花粉管通道法在番茄转基因上的应用
- 格式:pdf
- 大小:399.33 KB
- 文档页数:5
花粉管通道法在小麦转基因中的应用摘要介绍了花粉管通道法的创立、特点及其在小麦育种中的应用概况,分析了花粉管通道法转化的优点及存在的不足。
关键词花粉管通道法;小麦;外源DNA文献标识码 A扩大种质资源,提高品种抗性,增加产量,改良品质是小麦育种工作者的一大难题。
远缘杂交是扩大种质资源的重要途径之一,但存在很多问题,花粉管通道法即可以解决远缘杂交出现的问题。
花粉管通道转基因技术是以DNA片段杂交假说为理论基础,直接将带有目的性状的供体遗传物质或目的基因导入受体植株而创造变异材料,通过筛选获得具有目标性状的后代,以达到改良品种的目的。
近年来,花粉管通道法与其他的基因导入方法交融在一起,被人们普遍接受并广泛用于小麦转基因育种中,成为小麦品种改良、新品种培育和创造新物种的重要方法。
1花粉管通道法转化理论的创立及特点1.1花粉管通道法转化理论的提出1975年Pandey以烟草为材料,将供体品种的花粉经射线杀死后与受体品种的新鲜花粉混合授粉,获得了供体花色性状的变异,认为经过照射杀死的花粉其遗传物质可不通过配子融合而发生基因转化。
20世纪80年代初,我国学者周光宇成功地将外源海岛棉DNA导人陆地棉,培育出抗枯萎病的栽培品种,正式创立了花粉管通道法。
1995年Chong等报道了用该法转化小麦,经过筛选、Northern Not鉴定以及对表达产物的检测,获得了小麦转基因植株。
1999年牟红梅等通过花粉管将抗虫基因、选择标记基因导入小麦中,抗性筛选、PCR和Southern杂交表明,外源基因已转入。
至此,花粉管通道法已在多种作物中获得成功,确定了其在直接转化法中的地位。
1.2花粉管通道法转化特点国内外科学家对花粉管导人外源基因的机理进行了许多研究。
1990年Potrykus研究认为受体组织的细胞同时具备再生感受态和转化感受态的细胞,是转化成功的关键。
受精过程中分化程度很高的卵细胞在同精子接触的一刻开始,就发生急剧的脱分化过程。
番茄青枯病现状及防治研究综述发布时间:2021-05-18T07:01:12.729Z 来源:《学习与科普》2020年20期作者:邓丽丽赵璇曹丽萍[导读] 番茄是一种受人欢迎的蔬菜,产业经济效益高。
但番茄种植培育过程中会遇到许多病害,其中番茄青枯病是一类普遍且危害非常严重的疾病。
本文通过查阅国内外相关文献,介绍了番茄青枯病的研究现状,综合阐述了青枯病的生物防治与非生物防治方法,旨在为为番茄青枯病的深入研究和预防提供参考。
邓丽丽赵璇曹丽萍四川农业大学四川成都 611130摘要:番茄是一种受人欢迎的蔬菜,产业经济效益高。
但番茄种植培育过程中会遇到许多病害,其中番茄青枯病是一类普遍且危害非常严重的疾病。
本文通过查阅国内外相关文献,介绍了番茄青枯病的研究现状,综合阐述了青枯病的生物防治与非生物防治方法,旨在为为番茄青枯病的深入研究和预防提供参考。
关键词:番茄;青枯病;生物防治;非生物防治引言番茄(Solanum lycopersicum),茄科番茄属一年生或多年生草本植物,富含大量的Vc、番茄红素和矿物质,能够抗癌防衰,提高人体免疫力。
它丰产性好,颇受广大人民的喜爱,为全球栽培最广、消费量最大的蔬菜作物。
番茄青枯病又称番茄细菌性枯萎病,是由一由名为青枯雷尔氏菌的病原菌引起的常见的毁灭性土传病害。
番茄青枯病导致植株白天叶片呈失水状萎蔫状态,傍晚恢复正常,连续几天,仍保持绿色。
随着病情扩展,病原菌在维管束扩繁,堵塞输导组织并产生致病毒素,最终造成植株萎蔫死亡[1]。
1番茄青枯病研究现状番茄青枯病传播迅速,在我国南方各地发生非常普遍,到目前为止还没有有效的措施能够从根本上面来防治青枯病。
近年来,各科研单位在抗青枯病栽培技术研究和推广方面也做了大量工作,如加强抗青枯病砧木品种选育、开展砧木和接穗亲和力研究,总结了一套适合华南地区的番茄抗青枯病嫁接技术,所采用的砧木为抗青枯病F1代番茄或茄子杂交种。
嫁接苗在广西、海南、中山、湖南等青枯病发病严重地区试种,均表现为长势好、高抗青枯病(发病率低于10%)、果实品质好、增产显著,极大地提高了农民收入[2]。
转基因技术浅谈作者:谢建设宫彩霞来源:《神州》2012年第06期【摘要】作为生命科学的前沿技术,转基因技术已经逐渐走入了人们的生活,应用领域不断开拓,在解决人类所面临的粮食短缺、环境污染、资源匮乏、效益衰减等重大问题上显示出日益重要的作用, 逐渐发展成为强大的现代生物技术产业。
然而,由于转基因生物及其产品是否存在潜在风险尚无定论,故转基因生物及其产品的安全性成为全球的热点问题,并引起世界各国政府和许多国际组织的高度重视。
【关键词】转基因技术;发展现状;争议;生物安全管理【中图分类号】G804.66 【文献标识码】A 【文章编号】1009-5071(2012)02-0049-021 转基因技术简介转基因技术(Transgene technology)是指根据人们的意愿,利用分子生物学方法,将人工分离和修饰过的基因导入到生物体基因组中,由于导入基因的表达,引起生物体的性状的可遗传的修饰。
人们常说的"遗传工程"、"基因工程"、"遗传转化"均为转基因的同义词。
经转基因技术修饰的生物体在媒体上常被称为"遗传修饰过的生物体"(Genetically modified organism,简称GMO)。
转基因技术的优越性体现在:首先,转基因技术突破了传统技术的某些局限,其所转移的基因不受生物体间亲缘关系的限制,比如将人类的胰岛素基因导入到细菌体内,跨越了物种之间的界限。
其次,转基因技术所操作和转移的一般是经过明确定义的基因,功能清楚,后代表现可准确预期。
因此,转基因技术对传统的育种技术进行了广泛的发展和比较完美的补充。
2 转基因技术方法2.1 植物转基因方法。
转基因植物是指利用重组DNA技术将克隆的优良目的基因整合到植物的基因组中,并使其得以表达,从而获得的具有新的遗传性状的植物。
方法有如下几种:农杆菌介导法:农杆菌中有一种致瘤的环型DNA,称为Ti质粒。
花粉管通道法转基因技术在果树上的研究进展果树的基因转化研究早在1988年,首先在核桃上取得突破,McGranahan等获得了转gus基因核桃再生植株。
此后,果树转基因工程研究日益发展,许多果树获得了转基因植株,但是与农作物的转基因工程研究相比,果树转基因工程还是远远处于落后状态。
最难转化的禾谷类,现在也已经有多种作物进入转基因的商业化生产阶段,而果树仅有一例转基因植物进入田间试验(方宏筠等,1999)。
我国在樱桃、草莓、苹果等果树转基因方面做了许多研究工作,并都获得了转化目的基因的转基因植株,特别是樱桃的转抗菌肽基因已由农业部批准进入田间实验,该项研究处于国际领先水平。
1988年第一株转基因核桃(Juglans regia L.)在美国诞生为利用基因工程改变果树特定性状、培育果树新品种奠定了实践基础。
相对于农作物而言,果树转基因技术及研发相对滞后转化体系仍有待进一步完善,但果树基因工程也有其突出的优势。
目前,我国已在荔枝、番木瓜、苹果、柑橘、梨、桃、香蕉、猕猴桃、葡萄、樱桃、草莓的果树上展开了遗传转化技术的研究,转化方法主要包括农杆菌介导法和基因枪轰击的方式,获得了部分转基因植株。
在果树等林木育种中,花粉管通道法的相关研究少有报道,仅见钟启宏等采用花粉管通道导入方法,将欧洲黑杨的一个克隆片段导入泡桐,最终获得了3株可含50μg/mL的Kan培养基上生长的幼苗。
侯立群(2000)等利用花粉管通道发进行核桃转基因研究,只是获得了畸形果植株,但尚未完成分子鉴定等。
山东农业大学张玲(2004)利用花粉管通道法对杏转化抗寒基因相关研究。
由于果树,栽培环境复杂、生产周期长,且主要为风媒传粉植物,与作物相比,在影响树种自身遗传多样性等方面,其潜在的生态风险性可能更大。
随着果树转基因成功事例逐年增加,转基因果树的生态安全性问题也越发受到重视。
由于花粉管通道法进行转化的供体可以是植物总DNA,即利用自然界现有的具目的性状的外源DNA或基因进行遗传转化,其实质相当于远缘杂交。
专题 1 基因工程基因工程是指按照人们的愿望,进行严格的设计,并通过___基因拼接_和_DNA重组_等技术,赋予生物以新的遗传特性,从而创造出更符合人们需要的新的生物类型和生物产品。
由于基因工程是在_DNA 分子_水平上进行设计和施工的,因此又叫做_转基因技术_。
科技探索之路基础理论和技术的发展催生了基因工程。
20 世纪中叶,基础理论取得了重大突破●DNA 是遗传物质的证明1944 年,艾弗里等人通过不同类型肺炎双球菌的转化实验,不仅证明了生物的遗传物质是DNA,还证明了___DNA是主要遗传物质_。
●DNA 双螺旋结构和中心法则的确立1953 年,沃森和克里克建立了___DNA双螺旋结构___模型。
1958 年,梅塞尔松和斯塔尔用实验证明_DNA复制的方式-----半保留复制原则。
随后不久确立的中心法则,解开了 DNA 复制、转录和翻译过程之谜,阐明了遗传信息流动的方向。
●遗传密码的破译1963 年,尼伦伯格和马太破译编码氨基酸的遗传密码。
1966 年,霍拉纳用实验证实了尼伦伯格提出的遗传密码的存在。
这些成果不仅使人们认识到,自然界中从微生物到人类共用一套遗传密码_,而且为基因的分离和合成等提供了理论依据。
技术发明使基因工程的实施成为可能。
●基因转移载体的发现1967 年,罗思和赫林斯基发现细菌拟核 DNA 之外的质粒有_自我复制_能力,并可以在_细菌细胞间转移,这一发现为基因转移找到了一种运载工具。
●工具酶的发现1970 年,阿尔伯、内森斯,史密斯在细菌中发现了第一个限制性内切酶(简称限制酶)后,20 世纪 70 年代初相继发现了多种限制酶和连接酶,以及逆转录酶,这些发现为 DNA 的切割、连接以及功能基因的获得创造了条件。
●DNA 合成和测序技术的发明自 1965 年,桑格发明氨基酸序列分析技术后,1977 年,科学家又发明了 DNA 序列分析的方法,为基因序列图的绘制提供了可能,之后,DNA 合成仪的问世又为引物、探针和小分子DNA基因的获得提供了方便。
番茄组织培养及其农杆菌介导类胡萝卜素合成酶基因LvcB的遗传转化任永霞1,2,王 罡1,郭郁频2,王 萍3,季 静1(1.天津大学农业与生物工程学院,300072;2.河北北方学院,张家口075131;3.淮海工学院海洋学院,连云港222005) 摘 要:LycB(番茄红素β-环化酶)基因是类胡萝卜素生物合成过程中关键酶之一,位于合成代谢的重要分枝点上,直接影响β胡萝卜素的合成。
通过农杆菌介导法,利用LycB基因转化重要果菜两用作物———番茄。
经PCR及PCR-S outhem分子检测证明,目的基因LycB已整合进番茄基因组中。
关键词:LycB基因;番茄;根癌农杆菌;类胡萝卜素;组织培养中图分类号:S641.203.6 文献标识码:A 文章编号:1001-0009(2006)01-0098-03 类胡萝卜素是广泛存在于自然界的一类色素,通常是指胡萝卜素和叶黄素两大类色素的总称。
绝大多数类胡萝卜素呈现绚丽的红、橙或黄色,至今已发现600多种天然的类胡萝卜素。
类胡萝卜素,尤其是β-胡萝卜素不仅是维生素A的前体,且还具有延缓衰老、增强人体免疫力、预防心血管疾病和防癌抗癌等作用。
类胡萝卜素与人类的健康密切相关,随着人们对其认识的加深,人类对其需求也越来越大。
但人体自身不能合成类胡萝卜素,果蔬是其重要来源。
番茄是人们喜食的果菜两用作物,类胡萝卜素的含量是番茄品质和营养价值高低的主要标志。
本实验采用根癌农杆菌介导技术,将LycB基因导入番茄,通过基因工程手段调控其类胡萝卜素的合成,提高番茄β-胡萝卜素的含量,满足人类对健康的需求,以期为番茄品质基因工程育种奠定基础。
1 材料与方法1.1 材料植物材料为东农704、东农708、东农709三个品种,种子由东北农业大学李景富教授惠赠。
1.2 菌株和质粒根癌农杆菌菌株为EH A101,所含质粒上构建有目的基因LycB和植物抗性筛选标记潮霉素磷酸转移酶基因Hyg。
均由季静教授提供。
2023北京高三二模生物汇编基因工程的基本操作程序一、单选题1.(2023·北京房山·统考二模)草甘膦是无选择性除草剂的有效成分,施用时也会“误伤”作物致死,其机理是抑制与植物多种代谢途径有关的EPSP合酶的活性。
研究人员试图培育抗草甘膦作物,如图。
相关说法正确的是()A.①过程的目的基因是抑制EPSP合酶的基因B.①过程可利用农杆菌将重组DNA导入矮牵牛细胞C.①过程运用植物体细胞杂交技术培养成转基因矮牵牛D.转基因矮牵牛存活说明EPSP合酶表达水平下降有利于抗草甘膦2.(2023·北京西城·统考二模)医生可利用分子生物学技术检测受检人是否携带HIV。
下列叙述错误的是()A.可根据HIV的RNA序列合成小段DNA作为引物B.血液样品中HIV的RNA经逆转录后进行PCR检测C.可通过抗原-抗体杂交技术检测血液样品中HIV抗原D.与检测抗原、核酸相比,检测抗体能更早诊断HIV感染3.(2023·北京昌平·统考二模)转座子是基因组中可移动的DNA片段,玉米Ac转座子能编码转座酶而自主转座,Ds转座元件只有与Ac转座子同时存在时,才能从原位点切离并插入到新位点中。
研究者利用玉米转座子系统构建烟草突变体,下列叙述错误的是()A.推测Ds转座元件不具有编码转座酶功能B.可构建同时含有Ac/Ds的基因表达载体C.利用农杆菌转化法将基因表达载体导入烟草细胞D.Ds与其被插入的基因间发生基因重组4.(2023·北京朝阳·统考二模)下列生物学实验中,观察实验现象时需借助仪器的是()A.利用琼脂糖凝胶电泳鉴定PCR产物B.提取和分离菠菜叶片中光合色素(2)为协调菌体生长与产物生产之间的关系,将构建好的重组质粒转入经______处理后的枯草芽孢杆菌(D(4)对三种枯草芽孢杆菌进行培养,结果如图3,请选择适宜工业发酵生产的菌种并阐明理由________。
文献综述REV IEW植物非组培遗传转化方法研究的进展张庆祝 韩天富3中国农业科学院作物科学研究所,北京,1000813通讯作者,hantf@mail1caas1net1cn摘要在许多植物中,转化效率低一直是制约分子育种和基因功能研究的障碍。
目前,在拟南芥等模式植物的研究中,非组培方法已成为遗传转化的主要手段,这些方法在其它植物中也有广阔的应用前景。
本文介绍了几种较为成功的非组培遗传转化方法的应用情况和技术原理,并对下一步研究工作提出了建议。
关键词植物,非组培转化,靶组织/细胞,农杆菌Non2Tissue Culture Transformation of PlantsZhang Qingzhu Han Tianfu3Institute of Crop Science,Chinese Academy of Agricultural Sciences,Beijing,1000813Corresponding author,hantf@mail1caas1net1cnABSTRACTIn many plants,the efficiency of molecular breeding and gene functional analysis are limited because of low transformation rate.At present,non2tissue culture transformation has become the major method of transforma2 tion in model plants like A rabi dopsis.The application of non2tissue culture transformation in other plants is al2 so promising.In this review,the techniques and possible mechanism of several successful non2tissue culture transformation methods are introduced and some advices on the future studies are put forward.KEYWORDSPlant,Non2tissue culture transformation,Target tissue/cell,A grobacteri um植物遗传转化始于20世纪70年代(Hooy2 kaas and Schilperoort,1992),30年来,植物基因工程取得长足发展,转基因作物在生产上大面积推广应用。