14导体电介质和电容单元练习一答案
- 格式:doc
- 大小:60.04 KB
- 文档页数:2
第十章 静电场中的导体和电介质一选择题 1.半径为R 的导体球原不带电, 则导体球的电势为 () q B.羊 4 n o a 今在距球心为 a 处放一点电荷q ( a >R 。
设无限远处的电势为零, qa D . 4 n o (a R )解:导体球处于静电平衡,球心处的电势即为导体球电势,感应电荷 C.4 n o (a R) q 分布在导体球表面上,且 q ( q ) 0 ,它们在球心处的电势 1 V 乩q 4 n o R点电荷q 在球心处的电势为 47^ q dq V J 据电势叠加原理,球心处的电势 4 n o aV o V Vq 。
4 n o a 所以选(A ) 2.已知厚度为d 的无限大带电导体平板, 则板外两侧的电场强度的大小为 ( 2 A. E B. E 2 o o两表面上电荷均匀分布, 电荷面密度均为 ,如图所示,d C. E 二一 D. E=—— ⑰ 2匂解:在导体平板两表面外侧取两对称平面, 做侧面垂直平板 的高斯面,根据高斯定理,考虑到两对称平面电场强度相等,且高斯面内电荷为2 S ,可得E —。
0选择题2图 所以选(C ) 3.如图,一个未带电的空腔导体球壳,内半径为 量为+q 的点电荷。
() R,在腔内离球心的距离为 用导线把球壳接地后,再把地线撤去,选无穷远处为电势零点,则球心 d 处(d<R ,固定一电o 处的电势为A. C.B. 4 n o d q 1 D. (—4 n 0 d 解:球壳内表面上的感应电荷为 q _q 4n o d 4n o R 选择题3图 1R ) -q,球壳外表面上的电 (+q . j 荷为零,所以有V o 所以选(D ) 4.半径分别为 在忽略导线的影响下,A . R/r B. R 2 / r 2 C. r 2 / R 解:两球相连,当静电平衡时,两球带电量分别为 分布,且两球电势相等,取无穷远为电势零点,则 QR 和r 的两个金属球,相距很远,用一根细长导线将两球连接在一起并使它们带电, 两球表面的电荷面密度之比 R / r 为() B. R 2 / r 2 C. r 2 / R 2 D. r / R Q q ,因两球相距很远,所以电荷在两球上均匀 所以选(D )R Q/4 R 2r q /4 r 2「的均匀电介质,若测得导体表面附近场强为 E,则导体球面的自由电荷面密度 为() 上D S S ,即 所以选(B )6. 一空气平行板电容器,充电后测得板间电场强度为 煤油,待稳定后,煤油中的极化强度的大小应是(£ A . —E g £ £(£ 1 )匸 B . E 0£不管是否注入电介(£ 1) C. E 。
习题二一、选择题1.如图所示,一均匀带电球体,总电量为+Q ,其外部同心地罩一内、外半径分别为1r 和2r 的金属球壳。
设无穷远处为电势零点,则球壳内半径为r 的P 点处的场强和电势为[ ] (A )200, 44Q QE U r rεε==ππ; (B )010, 4QE U r ε==π;(C )00, 4QE U rε==π;(D )020, 4QE U r ε==π。
答案:D解:由静电平衡条件得金属壳内0=E ;外球壳内、外表面分别带电为Q -和Q +,根据电势叠加原理得000202Q Q Q QU r r r r εεεε-=++=4π4π4π4π2.半径为R 的金属球与地连接,在与球心O 相距2d R =处有一电量为q 的点电荷,如图所示。
设地的电势为零,则球上的感应电荷q '为[ ](A )0; (B )2q ; (C )2q-; (D )q -。
答案:C解:导体球接地,球心处电势为零,即000044q q U dRπεπε'=+=(球面上所有感应电荷到球心的距离相等,均为R ),由此解得2R qq q d '=-=-。
3.如图,在一带电量为Q 的导体球外,同心地包有一各向同性均匀电介质球壳,其相对电容率为r ε,壳外是真空,则在壳外P 点处(OP r =)的场强和电位移的大小分别为[ ] (A )2200,44r Q Q E D rr εεε==ππ; (B )22,44r Q QE D r r ε==ππ; (C )220,44Q Q E D r r ε==ππ; (D )2200,44Q QE D r r εε==ππ。
答案:C解:由高斯定理得电位移 24QD r =π,而 2004D QE r εε==π。
4.一大平行板电容器水平放置,两极板间的一半空间充有各向同性均匀电介质,另一半为空气,如图所示。
当两极板带上恒定的等量异号电荷时,有一个质量为m 、带电量为+q 的质点,在极板间的空气区域中处于平衡。
第十章 静电场中的导体和电介质一 选择题1. 半径为R 的导体球原不带电,今在距球心为a 处放一点电荷q ( a >R )。
设无限远处的电势为零,则导体球的电势为 ( )20200π4 . D )(π4 . C π4 . B π4 .A R)(a qaR a q a qR a q o --εεεε 解:导体球处于静电平衡,球心处的电势即为导体球电势,感应电荷q '±分布在导体球表面上,且0)(='-+'+q q ,它们在球心处的电势⎰⎰'±'±='='='q q q R R q V 0d π41π4d 00εε 点电荷q 在球心处的电势为 aqV 0π4ε=据电势叠加原理,球心处的电势aqV V V 00π4ε='+=。
所以选(A )2. 已知厚度为d的无限大带电导体平板,两表面上电荷均匀分布,电荷面密度均为 ,如图所示,则板外两侧的电场强度的大小为 ( )0002 . D . C 2 . B 2 .A εdE=εE=E E σσεσεσ== 解:在导体平板两表面外侧取两对称平面,做侧面垂直平板的高斯面,根据高斯定理,考虑到两对称平面电场强度相等,且高斯面内电荷为S 2σ,可得 0εσ=E 。
所以选(C )3. 如图,一个未带电的空腔导体球壳,内半径为R ,在腔内离球心的距离为 d 处(d<R ),固定一电量为+q 的点电荷。
用导线把球壳接地后,再把地线撤去,选无穷远处为电势零点,则球心o 处的电势为 ( ))R d (q R d q11π4 D. 4πq C.π4 B. 0 A.000-εεε 解:球壳内表面上的感应电荷为-q ,球壳外表面上的电荷为零,所以有)π4π4000Rq d q V εε-+=。
所以选( D )4. 半径分别为R 和r 的两个金属球,相距很远,用一根细长导线将两球连接在一起并使它们带电,在忽略导线的影响下,两球表面的电荷面密度之比R /r 为 ( )A . R /r B. R 2 / r 2 C. r 2 / R 2 D.r / R解:两球相连,当静电平衡时,两球带电量分别为Q 、q ,因两球相距很远,所以电荷在两球上均匀分布,且两球电势相等,取无穷远为电势零点,则r q R Q 00π4π4εε= 即 rRq Q = Rrr q R Q r R ==22 4/4/ππσσ 所以选(D )o R d +q . 选择题3图选择题2图d5. 一导体球外充满相对介质电常数为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度为 ( )A. ε0 EB. ε0εr EC. εr ED. (ε0εr ε0) E解:根据有介质情况下的高斯定理⎰⎰∑=⋅q S D d ,取导体球面为高斯面,则有S S D ⋅=⋅σ,即E D r 0εεσ==。
思 考 题第 一 章1-1 什么是电介质的极化?表征介质极化的宏观参数是什么?答:电介质在电场作用下,在介质内部感应出偶极矩、介质表面出现 束缚电荷的现象称为电介质的极化。
其宏观参数为介电常数ε。
1-2 什么叫退极化电场?如何用极化强度P 表示一个相对介电常数为r ε的 平行板介质电容器的退极化电场、平均宏观电场、电容器极板上充电 电荷所产生的电场。
答:在电场作用下平板电介质电容器的介质表面上的束缚电荷所产 的、与外电场方向相反的电场,起削弱外电场的作用,所以称为 退极化电场。
退极化电场:00εεσP E d -=-= 平均宏观电场:)1(0--=r PE εε充电电荷所产生的电场:00000εεεεεσPE P E D E e +=+===1-3 氧离子的半径为m 101032.1-⨯,计算氧的电子位移极化率。
提示:按公式304r πεα=,代入相应的数据进行计算。
1-4 在标准状态下,氖的电子位移极化率为2101043.0m F ⋅⨯- 。
试求出氖的 相对介电常数。
解: 氖的相对介电常数:单位体积的离子数:N =253231073.24.221010023.6⨯=⨯⨯ 而 e r N αεε=-)1(0所以:0000678.110≅+=εαεer N1-5 试写出洛伦兹有效电场表达式。
适合洛伦兹有效电场时,电介质的介 电常数ε和极化率α有什么关系?其介电常数的温度系数的关系式又如 何表示。
解:洛伦兹有效场:E E E e ''++=32εε和α的关系:αεεεN 03121=+- 介电常数的温度系数为:L βεεα3)2)(1(+--=1-6 若用1E 表示球内极化粒子在球心所形成的电场,试表示洛伦兹有效电 场中1E =0时的情况。
解:1E =0时, 洛伦兹的有效场可以表示为E E e 32+=ε1-7 试述K -M 方程赖以成立的条件及其应用范围。
答:克-莫方程赖以成立的条件:0=''E其应用的范围:体心立方、面心立方、氯化钠型以及金刚石结构 的晶体;非极性以及弱极性液体介质。
第十章 静电场中的导体和电介质一.选择题[B ]1、(基训2) 一“无限大”均匀带电平面A ,其附近放一与它平行的有一定厚度的“无限大”平面导体板B ,如图所示.已知A 上的电荷面密度为+σ ,则在导体板B 的两个表面1和2上的感生电荷面密度为: (A) σ 1 = - σ, σ 2 = + σ. (B) σ 1 = σ21-, σ 2 =σ21+. (C) σ 1 = σ21-, σ 1 = σ21-. (D) σ 1 = - σ, σ 2 = 0. 【解析】 由静电平衡平面导体板B 内部的场强为零,同时根据原平面导体板B 电量为零可以列出σ 1S+σ 2S=0022202010=-+εσεσεσ[ C ]2、(基训3)在一个原来不带电的外表面为球形的空腔导体A 内,放有一带电量为+Q 的带电导体B ,如图10-5所示,则比较空腔导体A 的电势U A 和导体B 的电势U B 时,可得以下结论:(A) U A = U B . (B) U A > U B . (C) U A < U B . (D) 因空腔形状不是球形,两者无法比较.【解析】由静电感应现象,空腔导体A 内表面带等量负电荷,A 、B 间电场线如图所示,而电场线总是指向电势降低的方向),因此U B >U A 。
[C ]3、(基训6)半径为R 的金属球与地连接。
在与球心O 相距d =2R 处有一电荷为q 的点电荷。
如图16所示,设地的电势为零,则球上的感生电荷q '为:(A) 0. (B) 2q . (C) -2q. (D) -q .【解析】利用金属球是等势体,球体上处电势为零。
球心电势也为零。
0442q o o dq qR R πεπε''+=⎰ R qR q d o q oo 244πεπε-='⎰'RqR q 2-=' 2qq -='∴[C ]4、(基训8)两只电容器,C 1 = 8 μF ,C 2 = 2 μF ,分别把它们充电到 1000 V ,然后将它们反接(如图10-8所示),此时两极板间的电势差为: (A) 0 V . (B) 200 V . (C) 600 V . (D) 1000 V AB+σσ1σ2OR dqC 1C2【解析】 C U C U C Q Q Q 32121106-⨯=-=-=V FC C C Q C Q U 600101106''5321=⨯⨯=+==-- [B ]5、(自测4)一导体球外充满相对介电常量为r ε的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度0σ为(A) E 0ε. (B) E r εε0 . (C) E r ε. (D) E r )(00εεε- 【解析】导体表面附近场强ro o E εεσεσ0==,E r o εεσ0=. [ B ]6、(自测7)一个大平行板电容器水平放置,两极板间的一半空间充有各向同性均匀电介质,另一半为空气,如图.当两极板带上恒定的等量异号电荷时,有一个质量为m 、带电荷为+q 的质点,在极板间的空气区域中处于平衡.此后,若把电介质抽去 ,则该质点(A) 保持不动. (B) 向上运动. (C) 向下运动. (D) 是否运动不能确定.【解析】在抽出介质前,相当于左右两半两个“电容器”并联,由于这两个“电容器”电压相等,而右半边的电容又小于左半边的,因此由q=CU 公式可知,右半边极板的带电量小于左半边的。
第十四章静电场中的导体与电介质自测题答案一、选择题答案BBCCC BDDAB CC二、填空题1.答案: 02.答案:表面3.答案: C1+C24.答案:减少5.答案:相等6.答案: 07.答案: q4πεR8.答案: RA:RB9答案:-rq/R10.答案:增大11.答案: 3.75UQd12.答案: 0+ 22S ε013.答案:14.: rRqer15. 答案: 4πε 0r21 1616. Q4πε 0R+q4πε 0a17.<18.1/2 σ 19. 0 ε020. 1εr三、计算题1.半径分别为 a 和 b 的两个金属球,它们的间距比本身线度大得多,今用一细导线将两者相连接,并给系统带上电荷 Q,求:(1)每个球上分配到的电荷是多少?(2)按电容定义式,计算此系统的电容。
解:( 1)两孤立导体球电势相等,故qaqbU== 3 分 4πε 0a4πε 0b又 Q=qa+qb 2 分QaQb 2分,qb=a+ba+b(2)根据电容定义式,此系统的电容为解得qa=Q=4πε 0(a+b)分3 U2.如图, 3 个“无限长”的同轴导体圆柱面 A 、B、 C,半径分别为 RA、 RB、 RC,圆柱面 B 上带电荷, A 和 C 都接地。
求 B 的内表面上沿轴线电荷线密度λ1和外表面上电荷线密度λ2之比值λ1/ λ2。
解:由高斯定理, A 的外表面上沿轴线电荷线密度-λ1,C 的内表面上电荷线密度-λ2RAλ 1λ RUBA=(-dr)=1lnB 3 分 RB2πε r2 πε 0RA0?C= UBC=? RCRBRλ 2λ =2lnC 3分 2πε 0r2 πε 0RB而 UBA=UBC ,故 2 分Rλ 1=lnCλ2RBlnRB 2分 RA3.有一外半径为 R1、内半径为 R2 的金属球壳,其内有一同心的半径为 R3 的金属球。
球壳和金属球所带的电量均为 q。
求空间的电场分布。
解:作半径为 r 的同心球面为高斯面,则通过高斯面的电通量为E? dS=4π r2E 1分 S当 r<R3 时,∑q内=0 由高斯定理 E? dS=Sqε0内,得 1分E1=0 2 分当 R3<r<R2 时,∑q内=q 内由高斯定理 E? dS=Sqε0,得E2=q4πε 0r2内 2 分当 R2<r<R1 时,∑q=0内由高斯定理 E? dS=Sqε0,得E3=0 2 分当 r>R1 时,∑q内=2q 由高斯定理 E? dS=Sqε0内,得E4=2q 2 分 4πε 0r24.一半径为 r1,r2(r2>r1)互相绝缘的两个同心导体球壳,现将 +q 电量给予内球壳,求外球壳上所带的电荷和外球的电势。
1.质点运动学单元练习(一)答案1.B 2.D 3.D 4.B5.3.0m;5.0m(提示:首先分析质点的运动规律,在t <2.0s 时质点沿x 轴正方向运动;在t =2.0s 时质点的速率为零;,在t 〉2.0s 时质点沿x 轴反方向运动;由位移和路程的定义可以求得答案。
)6.135m (提示:质点作变加速运动,可由加速度对时间t 的两次积分求得质点运动方程。
)7.解:(1))()2(22SI jt i t r -+=)(21m ji r+= )(242m ji r-=)(3212m ji r r r-=-=∆)/(32s m ji t r v -=∆∆=(2))(22SI j t i dtrd v -== )(2SI jdt vd a -==)/(422s m j i v-=)/(222--=s m ja8.解:t A tdt A adt v totoωω-=ωω-==⎰⎰sin cos 2t A tdt A A vdt A x totoω=ωω-=+=⎰⎰cos sin9.解:(1)设太阳光线对地转动的角速度为ωs rad /1027.73600*62/5-⨯=π=ωs m th dt ds v /1094.1cos 32-⨯=ωω==(2)当旗杆与投影等长时,4/π=ωth s t 0.31008.144=⨯=ωπ=10.解: ky yv v t y y v t dv a -====d d d d d d d -k =y v d v / d y⎰⎰+=-=-C v ky v v y ky 222121,d d 已知y =y o ,v =v o 则20202121ky v C --= )(2222y y k v v o o -+=2.质点运动学单元练习(二)答案1.D 2.A 3.B 4.C5.14-⋅==s m t dt ds v ;24-⋅==s m dtdva t ;2228-⋅==s m t Rv a n ;2284-⋅+=s m e t e a nt6.s rad o /0.2=ω;s rad /0.4=α;2/8.0s rad r a t =α=;22/20s m r a n =ω=7.解:(1)由速度和加速度的定义)(22SI ji t dt rd v +==;)(2SI idtvd a ==(2)由切向加速度和法向加速度的定义)(124422SI t t t dt d a t +=+=)(12222SI t a a a t n +=-=(3)())(122/322SI t a v n+==ρ8.解:火箭竖直向上的速度为gt v v o y -︒=45sin 火箭达到最高点时垂直方向速度为零,解得s m gtv o /8345sin =︒=3。
14.导体电介质和电容单元练习(一)答案
1. B
2. C
3. D
4. C
5. <
6. 负电;29/1006.1m C E o -⨯=ε=σ
7. 解:两个球形导体用细导线相连接后电势相等,
C Q Q 821100.12-⨯⨯=+
2
211R Q R Q = 解得:C Q 8821033.1100.232--⨯=⨯⨯=; V R Q V o 32
22100.64⨯=πε= C Q 8811067.0100.231--⨯=⨯⨯=
V R Q V o 3221100.64⨯=πε=
8.解:依照题意d >>R ,导体上的电荷分布基本保持不变,电场可以视为两个长直带电线电场的叠加。
取其中一导线轴心为坐标原点,两根导线的垂直连线为x 轴。
任意一点P 的电场强度
i x d x E o ⎪⎭⎫ ⎝⎛-λ+λπε=
21⎰-⋅=R d R AB l d E U dx x d x R d R o ⎰-⎪⎭⎫ ⎝⎛-+πελ=112R R d o -πελ=
ln R d >>两直导线单位长度的电容 R
U C o AB ln πε≈λ= 9. 解:方法一:导体电荷的自能就是系统的静电能
R
Q dq V Vdq W o πε===⎰⎰ΩΩ821212
方法二:依照孤立导体球电容的能量求系统的静电能
R C o πε=4 R
Q Q C W o πε==8212
2 方法三:依照电场能量密度对电场空间的积分求系统的静电能
42223221r Q E w o o e επ=ε= R Q r dr r Q r dV Q W o o
o πε=εππ=επ=⎰Ω8324322
4222422
*10.解:(1)导体达到静电平衡时,导体板上电荷分布的规律可参见《物理学教程习题分析与解答》,根据电荷守恒定律以及C 板的电势,有
d d o
o εσ
=εσ212
Q S S =σ+σ21 解得:S Q S Q
3;3221=σ=σ 3;
32Q Q Q
Q B A -=-=
(2)C 板的电势
d S Q d d
U o o o C ε=εσ=εσ=3221。