致;当x<96时,y1>y2,使用“便民卡”便宜;当x>96时,y1<y2,使用“如意卡”便宜.10.某租赁公司拥有汽车100辆,当每辆车的月租金为3 000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3 600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?解:(1)当每辆车的月租金定为3 600元时,未租出的车辆数为=12,所以这时租出了88辆车.(2)设每辆车的月租金定为x元,则租赁公司的月收益为f(x)=(100-)(x-150)-×50,整理得f(x)=-+162x-21 000=-(x-4 050)2+307 050.所以当x=4 050时,f(x)最大,最大值为f(4 050)=307 050,即当每辆车的月租金定为4 050元时,租赁公司的月收益最大,最大月收益为307 050元.。
3.2.2 函数模型的应用实例自主学习1.掌握几种初等函数的应用.2.理解用拟合函数的方法解决实际问题的方法. 3.了解应用实例的三个方面和数学建模的步骤.1.函数模型的应用实例主要包括三个方面:(1)________________________________________________; (2)________________________________________________; (3)________________________________________________. 2.面临实际问题,自己建立函数模型的步骤:(1)________________;(2)________;(3)______________; (4)______________; (5)________;(6)______________.对点讲练已知函数模型的应用问题【例1】 某公司生产一种电子仪器的固定成本为20 000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R (x )=⎩⎪⎨⎪⎧400x -12x 2 (0≤x ≤400)80 000 (x >400).其中x 是仪器的月产量.(1)将利润表示为月产量的函数f (x );(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益=总成本+利润)变式迁移1 为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t的函数关系式为y =(116)t -a (a 为常数)如图所示.根据图中提供的信息,回答下列问题:(1)从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式为__________________;(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么从药物释放开始,至少需要经过________小时后,学生才能回到教室.自建函数模型的应用问题【例2】某公司每年需购买某种元件8 000个用于组装生产,每年分n次等量进货,每进一次货(不分进货量大小)费用500元,为了持续生产,需有每次进货的一半库存备用,每件每年库存费2元,问分几次进货可使得每年购买和贮存总费用最低?变式迁移2 某工厂拟建一座平面图为矩形且面积为200 m2的三级污水处理池(平面图如图所示),由于地形限制,长、宽都不能超过16 m,如果池外周壁建造单价为每米400元,中间墙建造单价为每米248元,池底建造单价为每平方米80元(池壁的厚度忽略不计,且池无盖).(1)写出总造价y(元)与污水处理池长x(m)的函数关系式,并指出其定义域.(2)求污水处理池的长和宽各为多少时,污水处理池的总造价最低?并求出最低总造价.函数模型的选择【例3】某工厂今年1月、2月、3月生产某种产品的数量分别是1万件、1.2万件、1.3万件,为了估测以后每个月的产量,以这三个月的产品数量为依据,用一个函数模拟该产品的月产量y与月份x的关系,模拟函数可以选用二次函数或函数y=ab x+c(其中a,b,c为常数,a≠0),已知4月份该产品的产量为1.37万件,请问用以上哪个函数作为模拟函数较好,并说明理由.变式迁移3 某地西红柿从2月1日起开始上市,通过市场调查,得到西红柿种植成本Q (单位:元/102kg)(1)Q 与上市时间t 的变化关系;Q =at +b ,Q =at 2+bt +c ,Q =a ·b t ,Q =a ·log b t ;(2)利用你选取的函数,求西红柿种植成本最低时的上市天数及最低种植成本.1.解答应用题的基本步骤: (1)设:合理、恰当地设出变量;(2)写:根据题意,抽象概括数量关系,并能用数学语言表示,得到数学问题; (3)算:对所得数学问题进行分析、运算、求解;(4)答:将数学问题的解还原到实际生活问题中,给出最终的答案. 2.在中学阶段,用函数拟合解决实际问题的基本过程是:课时作业一、选择题1现准备用下列函数中的一个近似地表示这些数满足的规律,其中最接近的一个是( )A .V =log 2tB .V =log 12t C .V =t 2-12D .V =2t -22.计算机成本不断降低,若每隔3年计算机价格降低13,则现在价格为8 100元的计算机,9年后的价格可降为( )A .2 400元B .900元C .300元D .3 600元3. 一个高为H ,盛水量为V 0的水瓶的轴截面如图所示,现以均匀速度往水瓶中灌水,直到灌满为止,如果水深h 时水的体积为V ,则函数V =f (h )的图象大致是( )4.某种电热水器的水箱盛满水是200升,加热到一定温度可浴用.浴用时,已知每分钟放水34升,在放水的同时注水,t分钟注水2t2升,当水箱内水量达到最小值时,放水自动停止.现假定每人洗浴用水65升,则该热水器一次至多可供几人洗澡() A.3人B.4人C.5人D.6人二、填空题5.60年国庆,举国欢腾,某旅游胜地的客流量急速增加.某家客运公司为招揽游客,推出了客运定票的优惠政策:如果行程不超过100 km,票价是0.4元/km;如果超过100 km,则超过100 km的部分按0.3元/km定价.则客运票价y元与行程公里x km之间的函数关系是______________________________.6. 右图表示一位骑自行车和一位骑摩托车者在相距为80 km的两城镇间旅行的函数图象,由图可知:骑自行车者用6 h(含途中休息的1 h),骑摩托车者用了2 h.有人根据这个函数图象,提出了关于这两个旅行者的如下信息:①骑自行车者比骑摩托车者早出发3 h,晚到1 h;②骑自行车者是变速运动,骑摩托车者是匀速运动;③骑摩托车者在出发1.5 h后追上骑自行车者.其中正确的序号是__________________________________________________.三、解答题7.某产品的总成本y(万元)与产量x(台)之间的函数关系式是y=3 000+20x-0.1x2(0<x<240,x∈N*),若每台产品的售价为25万元,则生产者不赔本时(销售收入不小于总成本)的最低产量是多少.8.某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100个时,凡多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.(1)当一次订购量为多少时,零件的实际出厂单价恰降为51元?(2)设一次订购量为x个,零件的实际出厂单价为P元,写出函数P=f(x)的表达式;(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1 000个,利润又是多少元?3.2.2函数模型的应用实例答案自学导引1.(1)利用给定的函数模型解决实际问题 (2)建立确定性的函数模型解决问题 (3)建立拟合函数模型解决实际问题2.(1)收集数据 (2)描点 (3)选择函数模型 (4)求函数模型 (5)检验 (6)用函数模型解决实际问题对点讲练【例1】 解 (1)设每月产量为x 台,则总成本为20 000+100x ,从而f (x )=⎩⎪⎨⎪⎧-12x 2+300x -20 000 (0≤x ≤400)60 000-100x (x >400).(2)当0≤x ≤400时,f (x )=-12(x -300)2+25 000,∴当x =300时,有最大值25 000;当x >400时,f (x )=60 000-100x 是减函数, f (x )<60 000-100×400<25 000. ∴当x =300时,f (x )取最大值.∴每月生产300台仪器时,利润最大, 最大利润为25 000元.变式迁移1 (1) y =⎩⎨⎧10t , 0≤t ≤110,⎝⎛⎭⎫116t -110, t >110(2)0.6解析 (1)设y =kt (k ≠0),由图象知y =kt 过点(0.1,1),则1=k ×0.1,k =10, ∴y =10t (0≤t ≤0.1);由y =⎝⎛⎭⎫116t -a过点(0.1,1)得1=⎝⎛⎭⎫1160.1-a , a =0.1,∴y =⎝⎛⎭⎫116t -0.1(t >0.1).∴y =⎩⎨⎧10t , 0≤t ≤110,⎝⎛⎭⎫116t -110,t >110.(2)由⎝⎛⎭⎫116t -0.1≤0.25=14,得t ≥0.6, 故至少需经过0.6小时.【例2】 解 设每年购买和贮存元件总费用为y 元,其中购买成本费为固定投入, 设为c 元,则y =500n +2×8 000n ×12+c=500n +8 000n +c =500(n +16n )+c=500(n -4n )2+4 000+c ,当且仅当n =4n,即n =4时,y 取得最小值且y min =4 000+c .所以分4次进货可使得每年购买和贮存元件总费用最低.变式迁移2 解 (1)设污水处理池的长为x m ,则宽为200xm ,总造价为y .∴y =400(2x +2×200x )+248×200x ×2+80×200=800(x +324x )+16 000.∵⎩⎪⎨⎪⎧0<x ≤160<200x≤16,∴12.5≤x ≤16.故其定义域为[12.5,16].(2)先讨论y =800(x +324x)+16 000在[12.5,16]上的单调性.设x 1,x 2∈[12.5,16]且x 1<x 2,则y 1-y 2=800[(x 1-x 2)+324(1x 1-1x 2)]=800(x 1-x 2)(1-324x 1x 2).∵x 1,x 2∈[12.5,16],x 1<x 2, ∴x 1·x 2<162<324.∴1-324x 1x 2<0,x 1-x 2<0.∴y 1-y 2>0.∴此函数在[12.5,16]上单调递减. ∴当x =16时,y min =45 000(元),此时,宽为20016m =12.5 m.∴当池长为16 m ,宽为12.5 m 时, 总造价最低为45 000元.【例3】 解 设f (x )=px 2+qx +r (p ≠0),则有 ⎩⎪⎨⎪⎧f (1)=p +q +r =1,f (2)=4p +2q +r =1.2,f (3)=9p +3q +r =1.3.解得p =-0.05,q =0.35,r =0.7. ∴f (x )=-0.05x 2+0.35x +0.7,∴f (4)=-0.05×42+0.35×4+0.7=1.3. 设g (x )=ab x +c (a ≠0),则有 ⎩⎪⎨⎪⎧g (1)=ab +c =1,g (2)=ab 2+c =1.2,g (3)=ab 3+c =1.3.解得a =-0.8,b =0.5,c =1.4. ∴g (x )=-0.8×0.5x +1.4,∴g (4)=-0.8×0.54+1.4=1.35.经比较可知,用g (x )=-0.8×0.5x +1.4作为模拟函数较好. 变式迁移3 解 (1)由表中数据知,当时间t 变化时,种植成本并不是单调的, 故只能选取Q =at 2+bt +c .即⎩⎪⎨⎪⎧150=a ×502+b ×50+c 108=a ×1102+b ×110+c 150=a ×2502+b ×250+c, 解得Q =1200t 2-32t +4252. (2)Q =1200(t -150)2+4252-2252=1200(t -150)2+100, ∴当t =150天时,西红柿的种植成本最低,为100元/102 kg. 课时作业 1.C 2.A3.D [考察相同的Δh 内ΔV 的大小比较.] 4.B [设最多用t 分钟,则水箱内水量y =200+2t 2-34t ,当t =172时,y 有最小值,此时共放水34×172=289(升),可供4人洗澡.]5.y =⎩⎪⎨⎪⎧0.4x ,0<x ≤100,40+0.3(x -100),x >1006.①②解析 ③错,骑摩托车者出发1.5 h 时走了60 km ,而从图中可看出骑自行车者走的距离大于60 km.7.解 由题意得⎩⎪⎨⎪⎧3 000+20x -0.1x 2≤25x 0<x <240解得150≤x <240,x ∈N *∴生产者不赔本时的最低产量是150台.8.解 (1)设每个零件的实际出厂价恰好降为51元时,一次订购量为x 0个,则x 0=100+60-510.02=550(个).∴当一次订购量为550个时,每个零件的实际出厂价恰好降为51元. (2)当0<x ≤100时,P =60; 当100<x <550时,P =60-0.02(x -100)=62-0.02x ; 当x ≥550时,P =51.∴P =f (x )=⎩⎪⎨⎪⎧60, 0<x ≤100,62-0.02x , 100<x <550,51, x ≥550(x ∈N +).(3)设销售商一次订购量为x 个时,工厂获得的利润为S 元,则 S =(P -40)x =⎩⎪⎨⎪⎧20x , 0<x ≤100,22x -0.02x 2, 100<x <550,11x , x ≥550(x ∈N +)当x =500时,S =22×500-0.02×5002=6 000(元);当x =1 000时,S =11×1 000=11 000(元).∴当销售商一次订购500个零件时,该厂获得的利润是6 000元;如果一次订购1 000个零件时,利润是11 000元.。
3.2.2函数模型的应用实例一、基础达标1.某同学家门前有一笔直公路直通长城,星期天,他骑自行车匀速前往,他先前进了a km,觉得有点累,就休息了一段时间,想想路途遥远,有些泄气,就沿原路返回骑了b km(b<a),当他记起诗句“不到长城非好汉”,便调转车头继续前进,则该同学离起点的距离与时间的函数关系图象大致为()答案 C解析由题意可知,s是关于时间t的一次函数,所以其图象特征是直线上升.由于中间休息了一段时间,该段时间的图象应是平行于横轴的一条线段.然后原路返回,图象下降,再调转车头继续前进,则直线一致上升.2.国内快递1 000 g以内的包裹的邮资标准如下表:如果某人在西安要快递800 g的包裹到距西安1 200 km的某地,那么他应付的邮资是() A.5.00元B.6.00元C.7.00元D.8.00元答案 C解析由题意可知,当x=1 200时,y=7.00元.3.某机器总成本y(万元)与产量x(台)之间的函数关系式是y=x2-75x,若每台机器售价为25万元,则该厂获利润最大时应生产的机器台数为() A.30 B.40C.50 D.60答案 C解析 设安排生产x 台,则获得利润 f (x )=25x -y =-x 2+100x =-(x -50)2+2 500.故当x =50台时,获利润最大.4.根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎪⎨⎪⎧cx ,x <A ,c A ,x ≥A (A ,c 为常数).已知工人组装第4件产品用时30 min ,组装第A 件产品用时15 min ,那么c 和A 的值分别是 ( )A .75,25B .75,16C .60,25D .60,16答案 D解析 由题意知,组装第A 件产品所需时间为cA=15,故组装第4件产品所需时间为c 4=30,解得c =60.将c =60代入c A=15,得A =16. 5.某工厂生产某产品x 吨所需费用为P 元,而卖出x 吨的价格为每吨Q 元,已知P =1 000+5x +1102,Q =a +xb ,若生产出的产品能全部卖出,且当产量为150吨时利润最大,此时每吨的价格为40元,则有 ( )A .a =45,b =-30B .a =30,b =-45C .a =-30,b =45D .a =-45,b =-30答案 A解析 设生产x 吨产品全部卖出,获利润为y 元,则y =xQ -P =x ⎝⎛⎭⎪⎫a +xb -⎝ ⎛⎭⎪⎫1 000+5x +110x 2 =⎝ ⎛⎭⎪⎫1b -110x 2+(a -5)x -1 000(x >0). 由题意知,当x =150时,y 取最大值,此时Q =40.∴⎩⎨⎧-a -52⎝⎛⎭⎪⎫1b -110=150,a +150b =40,解得⎩⎨⎧a =45,b =-30.6.已测得(x ,y )的两组值为(1,2),(2,5),现有两个拟合模型,甲:y =x 2+1,乙:y =3x -1.若又测得(x ,y )的一组对应值为(3,10.2),则选用________作为拟合模型较好. 答案 甲解析 对于甲:x =3时,y =32+1=10,对于乙:x =3时,y =8,因此用甲作为拟合模型较好.7.武汉市的一家报摊主从报社买进《武汉晚报》的价格是每份0.40元,卖出的价格是每份0.50元,卖不掉的报纸还可以以每份0.08元的价格退回报社.在一个月(以30天计算)里,有20天每天可卖出400份,其余10天每天只能卖出250份,但每天从报社买进的份数必须相同,他应该每天从报社买进多少份,才能使每月所获得的利润最大?并计算他一个月最多可赚得多少元? 解 设报摊主每天买进报纸x 份,每月利润为y 元(x 为正整数). 当x ≤250时,y =0.1×30×x =3x . 当250≤x ≤400时,y =0.1×20×x +0.1×10×250-(x -250)×0.32×10 =2x +250-3.2x +800 =1 050-1.2x . 当x ≥400时,y =0.1×20×400+0.1×10×250-(x -400)×0.32×20-(x -250)×0.32×10 =800+250-6.4x +2 560-3.2x +800 =-9.6x +4 410.当x ≤250时,取x =250,y max =3×250=750(元). 当250≤x ≤400时,取x =250,y max =750(元). 当x ≥400时,取x =400,y max =570(元).故他应该每天从报社买进250份报纸,才能使每月所获得的利润最大,最大值为750元.二、能力提升8.衣柜里的樟脑丸,随着时间会挥发而体积缩小,刚放进的新丸体积为a ,经过t 天后体积V 与天数t 的关系式为:V =a ·e -kt .已知新丸经过50天后,体积变为49a .若一个新丸体积变为827a ,则需经过的天数为( )A .125B .100C .75D .50答案 C解析 由已知,得49a =a ·e -50k ,∴e -k=⎝⎛⎭⎪⎫49150.设经过t 1天后,一个新丸体积变为827a ,则827a =a ·e -kt 1, ∴827=(e -k)t 1=⎝⎛⎭⎪⎫49t 150, ∴t 150=32,t 1=75. 9.“学习曲线”可以用来描述学习某一任务的速度,假设函数t =-144lg ⎝ ⎛⎭⎪⎫1-N 90中,t 表示达到某一英文打字水平所需的学习时间,N 表示每分钟打出的字数.则当N =40时,t =________(已知lg 2≈0.301,lg 3≈0.477). 答案 36.72解析 当N =40时,则t =-144lg ⎝ ⎛⎭⎪⎫1-4090=-144lg 59144(lg 5-2lg 3)=36.72.10.如图所示,某池塘中浮萍蔓延的面积y (m 2)与时间t (月)的关系y =a t ,有以下几种说法:①这个指数函数的底数为2;②第5个月时,浮萍面积就会超过30 m2;③浮萍从4 m2蔓延到12 m2需要经过1.5个月;④浮萍每月增加的面积都相等.其中正确的命题序号是________.答案①②解析由图象知,t=2时,y=4,∴a2=4,故a=2,①正确.当t=5时,y=25=32>30,②正确,当y=4时,由4=2t1知t1=2,当y=12时,由12=2t2知t2=log212=2+log23.t2-t1=log23≠1.5,故③错误;浮萍每月增长的面积不相等,实际上增长速度越来越快,④错误.11.在对口扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型残疾人企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3 600元后,逐步偿还转让费(不计息).根据甲提供的资料有:①这种消费品的进价为每件14元;②该店月销量Q(百件)与销售价格P(元)的关系如下图所示;③每月需各种开支2 000元.(1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额.(2)企业乙只依靠该店,最早可望在几年后脱贫? 解 设该店月利润余额为L ,则由题设得: L =Q (P -14)×100-3 600-2 000.①由销量图易得:Q =⎩⎪⎨⎪⎧-2P +50,14≤P ≤20,-32P +40,20<P ≤26,代入①式得L =⎩⎪⎨⎪⎧(-2P +50)(P -14)×100-5 600,14≤P ≤20,(-32P +40)(P -14)×100-5 600,20<P ≤26,(1)当14≤P ≤20时,L max =450(元), 此时P =19.5(元);当20<P ≤26时,L max =1 2503(元),此时P =613(元).故当P =19.5(元)时,月利润余额最大,为450元. (2)设可在n 年后脱贫,依题意有12n ×450-50 000-58 000≥0,解得n ≥20. 即最早可望在20年后脱贫. 三、探究与创新12.物体在常温下的温度变化可以用牛顿冷却规律来描述:设物体的初始温度是T 0,经过一定时间t 后的温度是T ,则T -T a =(T 0-T a )·⎝ ⎛⎭⎪⎫12th ,其中T a 表示环境温度,h 称为半衰期.现有一杯用88℃热水冲的速溶咖啡,放在24℃的房间中,如果咖啡降温到40℃需要20 min ,那么降温到35℃时,需要多少时间? 解 由题意知40-24=(88-24)·⎝ ⎛⎭⎪⎫1220h , 即14=⎝ ⎛⎭⎪⎫1220h . 解之,得h =10.故T -24=(88-24)·⎝ ⎛⎭⎪⎫12t 10. 当T =35时,代入上式,得 35-24=(88-24)·⎝ ⎛⎭⎪⎫12t 10, 即⎝⎛⎭⎪⎫12t 10=1164.两边取对数,用计算器求得t ≈25. 因此,约需要25 min ,可降温到35℃.13.(2014·成都高一期末)今年冬季,我国大部分地区遭遇雾霾天气,给人们的健康、交通安全等带来了严重影响.经研究,发现工业废气等污染物排放是雾霾形成和持续的重要因素,污染治理刻不容缓.为此,某工厂新购置并安装了先进的废气处理设备,使产生的废气经过过滤后排放,以降低对空气的污染.已知过滤过程中废气的污染物数量P (单位:mg/L)与过滤时间t (单位:小时)间的关系为P (t )=P 0e -kt (P 0,k 均为非零常数,e 为自然对数的底数),其中P 0为t =0时的污染物数量.若经过5小时过滤后还剩余90%的污染物. (1)求常数k 的值;(2)试计算污染物减少到40%至少需要多少时间(精确到1小时,参考数据:ln 0.2≈-1.61,ln 0.3≈-1.20,ln 0.4≈-0.92,ln 0.5≈-0.69,ln 0.9≈-0.11.) 解 (1)由已知,当t =0时,P =P 0; 当t =5时,P =90%P 0. 于是有90%P 0=P 0e -5t .解得k =-15ln 0.9(或0.022).(2)由(1)得,知P =P 0e ⎝ ⎛⎭⎪⎫15ln 0.9t . 当P =40%P 0时,有0.4P 0=P 0e ⎝ ⎛⎭⎪⎫15t . 解得t =ln 0.415ln 0.9≈-0.9215×(-0.11)=4.600.11≈41.82.故污染物减少到40%至少需要42小时.。
3.2.2 函数模型的应用实例导入新知1.常见的函数模型(1)正比例函数模型:f (x )= (k 为常数,k ≠0); (2)反比例函数模型:f (x )= (k 为常数,k ≠0); (3)一次函数模型:f (x )= (k ,b 为常数,k ≠0); (4)二次函数模型:f (x )= (a ,b ,c 为常数,a ≠0);(5)指数函数模型:f (x )= (a ,b ,c 为常数,a ≠0,b >0,b ≠1); (6)对数函数模型:f (x )= (m ,n ,a 为常数,m ≠0,a >0,a ≠1); (7)幂函数模型:f (x )= (a ,b ,n 为常数,a ≠0,n ≠1). 2.建立函数模型解决问题的框图表示化解疑难求解函数应用题的程序常考题型题型一 二次函数模型例1 已知某种商品涨价x 成(1成=10%)时,每天的销售量减少45x (其中x >0)成.(1)应该涨价多少,才能使每天的营业额(售出的总金额)最大? (2)如果适当涨价,能使每天的营业额增加,求x 的取值范围. 类题通法利用二次函数模型解决问题的方法在函数模型中,二次函数模型占有重要的地位.根据实际问题建立二次函数解析式后,可以利用配方法、判别式法、换元法、函数的单调性等方法来求函数的最值,从而解决实际问题中的利润最大、用料最省等问题.活学活用1.如图所示,已知边长为8米的正方形钢板有一个角被锈蚀,其中AE=4米,CD=6米.为合理利用这块钢板,在五边形ABCDE内截取一个矩形BNPM,使点P在边DE上.(1)设MP=x米,PN=y米,将y表示成x的函数,求该函数的解析式及定义域;(2)求矩形BNPM面积的最大值.题型二分段函数模型例2提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/时)是车流密度x(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/时.研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.(1)当0≤x≤200时,求函数v(x)的表达式;(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/时)f(x)=x·v(x)可以达到最大,并求出最大值(精确到1辆/时).类题通法构建分段函数模型的关键点建立分段函数模型的关键是确定分段的各边界点,即明确自变量的取值区间,对每一区间进行分类讨论,从而写出函数的解析式. 活学活用2.某医疗研究所开发一种新药,如果成人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y 与时间t 之间近似满足如图所示的曲线.(1)写出服药后y 与t 之间的函数关系式;(2)据测定:每毫升血液中含药量不少于4 μg 时治疗疾病有效,假若某病人一天中第一次服药为上午7:00,问:一天中怎样安排服药时间(共4次)效果最佳?题型三 指数、对数型函数模型例3 一片森林原来面积为a ,计划每年砍伐一些树,且使森林面积每年比上一年减少p %,10年后森林面积变为a 2.为保护生态环境,所剩森林面积至少要为原面积的14.已知到今年为止,森林面积为22a . (1)求p %的值.(2)到今年为止,该森林已砍伐了多少年? (3)该森林今后最多还能砍伐多少年? 类题通法指数函数模型的应用在实际问题中,有关人口增长、银行利率、细胞分裂等增长率问题常可以用指数函数模型表示.通常可以表示为y =N (1+p )x (其中N 为基础数,p 为增长率,x 为时间)的形式.活学活用3.某化工厂生产一种溶液,按市场要求,杂质含量不能超过0.1%,若初时含杂质2%,每过滤一次可使杂质含量减少13,问:至少应过滤几次才能使产品达到市场要求?(已知: lg 2=0.301 0,lg 3=0.477 1)随堂即时演练1.某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y 与投放市场的月数x (1≤x ≤4,x ∈N *)之间关系的是( ) A .y =100x B .y =50x 2-50x +100 C .y =50×2xD .y =100x2.已知A ,B 两地相距150千米,某人开汽车以60千米/时的速度从A 地到达B 地,在B 地停留1小时后再以50千米/时的速度返回A 地,则汽车离开A 地的距离x 关于时间t (时)的函数解析式是( ) A .x =60t B .x =150-50tC .x =⎩⎪⎨⎪⎧60t ,0≤t ≤2.5150-50t ,t >3.5D .x =⎩⎪⎨⎪⎧60t ,0≤t ≤2.5150,2.5<t ≤3.5150-50t -3.5,3.5<t ≤6.53.由于电子技术的飞速发展,计算机的成本不断降低,若每隔5年计算机的价格降低13,则现在价格为8 100元的计算机15年后的价格应降为________元.4.如图所示,折线是某电信局规定打长途电话所需要付的电话费y (元)与通话时间t (分)之间的函数关系图象,根据图象填空:(1)通话2分钟,需付的电话费为________元;(2)通话5分钟,需付的电话费为________元;(3)如果t≥3,则电话费y(元)与通话时间t(分)之间的函数关系式为________.5.在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3 600元后,逐步偿还转让费(不计息).在甲提供的资料中:①这种消费品的进价为每件14元;②该店月销量Q(百件)与销量价格P(元)的关系如图所示;③每月需各种开支2 000元.(1)当商品的价格为每百件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;(2)企业乙只依靠该店,最早可望在几年后脱贫?参考答案导入新知1.(1) kx(2) k x(3) kx+b(4)ax2+bx+c(5) ab x +c (6)m log a x +n (7) ax n +b例1 解:设商品原价格为m ,每天的原销售量为n ,则每天的原营业额为m ·n ,涨价后每天的营业额为y =m ·⎝⎛⎭⎫1+x 10·⎝⎛⎭⎫1-45·x10·n . (1)y =m ·⎝⎛⎭⎫1+x 10·⎝⎛⎭⎫1-45·x 10·n =⎣⎡⎦⎤-1125⎝⎛⎭⎫x -542+8180·m ·n . 当x =54,即涨价125%时,每天的营业额最大.(2)要使涨价后每天的营业额比原来增加, 则需m ·⎝⎛⎭⎫1+x 10·⎝⎛⎭⎫1-45·x10·n >m ·n , 即2x 2-5x <0,变形得x (2x -5)<0. 又x >0,故0<x <52.∴x 的取值范围为⎝⎛⎭⎫0,52. 活学活用1. 解:(1)作PQ ⊥AF 于Q ,所以PQ =(8-y )米,EQ =(x -4)米. 又△EPQ ∽△EDF , 所以EQ PQ =EFFD ,即x -48-y =42.所以y =-12x +10,定义域为{x |4≤x ≤8}.(2)设矩形BNPM 的面积为S 平方米, 则S (x )=xy =x ⎝⎛⎭⎫10-x 2=-12(x -10)2+50, S (x )是关于x 的二次函数,且其图象开口向下,对称轴为x =10, 所以当x ∈[4,8]时,S (x )单调递增.所以当x =8时,矩形BNPM 的面积取得最大值,为48平方米. 例2 解:(1)由题意,当0≤x ≤20时,v (x )=60;当20<x ≤200时,设v (x )=ax +b (a ≠0),再由已知得⎩⎪⎨⎪⎧200a +b =0,20a +b =60,解得⎩⎨⎧a =-13,b =2003.故函数v (x )的表达式为v (x )=⎩⎪⎨⎪⎧60,0≤x ≤20,13(200-x ),20<x ≤200.(2)依题意并结合(1)可得 f (x )=⎩⎪⎨⎪⎧60x ,0≤x ≤20,13x (200-x ),20<x ≤200.当0≤x ≤20时,f (x )为增函数,故当x =20时,其最大值为60×20=1 200;当20<x ≤200时,f (x )=13x (200-x )=-13(x -100)2+10 0003≤10 0003,当且仅当x =100时,等号成立.所以,当x =100时,f (x )在区间(20,200]上取得最大值10 0003. 综上,当x =100时,f (x )在区间[0,200]上取得最大值10 0003≈3 333. 即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3 333辆/时. 活学活用2. 解:(1)依题意得y =⎩⎪⎨⎪⎧6t ,0≤t ≤1,-23t +203,1<t ≤10.(2)设第二次服药时在第一次服药后t 1小时,则-23t 1+203=4,解得t 1=4,因而第二次服药应在11:00.设第三次服药在第一次服药后t 2小时,则此时血液中含药量应为前两次服药后的含药量的和,即有-23t 2+203-23(t 2-4)+203=4,解得t 2=9,故第三次服药应在16:00.设第四次服药在第一次服药后t 3(t 3>10)小时,则此时第一次服进的药已吸收完,血液中含药量应为第二、第三次的和-23(t 3-4)+203-23(t 3-9)+203=4,解得t 3=13.5,故第四次服药应在20:30.例3 解:(1)由题意得a (1-p %)10=a2,即(1-p %)10=12,解得p %=1-⎝⎛⎭⎫12. (2)设经过m 年森林面积为22a , 则a (1-p %)m=22a ,即⎝⎛⎭⎫12=⎝⎛⎭⎫12,m 10=12,解得m =5. 故到今年为止,已砍伐了5年. (3)设从今年 ,n 年后森林面积为22a ·(1-p %)n . 令22a (1-p %)n ≥14a , 即(1-p %)n ≥24, ⎝⎛⎭⎫12≥⎝⎛⎭⎫12,得n 10≤32,解得n ≤15, 故今后最多还能砍伐15年. 活学活用3.解:依题意,得2100·⎝⎛⎭⎫23n ≤11 000,即⎝⎛⎭⎫23n ≤120. 则n (lg 2-lg 3)≤-(1+lg 2),故n ≥1+lg 2lg 3-lg 2≈7.4,考虑到n ∈N ,即至少要过滤8次才能达到市场要求.随堂即时演练 1.【答案】C【解析】当x =4时,A 中,y =400;B 中,y =700;C 中,y =800;D 中,y =1004.故选C. 2.【答案】D【解析】显然出发、停留、返回三个过程中行车速度是不同的,故应分三段表示函数. 3.【答案】2 400【解析】y =a ·⎝⎛⎭⎫1-13,所以当x =15时,y =8 100×⎝⎛⎭⎫1-133=8 100×827=2 400(元). 4. 【答案】(1)3.6 (2)6 (3)y =1.2t (t ≥3)【解析】(1)由题图可知,当t ≤3时,电话费都是3.6元. (2)由题图可知,当t =5时,y =6,即需付电话费6元.(3)当t ≥3时,y 关于x 的图象是一条直线,且经过(3,3.6)和(5,6)两点, 故设函数关系式为y =kt +b ,11010m1210n325x则⎩⎪⎨⎪⎧3k +b =3.6,5k +b =6, 解得⎩⎪⎨⎪⎧k =1.2,b =0.故y 关于t 的函数关系式为y =1.2t (t ≥3). 5. 解:设该店月利润余额为L 元,则由题设得L =Q (P -14)×100-3 600-2 000,① 由销量图易得Q =⎩⎪⎨⎪⎧-2P +50,14≤P ≤20,-32P +40,20<P ≤26,代入①式得L =⎩⎪⎨⎪⎧(-2P +50)(P -14)×100-5 600,14≤P ≤20,⎝⎛⎭⎫-32P +40(P -14)×100-5 600,20<P ≤26, (1)当14≤P ≤20时,L max =450元,此时P =19.5元; 当20<P ≤26时,L max =1 2503元,此时P =613元. 故当P =19.5元时,月利润余额最大,为450元.(2)设可在n 年后脱贫,依题意有12n ×450-50 000-58 000≥0,解得n ≥20.即最早可望在20年后脱贫.。
§3.2.2函数模型的实际应用教学目标:知识与技能:将实际问题转化为函数模型.过程与方法:能够借助函数模型(指数函数、对数函数、幂函数、分段函数等)解决实际问题,了解函数模型的广泛应用.情感、态度、价值观:体验函数是描述宏观世界变化规律的基本数学模型,体验指数函数、对数函数等函数与现实世界的密切联系及其在刻画现实问题中的作用.教学重点:重点:将实际问题转化为函数模型,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义.难点:怎样选择数学模型分析解决实际问题.教学过程例1某市的一家报刊摊点,从报社买进《晚报》的价格是每份0.20元,卖出价是每份0.30元,卖不掉的报纸可以以每份0.05元的价格退回报社.在一个月(以30天计)里,有20天每天可卖出400份,其余10天每天只能卖出250份,但每天从报社买进的份数必须相同,这个摊主每天从报社买进多少份,才能使每月所获的利润最大?并计算他一个月最多可赚得多少元?活动:学生先思考或讨论,再回答.教师根据实际,可以提示引导:设摊主每天从报社买进x份,显然当x∈[250,400]时,每月所获利润才能最大.而每月所获利润=卖报收入的总价-付给报社的总价.卖报收入的总价包含三部分:①可卖出400份的20天里,收入为20·0.30x;②可卖出250份的10天里,收入为10·0.30·250;③10天里多进的报刊退回给报社的收入为10·0.05·(x-250).付给报社的总价为30·0.20x.解:设摊主每天从报社买进x份,显然当x∈[250,400]时,每月所获利润才能最大.于是每月所获利润y为y=20·0.30x+10·0.30·250+10·0.05·(x-250)-30·0.20x=0.5x+625,x∈[250,400].因函数y在[250,400]上为增函数,故当x=400时,y有最大值825元.例2某医药研究所开发一种新药,如果成人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y与时间t之间近似满足如图所示的曲线.(1)写出服药后y与t之间的函数关系式;(2)据测定:每毫升血液中含药量不少于4微克时治疗疾病有效,假若某病人一天中第一次服药时间为上午7:00,问一天中怎样安排服药的时间(共4次)效果最佳?图3-2-1-15解:(1)依题意,得y =⎪⎩⎪⎨⎧≤<+-≤≤.101,32032,10,6t t t t (2)设第二次服药时在第一次服药后t 1小时,则32-t 1+320=4,t 1=4.因而第二次服药应在11:00; 设第三次服药在第一次服药后t 2小时,则此时血液中含药量应为两次服药量的和,即有32-t 2+32032-(t 2-4)+320=4,解得t 2=9小时,故第三次服药应在16:00; 设第四次服药在第一次后t 3小时(t 3>10),则此时第一次服进的药已吸收完,此时血液中含药量应为第二、三次的和,32-(t 2-4)+32032-(t 2-9)+320=4,解得t 3=13.5小时,故第四次服药应在20:30.变式训练通过研究学生的学习行为,心理学家发现,学生的接受能力依赖于老师引入概念和描述问题所用的时间:讲座开始时,学生兴趣激增;中间有一段不太长的时间,学生的兴趣保持较理想的状态;随后学生的注意力开始分散.分析结果和实验表明,用f (x )表示学生接受概念的能力〔f (x )的值愈大,表示接受的能力愈强〕,x 表示提出和讲授概念的时间(单位:分),可有以下的公式: f (x )=⎪⎩⎪⎨⎧≤<+-≤<≤<++-.3016.1073,1610.59,100.436.21.02x x x x x x(1)开讲后多少分钟,学生的接受能力最强?能维持多长时间?(2)开讲后5分钟与开讲后20分钟比较,学生的接受能力何时强一些?解:(1)当0<x ≤10时,f (x )=-0.1x 2+2.6x +43=-0.1(x -13)2+59.9,由f (x )的图象,知当x =10时,[f (x )]max =f (10)=59;当10<x ≤16时,f (x )=59;当16<x ≤30时,f (x )=-3x +107,由f (x )的图象,知f (x )<-3×16+107=59.因此,开讲后10分钟,学生的接受能力最强,并能持续6分钟.(2)∵f (5)=-0.1×(5-13)2+59.9=53.5,f (20)=-3×20+107=47<53.5,∴开讲后5分钟时学生的接受能力比开讲后20分钟强.点评:解析式与图象的转换是函数应用的重点,关于分段函数问题更应重点训练. 拓展提升探究内容①在函数应用中如何利用图象求解析式.②分段函数解析式的求法.③函数应用中的最大值、最小值问题.举例探究:(2007山东省青岛高三教学质量检测,理21)某跨国公司是专门生产健身产品的企业,第一批产品A 上市销售40天内全部售完,该公司对第一批产品A 上市后的国内外市场销售情况进行调研,结果如图3-2-1-18(1)、图3-2-1-18(2)、图3-2-1-18(3)所示.其中图3-2-1-18(1)的折线表示的是国外市场的日销售量与上市时间的关系;图3-2-1-18(2)的抛物线表示的是国内市场的日销售量与上市时间的关系;图3-2-1-18(3)的折线表示的是每件产品A 的销售利润与上市时间的关系.图3-2-1-18(1)分别写出国外市场的日销售量f (t )、国内市场的日销售量g (t )与第一批产品A 上市时间t 的关系式;(2)第一批产品A 上市后的哪几天,这家公司的国内和国外日销售利润之和超过6 300万元? 分析:1.利用图象求解析式,先要分清函数类型再利用待定系数法求解析式.2.在t ∈[0,40]上,有几个分界点,请同学们思考应分为几段.3.回忆函数最值的求法.解:(1)f (t )=⎩⎨⎧≤<+-≤≤,4030,2406,300,2t t t t g (t )=203-t 2+6t (0≤t ≤40).(2)每件A 产品销售利润h (t )=⎩⎨⎧≤≤≤≤.4020,60,200,3t t t . 该公司的日销售利润F(t )=⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤+-≤≤+-≤≤--,4030),240203(60,3020),8203(60,200),8203(3222t t t t t t t t t , 当0≤t ≤20时,F(t )=3t (203-t 2+8t ),先判断其单调性. 设0≤t 1<t 2≤20,则F(t 1)-F(t 2)=3t 1(203-t 12+8t 1)-3t 2(203-t 22+8t 2)=209-(t 1+t 2)(t 1-t 2)2. ∴F(t )在[0,20]上为增函数.∴F(t )max =F(20)=6 000<6 300.当20<t ≤30时,令60(203-t 2+8t )>6 300,则370<t <30; 当30<t ≤40时,F(t )=60(203-t 2+240)<60(203-×302+240)=6 300, 故在第24、25、26、27、28、29天日销售利润超过6 300万元.点评:1.利用图象求解析式,先要分清函数类型再利用待定系数法求解析式,重点是找出关键点.2.在t ∈[0,40]上,有几个分界点,t =20,t =30两点把区间分为三段.3.二次函数的最值可用配方法,另外利用单调性求最值也是常用方法之一.课堂小结本节学习了:幂函数、指数函数、对数函数的应用.作业课本P 107习题3.2A 组3、4.。
新授课§3.2.2函数模型的应用实例(2)能够收集图表数据信息,建立拟合函数解决实际问题。
体验收集图表数据信息、拟合数据的过程与方法,体会函数拟合的思想方法。
教学重点:收集图表数据信息、拟合数据,建立函数模型解决实际问题。
教学难点:对数据信息进行拟合,建立起函数模型,并进行模型修正。
一体化设计:实例---选择变量、建立模型---用模感性具体归纳、抽象理性抽象辨析、完善步骤分析、应用具体教学过程:(一)创设情景,揭示课题2003年5月8日,西安交通大学医学院紧急启动“建立非典流行趋势预测与控制策略数学模型”研究项目,马知恩教授率领一批专家昼夜攻关,于5月19日初步完成了第一批成果,并制成了要供决策部门参考的应用软件。
这一数学模型利用实际数据拟合参数,并对全国和北京、山西等地的疫情进行了计算仿真,结果指出,将患者及时隔离对于抗击非典至关重要、分析报告说,就全国而论,非典病人延迟隔离1天,就医人数将增加1000人左右,推迟两天约增加工能力100人左右;若外界输入1000人中包含一个病人和一个潜伏病人,将增加患病人数100人左右;若4月21日以后,政府不采取隔离措施,则高峰期病人人数将达60万人。
这项研究在充分考虑传染病控制中心每日工资发布的数据,建立了非典流行趋势预测动力学模型和优化控制模型,并对非典未来的流行趋势做了分析预测。
本例建立教学模型的过程,实际上就是对收集来的数据信息进行拟合,从而找到近似度比较高的拟合函数。
(二)研探新知:例1 课本P104-例5确定函数模型,并对所确定模型进行适当的检验和评价.例2课本P105-例6探索以下问题:1)借助计算器或计算机,根据统计数据,画出它们相应的散点图;2)观察所作散点图,你认为它与以前所学过的何种函数的图象较为接近?3)你认为选择何种函数来描述这个地区未成年男性体重ykg与身高xcm的函数关系比较合适?4)确定函数模型,并对所确定模型进行适当的检验和评价.5)怎样修正所确定的函数模型,使其拟合程度更好?本例给出了通过测量得到的统计数据表,要想由这些数据直接发现函数模型是困难的,要引导学生借助计算器或计算机画图,帮助判断.根据散点图,利用待定系数法确定几种可能的函数模型,然后进行优劣比较,选定拟合度较好的函数模型.在此基础上,引导学生对模型进行适当修正,并做出一定的预测. 此外,注意引导学生体会本例所用的数学思想方法.(三)课堂练习:某地新建一个服装厂,从今年7月份开始投产,并且前4个月的产量分别为1万件、1 .2万件、1.3万件、1.37万件. 由于产品质量好,服装款式新颖,因此前几个月的产品销售情况良好. 为了在推销产品时,接收定单不至于过多或过少,需要估测以后几个月的产量,你能解决这一问题吗?探索过程如下:1)首先建立直角坐标系,画出散点图;2)根据散点图设想比较接近的可能的函数模型:一次函数模型:()(0);f x kx b k =+≠二次函数模型:2()(0);g x ax bx c a =++≠ 幂函数模型:12()(0);h x ax b a =+≠指数函数模型:()x l x ab c =+(0,a b ≠>0,1b ≠)利用待定系数法求出各解析式,并对各模型进行分析评价,选出合适的函数模型;由于尝试的过程计算量较多,可同桌两个同学分工合作,最后再一起讨论确定. (四)课堂总结通过以上三题的练习,师生共同总结出了利用拟合函数解决实际问题的一般方法,指出函数是描述客观世界变化规律的重要数学模型,是解决实际问题的重要思想方法. 利用函数思想解决实际问题的基本过程如下:(五)课后作业:教材P12 0练习第 1 题.P125 复习A 1--4 板书设计:教学反思:。
3.2.2 函数模型的应用实例
三维教学目标
知识与能力:能够找出简单实际问题中的函数关系式,初步体会应用一次函数、二次函数模型解决实际问题。
过程与方法:感受运用函数概念建立模型的过程和方法,体会一次函数、二次函数模型在数学和其他学科中的重要性。
情感、态度、价值观:体会运用函数思想处理现实生活中和社会中的一些简单问题的实用价值。
教学重点:运用一次函数、二次函数模型解决一些实际问题。
教学难点:将实际问题转变为数学模型。
学习过程
一、复习提问
我们学过的一次函数、二次函数、指数函数、对数函数、幂函数的一般形式是什么?
二、新课
例3、一辆汽车在某段路程中的行驶速度与时间的关系如图所示。
(1)求图中阴影部分的面积,并说明所求面积的实际含义;
(2)假设这辆汽车的里程表在汽车行驶这段路程前的读数为2004km ,试建立汽车行 驶这段路程时汽车里程表读数skm 与时间th 的函数解析式,并作出檅应的图像。
解:(1)阴影部分面积为:
50×1+80×1+90×1+75×1+65×1=36
阴影部分面积表示汽车在5小时内行驶的路程为
360km 。
(2)根据图有:
⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤+-<≤+-<≤+-<≤+-<≤+=542299)4(65432224)3(75322134)2(90212054)1(8010200450t t t t t t t t t t s
画出它的函数图像。
在解决实际问题过程中,函数图像
能够发挥很好的作用,因此,我们应当注意提高读图的能力。
本例题是分段函数是刻画现实问题的重要模型。
例4、人口问题是当今世界各国普遍关注的问题,认识人口数量的变化规律,可 以为有效控制人口增长依据。
早在1798年,英国经济学家马尔萨斯就提出了自然状 态下的人口增长模型:y =rt e y 0,其中t 表示经过的时间,y 0表示t =0时的人口数, r 表示人口的年平均增长率。
表3-8是1950――1959年我国的人口数据资料
(1)如果以各年人口增长率的平均值作为我国这一时期的人口增长率(精确到0.0001) 用马尔萨斯人口增长模型建立我国在这一时期的具体人口增长模型,并检验所得模型 与实际人口数据是否相符;
(2)如果按表3-8的增长趋势,大约在哪一年我国的人口达到13亿?
分析:分别求出1950到1959年的每一年的增长率,再算出平均增长率,得到从 口增长模型y=55196e 0.0221t ,作出原数据的散点图,作出模型的函数图像,可以看出 这个模型与数据是否吻合,用Excel 电子表格作出图像展示给学生看。
第二问中,13 亿是130000万人,将y =130000代入所求出的函数模型,即可用计算器算出大约要在 39年后达到13亿人口。
例5、某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进 价是5元,销售单价与日均销售量的关系如下表所示:
销售单价/ 元 6 7 8 9 10 11 12
日均销售量/桶 480 440 400 360 320 280 240
请根据以上根据作出分析,这个经营部怎样定价才能获得最大利润?
解:由表中可知,销售单价每增加1元,日均销售量就减少40桶,设在进价的 基础上增加x 元后,日均销售利润为y 元,在此情况下的日均销售量为:
480-40(x -1)=520-40x (桶)
由于x >0,所且520-40x >0,即0<x <13
y =(520-40x )x -200=-40x 2+520x -200, 0<x <13
由二次函数的性质,易知,当x =6.5时,y 有最大值。
所以只需将销售单价定为11.5元,就可获得最大的利润。
例6、某地区不同身高的未成年男性的体重平均值如表所示:
身高/cm 60 70 80 90 100 110 120 130 140 150 160 170
体重/kg 6.13 7.90 9.99 12.15 15.02 17.50 20.92 26.86 31.11 38.85 47.25 55.05
(1)根据表提供的数据,能否建立恰当的函数模型,使它能比较近似地反映这个地区未 成年男性体重ykg 与身高xcm 的函数关系?试写出这个函数模型的解析式。
(2)若体重超过相同身高男性体重平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么 这个地区一名身高为175cm ,体重为78kg 的在我校男生的体重是否正常?
解:(1)以身高为横坐标,体重为纵坐标,画出散点图,根据点的分布特征,可 考虑用y =a ·b x 作为刻画这个地区未成年男性体重ykg 与身高xcm 关系的函数模型。
不妨取其中的两组数据(70,7.90),(160,47.25)代入y =a ·b x 得:
⎪⎩⎪⎨⎧∙=∙=1607025.479.7b
a b a ,用计算器解得:⎩⎨⎧≈≈02.12b a 这样,我们就得到一函数模型:x y 02.12⨯=
将已知数据代入上述函数解析式,或作出函数的图像,可以发现,这个函数模型 与已知数据的拟合程度较好,这说明它能较好地反映这个地区未成年男性体重与身高 的关系。
(2)将x =175代入x
y 02.12⨯=,得: 17502.12⨯=y ≈63.98
由于78÷63.98≈1.22>1.2,所以这个男生偏胖。
课后作业:。