6第六章相平衡.jsp
- 格式:ppt
- 大小:3.89 MB
- 文档页数:205
第六章相平衡§6.1 相律(1)相相:体系中物理性质和化学性质完全均匀的部分称为相。
相与相之间的界面称为相界面。
相数用符号P(或Φ)表示。
1、气相体系中无论有多少种气体存在,只认为是一相,即P=1。
2、液相由于不同种类液体互溶程度不同,体系中可以有一相、两相或三相(很少出现),即P=1,2,3。
3、固相固溶体:不同种类固体若以分子程度大小分散混合形成的物质称为固体溶液,简称固溶体。
固溶体为一相,即P=1。
非固体溶液有几种固体算几相。
(2)物种数与组分数1、物种数体系中含有化学物质的种类数称物种数,用S表示。
2、组分数平衡体系中各相组成所需的最少独立物种数称组分数,用C表示。
注意:组分数与物种数不同,体系中有几种物质,物种数就是多少,但组分数C ≤ S 。
如果体系中各物质之间没有化学反应,则C = S 。
如果体系中各物质之间有化学反应,则C = S–R 。
R —独立化学平衡数如果体系中各物质之间有浓度比例限制,则C = S–R' 。
R'—独立浓度限制数(关系数)如果体系中各物质之间既有化学反应又有浓度比例限制,则:C = S–R–R'注意:独立浓度限制数只有在同一相中才可使用。
例如:CaCO3 = CaO + CO2S=3,R=1,R'=0C=3-1-0=2(3)自由度自由度:在相平衡物系中能够独立改变的强度性质的数目称自由度,用f 表示。
注意:独立变量的任意改变要求不能导致物系中相数发生变化。
例如:T指定T指定T和PP可任意改变P不能任意改变均不能任意改变f = 2 f = 1 f = 0=25℃ t=0.0098℃P=23.69 mmHg P=4.578 mmHg (4)相律相律:平衡体系中,组分数C、相数P及自由度f之间的相互关系称为相律。
表达式:f = C – P + nn —影响体系平衡状态的外界因素的数目,通常为温度和压力。
通常情况:f = C – P + 2推导过程:设某一平衡物系有C个组分,P个相,且C个组分在每一个相中均存在,此时:对于一个相 f = C –1对于所有相 f = P(C –1)因为平衡时各相的温度、压力相同,则:f = P(C –1)+ 2由于每一个组分在每一个相中的化学位均相等,即:)P (1)3(1)2(1)1(1μ==μ=μ=μ (P –1 个关系式) )P (2)3(2)2(2)1(2μ==μ=μ=μ (P –1 个关系式) ┆ ┆ ┆ ┆)P (C)3(C )2(C )1(C μ==μ=μ=μ (P –1 个关系式) 共有 C (P –1)个关系式。
相平衡的计算步骤
相平衡指的是物质在不同相态之间达到平衡状态。
例如,水从液态转化为固态时会形成冰,这时水和冰之间会达到相平衡状态。
下面是相平衡的计算步骤:
1. 确定物质的相态,包括温度、压力和组分等信息。
2. 利用相平衡图确定相平衡的条件。
相平衡图是描述不同相态
物质之间相互转化的图表,它可以帮助我们确定物质在不同条件下会处于哪种相态。
3. 根据相平衡条件计算相平衡时的化学势。
化学势是描述物质
在不同条件下的自由能变化的物理量,它可以帮助我们确定物质的相平衡状态。
4. 比较不同相态物质之间的化学势,确定相平衡状态。
如果化
学势相等,物质之间就会达到相平衡状态。
5. 判断相平衡状态是否稳定。
如果相平衡状态是稳定的,物质
之间会维持相平衡状态;如果不稳定,物质之间会发生相变。
通过以上步骤,我们可以计算出物质在不同条件下的相平衡状态,这对于理解物质的相变规律和应用于工程实践都具有重要意义。
- 1 -。
第六章 相 平 衡一、本章小结1. 吉布斯相律F = C - P + 2F :系统的自由度数(独立变量数),是保持相平衡系统中相的数目不变的条件下,系统中可独立改变的变量(如温度、压力、组成等)的数目;P :相数,是相平衡系统中相的数目;2:表示相平衡系统只受温度、压力两个因素影响;C :组分数(或独立组分数),是足以确定相平衡系统中所有各相组成所需最少数目的独立物质数,C = S - R – R ’ S :物种数,是系统中所含有的化学物质的数目;R :化学平衡数,是系统中各物种之间存在的独立的化学平衡的数目; R ’:独立限制条件数,是同一相中独立的浓度限制条件的数目。
相律说明:⑴ 相律只适用于处于热力学平衡的多相系统;⑵ 相律表达式中“2”代表温度、压力两个影响因素,对凝聚系统来说,压力对相平衡影响很小,此时相律可表示为F = C – P + 1,该自由度可称为条件自由度。
若除此之外还受其它因素(如磁场、电场、重力场等)影响,相律可表示为:F = C - P + n ,n 代表影响因素的个数。
2. 杠杆规则杠杆规则表示多组分系统两相平衡时,两相的数量之比与两相组成、系统组成间的关系。
杠杆规则示意如图6.1。
对一定温度、压力下的A 、B 两组分系统中的α、β两相平衡,杠杆规则可表示为B B B B ()()()()w w m m w w β-α=β-α或 B B B B ()()()()w w m mw w β-α=β-α式中:w B 、w B (α)、w B (β)分别是以组分B 质量分数表示的系统组成及α、β两相的组成;m 、m (α)、m (β)分别是系统质量及α、β两相的质量。
若组分B 组成以摩尔分数x B 表示时,可运用杠杆规则计算两相的物质的量,计算式为: 3. 相图 3.1 相图的分类 3.1.1 单组分系统相图图6.1 杠杆规则示意图单组分系统p - T 相图(如图6.2)的特征:相图上的区域为单相区,F =2;两相间的交界线为两相平衡线,其p 与T 间的关系服从克拉佩龙方程,F =1;各两相平衡线的交点为三相点,F =0;由相律可知,单组分系统最多有三相平衡共存。
163第六章 相 平 衡一、本章小结1。
吉布斯相律F = C - P + 2F :系统的自由度数(独立变量数),是保持相平衡系统中相的数目不变的条件下,系统中可独立改变的变量(如温度、压力、组成等)的数目;P :相数,是相平衡系统中相的数目;2:表示相平衡系统只受温度、压力两个因素影响;C :组分数(或独立组分数),是足以确定相平衡系统中所有各相组成所需最少数目的独立物质数,C = S- R – R ’S :物种数,是系统中所含有的化学物质的数目;R :化学平衡数,是系统中各物种之间存在的独立的化学平衡的数目; R ’:独立限制条件数,是同一相中独立的浓度限制条件的数目. 相律说明:⑴ 相律只适用于处于热力学平衡的多相系统;⑵ 相律表达式中“2"代表温度、压力两个影响因素,对凝聚系统来说,压力对相平衡影响很小,此时相律可表示为F = C – P + 1,该自由度可称为条件自由度。
若除此之外还受其它因素(如磁场、电场、重力场等)影响,相律可表示为:F = C — P + n ,n 代表影响因素的个数. 2. 杠杆规则杠杆规则表示多组分系统两相平衡时,两相的数量之比与两相组成、系统组成间的关系。
杠杆规则示意如图6。
1。
对一定温度、压力下的A 、B 两组分系统中的α、β两相平衡,杠杆规则可表示为B B B B ()()()()w w m m w w β-α=β-α或 B B B B ()()()()w w m mw w β-α=β-α式中:w B 、w B (α)、w B (β)分别是以组分B 质量分数表示的系统组成及α、β两相的组成;m 、m (α)、m (β)分别是系统质量及α、β两相的质量。
若组分B 组成以摩尔分数x B 表示时,可运用杠杆规则计算两相的物质的量,计算式为:B B B B ()()()()x x n n x x β-α=β-α3。
相图 3。
1 相图的分类 3。
1。
1 单组分系统相图单组分系统p — T 相图(如图6。