6-3-数列3
- 格式:doc
- 大小:82.50 KB
- 文档页数:8
等差数列题目100道一、基础概念类题目1. 已知数列{a_n}满足a_{n + 1}-a_n = 3,a_1 = 2,求数列{a_n}的通项公式。
- 解析:因为a_{n + 1}-a_n = d = 3(d为公差),a_1 = 2。
根据等差数列通项公式a_n=a_1+(n - 1)d,可得a_n=2+(n - 1)×3=3n - 1。
2. 在等差数列{a_n}中,a_3 = 7,a_5 = 11,求a_{10}。
- 解析:首先求公差d,d=frac{a_{5}-a_{3}}{5 - 3}=(11 - 7)/(2)=2。
由a_3=a_1+(3 - 1)d,即7=a_1 + 2×2,解得a_1 = 3。
那么a_{10}=a_1+(10 -1)d=3+9×2 = 21。
3. 若数列{a_n}为等差数列,且a_2=5,a_6 = 17,求其公差d。
- 解析:根据等差数列通项公式a_n=a_m+(n - m)d,则a_6=a_2+(6 - 2)d,即17 = 5+4d,解得d = 3。
4. 已知等差数列{a_n}的首项a_1=-1,公差d = 2,求该数列的前n项和S_n的公式。
- 解析:根据等差数列前n项和公式S_n=na_1+(n(n - 1))/(2)d,将a_1=-1,d = 2代入可得S_n=-n+(n(n - 1))/(2)×2=n^2 - 2n。
5. 在等差数列{a_n}中,a_1 = 1,a_{10}=19,求S_{10}。
- 解析:根据等差数列前n项和公式S_n=(n(a_1 + a_n))/(2),这里n = 10,a_1 = 1,a_{10}=19,则S_{10}=(10×(1 + 19))/(2)=100。
二、性质应用类题目6. 在等差数列{a_n}中,若a_3+a_8+a_{13}=12,求a_8的值。
- 解析:因为在等差数列中,若m,n,p,q∈ N^+,m + n=p+q,则a_m + a_n=a_p + a_q。
省考行测模考数量关系试题解析数字推理(1)2048,512,128,32,8,()A.1B.2C.4D.6【解析】等比数列,8÷4=2,选B(2)5,8,14,26,50,()A.76B.98C.100D.150【解析】相邻两项作差得3、6、12、24、(48)为等比数列,50+48=98,选B(3)322,44,117,550,335,()A.551B.280C.907D.606【解析】每个数的数字和分别为7、8、9、10、11、(12),选D(4)2,19/8,2.75,25/8,()A、7/8B、7/2C、4.5D、5.4【解析】分别转化为16/8、19/8、22/8、25/8、(28/8=7/2),选B(5)8,4,14,10,24,12,30,18,36,()A.20B.22C.24D.26【解析】两个一组,每组之和12、24、36、48、(60)为等差数列,60-36=24,选C (6)136542,33654,7365,1236,723,()A.103B.102C.106D.105【解析】首尾相加作为下一项的首位、其余部分不动,7+3=10,选B(8)4,4,5,8,13,22,()A.39B.29C.59D.49【解析】相邻两项作差得0、1、3、5、9、(17),再作差得1、2、2、4、8为递推积数列,22+17=39,选A(9)0,1,1,4,25,()A.832B.824C.841D.817【解析】(第一项+第二项)2=第三项,依次类推,(4+25)2=841,选C(10)2+√3,3-√3,5,8-√3,13-√3,()A.21-2√3B.21-√3C.5+2√2D.1+2√2【解析】递推和数列,(8-√3)+(13-√3)=21-2√3,选A(11)1,2,3,5,8,12,20,28,(),()A.35B.37C.48D.64【解析】两个一组,(1、2)(3、5)(8、12)(20、28)(48、64),每组之和为下一组的第一个数,每组之差1、2、4、8、16为等比数列,选CD(12)(),4,1,2,5,3,9,11,()A.0B.4C.8D.12【解析】以5为对称点,2+3=5、1+9=10、4+11=15、(8)+(12)=20,选CD(13)(),3,9,45,315,()A、1.5B、2C、2478D、3465【解析】相邻两项作商得2、3、5、7、11为连续质数列,3÷2=1.5、315×11=3465,选(14)(),22,54,74,130,158,()A.8B.10C.212D.238【解析】分别转化为(32+1=10)、52-3、72+5、92-7、112+9、132-11、(152+13=238),选BD(15)3,5,18,59,195,(),()A.644B.734C.1827D.2127【解析】第一项+(第二项×3)=第三项,依次类推,59+(195×3)=644、195+(644×3)=2127,选AD(18)1/3,5/6,13/12,5/4,()A.11/6B.7/4C.5D.11/8【解析】相邻两项作差得1/2、1/4、1/6、(1/8),(5/4)+(1/8)=11/8,选D(19)2,4,8,24,88,()A.663B.636C.664D.646【解析】第一项2+第二项=第三项,依次类推,242+88=664,选C(20)3,10,24,65,()A.167B.168C.169D.170【解析】分别转化为22-1、32+1、52-1、82+1、(132-1=168),选B数学运算(1)甲、乙两个仓库均放满货物,甲仓库货物比乙仓库少1/6。
数列的概念1.数列的定义按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项。
(1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列。
(2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,…。
(4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n。
(5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别。
如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而中元素不论按怎样的次序排列都是同一个集合。
2.数列的分类(1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列。
在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示无穷数列。
(2)按照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列。
3.数列的通项公式数列是按一定次序排列的一列数,其内涵的本质属性是确定这一列数的规律,这个规律通常是用式子f(n)来表示的,这两个通项公式形式上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,又不一定是唯一的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能确定的,通项公式更非唯一。
题组层级快练 6.3等比数列一、单项选择题1.(2021·泰安模拟)若等比数列{a n }的各项均为正数,a 2=3,4a 32=a 1a 7,则a 5等于( ) A.34 B.38 C .12 D .24 2.在等比数列{a n }中,a 2a 6=16,a 4+a 8=8,则a 20a 10等于( )A .1B .-3C .1或-3D .-1或33.(2020·广州模拟)已知等比数列{a n }的前n 项和S n 满足4S 5=3S 4+S 6,且a 2=1,则a 4=( ) A.127 B .27 C.19D .9 4.(2021·益阳市、湘潭市高三调研)已知等比数列{a n }中,a 5=3,a 4a 7=45,则a 7-a 9a 5-a 7的值为( )A .3B .5C .9D .255.(2021·天津市河西区月考)设{a n }是公比为q 的等比数列,则“q>1”是“{a n }为递增数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.《张丘建算经》中“今有马行转迟,次日减半,疾七日,行七百里.问日行几何?”意思是:“现有一匹马行走的速度逐渐变慢,每天走的里数是前一天的一半,连续行走7天,共走了700里路,问每天走的里数为多少?”则该匹马第一天走的里数为( )A.128127B.44 800127C.700127D.17532 7.(2021·深圳一模)已知等比数列{a n }的前n 项和S n =a·3n -1+b ,则a b =( )A .-3B .-1C .1D .38.在14与78之间插入n 个数组成等比数列,若各项总和为778,则此数列的项数为( )A .4B .5C .6D .79.(2021·广东惠州一中月考)已知数列{a n }是等比数列,且a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1=( )A .16(1-4-n ) B .16(1-2-n ) C.323(1-4-n ) D.323(1-2-n ) 10.等比数列{a n }的前n 项和为S n ,若a 1=a 2+2a 3,S 2是S 1与mS 3的等比中项,则m =( ) A .1 B.97 C.67 D.12二、多项选择题11.已知正项等比数列{a n }满足a 4=4,a 2+a 6=10,则公比q =( ) A.12 B. 2 C .2 D.22 12.已知等比数列{a n }中,满足a 1=1,q =2,则( ) A .数列{a 2n }是等比数列B .数列⎩⎨⎧⎭⎬⎫1a n 是递增数列C .数列{log 2a n }是等差数列D .数列{a n }中,S 10,S 20,S 30仍成等比数列 三、填空题与解答题13.已知等比数列{a n }满足a 1=12,a 2a 8=2a 5+3,则a 9=________.14.等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =________.15.在等比数列{a n }中,若a 1=12,a 4=-4,则公比q =________;|a 1|+|a 2|+…+|a n |=________.16.(2020·课标全国Ⅲ,文)设等比数列{a n }满足a 1+a 2=4,a 3-a 1=8. (1)求{a n }的通项公式;(2)记S n 为数列{log 3a n }的前n 项和.若S m +S m +1=S m +3,求m.17.(2021·华大新高考联盟质检)设等比数列{a n }的前n 项和为S n ,若a 3a 11=2a 52,且S 4+S 12=λS 8,则λ=________.18.(2021·四川成都一诊)已知数列{a n }满足a 1=-2,a n +1=2a n +4. (1)证明:数列{a n +4}是等比数列; (2)求数列{|a n |}的前n 项和S n .6.3等比数列 参考答案1.答案 D 2.答案 A解析 由a 2a 6=16,得a 42=16⇒a 4=±4.又a 4+a 8=8,可得a 4(1+q 4)=8,∵q 4>0,∴a 4=4.∴q 2=1,a 20a 10=q 10=1. 3.答案 D解析 因为4S 5=3S 4+S 6,所以3S 5-3S 4=S 6-S 5,即3a 5=a 6,故公比q =3.由等比数列的通项公式得a 4=a 2q 4-2=1×32=9.故选D. 4.答案 D解析 设等比数列{a n }的公比为q ,则a 4a 7=a 5q ·a 5q 2=9q =45,所以q =5,所以a 7-a 9a 5-a 7=a 5q 2-a 7q 2a 5-a 7=q 2=25.故选D. 5.答案 D 6.答案 B解析 由题意知每日所走的路程成等比数列{a n },且公比q =12,S 7=700,由等比数列的求和公式得a 1⎝⎛⎭⎫1-1271-12=700,解得a 1=44 800127.故选B.7.答案 A 8.答案 B解析 ∵q ≠1⎝⎛⎭⎫14≠78,∴S n =a 1-a n q 1-q ,∴778=14-78q1-q ,解得q =-12,78=14×⎝⎛⎭⎫-12n +2-1,∴n =3.故该数列共5项. 9.答案 C解析 因为等比数列{a n }中,a 2=2,a 5=14,所以a 5a 2=q 3=18,所以q =12.由等比数列的性质,易知数列{a n a n+1}为等比数列,其首项为a 1a 2=8,公比为q 2=14,所以要求的a 1a 2+a 2a 3+…+a n a n +1为数列{a n a n +1}的前n项和.由等比数列的前n 项和公式得a 1a 2+a 2a 3+…+a n a n +1=8⎝⎛⎭⎫1-14n 1-14=323(1-4-n ).故选C. 10.答案 B解析 设等比数列{a n }的公比为q ,由a 1=a 2+2a 3,得a 1=a 1q +2a 1q 2,解得q =-1或q =12,当q =-1时,S 2=0,这与S 2是S 1与mS 3的等比中项矛盾.当q =12时,S 1=a 1,S 2=32a 1,mS 3=74a 1m ,由S 2是S 1与mS 3的等比中项,得S 22=S 1×mS 3,94a 12=m ×74a 12,所以m =97.故选B.11.答案 BD解析 因为a 4=4,a 2+a 6=10,所以a 4q 2+a 4q 2=10,得2q 4-5q 2+2=0,得q 2=2或q 2=12,又q>0,所以q =2或q =22.故选BD. 12.答案 AC解析 等比数列{a n }中,a 1=1,q =2,所以a n =2n -1,S n =2n -1. 于是a 2n=22n -1,1a n =⎝⎛⎭⎫12n -1,log 2a n =n -1,故数列{a 2n }是等比数列,数列⎩⎨⎧⎭⎬⎫1a n 是递减数列,数列{log 2a n }是等差数列.因为S 10=210-1,S 20=220-1,S 30=230-1,S 20S 10≠S 30S 20,所以S 10,S 20,S 30不成等比数列(应是S 10,S 20-S 10,S 30-S 20成等比数列).故选AC. 13.答案 18解析 方法一:设数列{a n }的公比为q ,由a 2a 8=2a 5+3,得a 12q 8=2a 1q 4+3,又a 1=12,所以q 8-4q 4-12=0,解得q 4=6或q 4=-2(舍去),所以a 9=a 1q 8=12×62=18.方法二:根据等比数列的性质可得a 2a 8=a 52,又a 2a 8=2a 5+3,所以a 52-2a 5-3=0,解得a 5=3或a 5=-1.因为a 1>0,所以a 5=a 1q 4>0,所以a 5=3.因为a 1a 9=a 52,所以a 9=a 52a 1=18.14.答案 -2解析 由S 3+3S 2=0,即a 1+a 2+a 3+3(a 1+a 2)=0,即4a 1+4a 2+a 3=0,即4a 1+4a 1q +a 1q 2=0,即q 2+4q +4=0,所以q =-2. 15.答案 -2 2n -1-12解析 设等比数列{a n }的公比为q ,则a 4=a 1q 3,代入数据解得q 3=-8,所以q =-2;等比数列{|a n |}的公比为|q|=2,则|a n |=12×2n -1,所以|a 1|+|a 2|+|a 3|+…+|a n |=12(1+2+22+…+2n -1)=12(2n -1)=2n -1-12.16.答案 (1)a n =3n -1 (2)6解析 (1)设{a n }的公比为q ,则a n =a 1q n -1.由已知得⎩⎪⎨⎪⎧a 1+a 1q =4,a 1q 2-a 1=8,解得a 1=1,q =3,所以{a n }的通项公式为a n =3n -1. (2)由(1)知log 3a n =n -1. 故S n =n (n -1)2. 由S m +S m +1=S m +3得m(m -1)+(m +1)m =(m +3)(m +2),即m 2-5m -6=0. 解得m =-1(舍去)或m =6. 17.答案 83解析 ∵数列{a n }是等比数列,a 3a 11=2a 52,∴a 72=2a 52,∴q 4=2. ∵S 4+S 12=λS 8,∴a 1(1-q 4)1-q +a 1(1-q 12)1-q =λa 1(1-q 8)1-q ,∴1-q 4+1-q 12=λ(1-q 8), 将q 4=2代入计算可得λ=83.18.答案 (1)证明见解析 (2)S n =2n +1-4n +2 解析 (1)证明:∵a 1=-2,∴a 1+4=2. ∵a n +1=2a n +4,∴a n +1+4=2a n +8=2(a n +4), ∴a n +1+4a n +4=2, ∴{a n +4}是以2为首项,2为公比的等比数列. (2)由(1)可知a n +4=2n ,∴a n =2n -4. 当n =1时,a 1=-2<0,∴S 1=|a 1|=2; 当n ≥2时,a n ≥0,∴S n =-a 1+a 2+…+a n =2+(22-4)+…+(2n -4)=2+22+…+2n -4(n -1)=2(1-2n )1-2-4(n -1)=2n +1-4n +2.又当n =1时,上式也满足. ∴S n =2n +1-4n +2.。
三年级等差数列例题一、等差数列基础概念例题。
1. 例题:求等差数列3,7,11,15,…的第10项是多少?- 解析:- 我们要确定这个等差数列的首项a_1 = 3,公差d=7 - 3=4。
- 根据等差数列的通项公式a_n=a_1+(n - 1)d。
- 当n = 10时,a_10=3+(10 - 1)×4=3 + 9×4=3+36 = 39。
2. 例题:等差数列2,5,8,11,…,29,这个数列共有多少项?- 解析:- 已知首项a_1 = 2,公差d = 5-2 = 3,末项a_n=29。
- 根据通项公式a_n=a_1+(n - 1)d,可得到29 = 2+(n - 1)×3。
- 化简方程29=2 + 3n-3,即29=3n - 1。
- 移项可得3n=30,解得n = 10,所以这个数列共有10项。
3. 例题:在等差数列{a_n}中,a_1 = 5,d = 3,求前5项的和S_5。
- 解析:- 根据等差数列求和公式S_n=(n(a_1 + a_n))/(2),先求a_5。
- 由通项公式a_n=a_1+(n - 1)d,当n = 5时,a_5=5+(5 - 1)×3=5+12 = 17。
- 再代入求和公式S_5=(5×(5 + 17))/(2)=(5×22)/(2)=55。
4. 例题:已知等差数列1,4,7,10,…,求这个数列的第20项与前20项的和。
- 解析:- 首项a_1 = 1,公差d = 4 - 1=3。
- 第20项a_20=a_1+(20 - 1)d=1+(20 - 1)×3=1+19×3=1 + 57=58。
- 前20项和S_20=(20×(1 + 58))/(2)=10×59 = 590。
5. 例题:等差数列{a_n}中,a_3 = 7,a_5 = 11,求a_1和d。
- 解析:- 根据等差数列通项公式a_n=a_1+(n - 1)d。
数列中的错位相减法
错位相减法是一种求解数学问题的方法,它在求解等比数列(geometric sequence)中尤为重要。
简单来说,错位相减法就是将相邻两项取出,其中一项以比较大的量级移动一个位置,然后进行相减,以求得不同项的公因数。
比如,给定一个等比数列 3,6,12,24,我们要求得它的公比 q。
首先我们可以取出相邻的两项:3 和 6,注意到 3 比 6 小,那么将它移动一个位置,变成 6 和3 的错位相减:6 - 3 = 3。
这里得到的结果3,就是等比数列的公比 q。
而想要确定其他相邻数列中的 q,我们也可以使用类似的办法。
另外,错位相减法还可以应用在其他有关等比数列求解的情况中。
例如,在给定数列中求解等比数列的前 n 项和S_n,可以使用前 n-1 项的和 S_{n-1} 和第 n 项a_n 的值,进行错位相减法运算:S_n = S_{n-1} + a_n。
这里我们求出的 S_n 就是等比数列的前 n 项的和。
总而言之,错位相减法在求解等比数列中显得非常重要,它使我们能够简单有效地确定数列的公比,以及前 n 项的和。
正是由于它的易用性,错位相减法成为了求解等比数列的常用方法。
中考数学找规律题型扩展及解析“有比较才有鉴别”。
通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。
找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
揭示的规律,常常包含着事物的序列号。
所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a1+(n-1)b,其中a为数列的第一位数,b 为增幅,(n-1)b为第一位数到第n位的总增幅。
然后再简化代数式a+(n-1)b。
例:4、10、16、22、28……,求第n位数。
分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n位数是:4+(n-1) 6=6n-2(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。
如增幅分别为3、5、7、9,说明增幅以同等幅度增加。
此种数列第n位的数也有一种通用求法。
基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。
此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。
(三)增幅不相等,但是增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(四)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。
此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。
二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
找出的规律,通常包序列号。
所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
数列3
基础达标演练
1.已知等比数列{a n}满足a1+a2=3,a2+a3=6,则a7=().A.64 B.81
C.128 D.243
解析设数列{a n}的公比为q,则q=a2+a3
a1+a2
=2,
∴由a1+a1q=3得a1=1,∴a7=1×27-1=64. 答案 A
2.设{a n}是任意等比数列,它的前n项和,前2n项和与前3n项和分别为X,Y,Z,则下列等式中恒成立的是().
A.X+Z=2Y B.Y(Y-X)=Z(Z-X)
C.Y2=XY D.Y(Y-X)=X(Z-X)
解析(特例法)取等比数列1,2,4,令n=1得X=1,Y=3,Z=7代入验算,
选D. 答案 D
错误!
3.若等比数列{a n}满足a n a n+1=16n,则公比为().
A.2 B.4 C.8 D.16
解析 由a n a n +1=a 2n q =16n
>0
知q >0,又a n +1a n +2a n a n +1
=q 2=16n +1
16n =16,∴q =4.
答案 B
4.已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6=
( ).
A .5 2
B .7
C .6
D .4 2
解析 (a 1a 2a 3)·(a 7a 8a 9)=a 6
5=50,∴a 4a 5a 6=a 35=5 2.
答案 A
5.已知等比数列{a n }的前n 项和S n =t ·5n -2-15,则实数t 的值为( ). A .4 B .5
C.4
5
D.15
解析 ∵a 1=S 1=15t -15,a 2=S 2-S 1=4
5t ,a 3=S 3-S 2=4t ,∴由{a n }是等比数列知⎝ ⎛⎭⎪⎫45t 2=⎝ ⎛⎭⎪⎫15t -15·4t ,显然t ≠0,所以t =5. 答案 B
6.设1=a1≤a2≤…≤a7,其中a1,a3,a5,a7成公比为q的等比数列,a2,a4,a6成公差为1的等差数列,则q的最小值是________.
解析设a2=t,则1≤t≤q≤t+1≤q2≤t+2≤q3,由于t≥1,所以q≥max{t,
t+1,3
t+2}故q的最小值是
3
3. 答案
3
3
7.在等比数列{a n}中,若公比q=4,且前3项之和等于21,则该数列的通项公式a n=________.
解析由题意知a1+4a1+16a1=21,解得a1=1,所以数列{a n}的通项公式a n=4n-1. 答案4n-1
8.已知等比数列{a n}的前n项和为S n,若S2=6,S4=30,则S6=________.
解析∵{a n}是等比数列,∴S2,S4-S2,S6-S4成等比数列,即6,24,S6-30成等比数列,∴242=6×(S6-30),∴S6=126.
答案126
9.已知等差数列{a n}满足a2=2,a5=8.
(1)求{a n}的通项公式;
(2)各项均为正数的等比数列{b n}中,b1=1,b2+b3=a4,求{b n}的前n项和T n.
解 (1)设等差数列{a n }的公差为d ,
则由已知得⎩⎨⎧
a 1+d =2,
a 1+4d =8.∴a 1=0,d =2. ∴a n =a 1+(n -1)d =2n -2.
(2)设等比数列{b n }的公比为q ,则由已知得q +q 2=a 4, ∵a 4=6,∴q =2或q =-3.
∵等比数列{b n }的各项均为正数,∴q =2.
∴{b n }的前n 项和T n =b 1(1-q n )1-q =1×(1-2n )1-2=2n
-1.
10.已知等比数列{a n }中,a 1=13,公比q =1
3. (1)S n 为{a n }的前n 项和,证明:S n =1-a n
2;
(2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列{b n }的通项公式.
(1)证明 因为a n =13×⎝ ⎛⎭
⎪⎫13n -1=1
3n ,S n =13⎝ ⎛⎭⎪⎫1-13n 1-13=1-13n 2,所以S n
=1-a n 2. (2)解 b n =log 3a 1+log 3a 2+…+log 3a n =-(1+2+…+n )=-n (n +1)
2.所以{b n }
的通项公式为b n =-n (n +1)
2.
综合创新备选
1.已知{a n }为等比数列,S n 是它的前n 项和.若a 2·a 3=2a 1,且a 4与2a 7的等差
中项为5
4,则S 5=( ). A .35
B .33
C .31
D .29
解析 设数列{a n }的公比为q ,则由等比数列的性质知,a 2·a 3=a 1·a 4=2a 1, 即a 4=2. 由a 4与2a 7的等差中项为54知,a 4+2a 7=2×54, ∴a 7=12⎝ ⎛⎭⎪⎫2×54-a 4=1
4.∴q 3=a 7a 4
=18,即q =12.
∴a 4=a 1q 3
=a 1×18=2,∴a 1=16,∴S 5=
16⎝ ⎛
⎭⎪⎫1-1251-12
=31. 答案 C 2.已知方程(x 2-mx +2)(x 2-nx +2)=0的四个根组成以1
2为首项的等比数列,则m
n =( ). A.3
2 B.32或2
3 C.2
3
D .以上都不对
解析 设a ,b ,c ,d 是方程(x 2-mx +2)(x 2-nx +2)=0的四个根,不妨设a <c <d <b ,则a ·b =c ·d =2,a =1
2,故b =4,根据等比数列的性质,得到:c =1,d =2,则m =a +b =92,n =c +d =3,或m =c +d =3,n =a +b =92,则m n =32或m n =23. 答案 B
3.在等比数列{a n }中,若a 9+a 10=a (a ≠0),a 19+a 20=b ,则a 99+a 100=________.
解析 因为{a n }是等比数列,所以a 9+a 10,a 19+a 20,…,a 99+a 100成等比数列,从而得a 99+a 100=b 9a 8. 答案 b 9
a 8
4.已知数列{x n }满足lg x n +1=1+lg x n (n ∈N *),且x 1+x 2+x 3+…+x 100=1,则lg(x 101+x 102+…+x 200)=________.
解析 由lg x n +1=1+lg x n (n ∈N *)得lg x n +1-lg x n =1,∴x n +1
x n =10,∴数列{x n }
是公比为10的等比数列,∴x n +100=x n ·10100,∴x 101+x 102+…+x 200=10100(x 1+x 2+x 3+…+x 100)=10100,∴lg(x 101+x 102+…+x 200)=lg 10100=100. 答案 100
5.已知数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1(n ≥2),且a n +S n =n .
(1)设c n =a n -1,求证:{c n }是等比数列; (2)求数列{b n }的通项公式.
(1)证明 ∵a n +S n =n ,① ∴a n +1+S n +1=n +1.② ②-①得a n +1-a n +a n +1=1,
∴2a n +1=a n +1,∴2(a n +1-1)=a n -1, ∴a n +1-1a n -1=12,∴{a n -1}是等比数列. ∵首项c 1=a 1-1,又a 1+a 1=1. ∴a 1=12,∴c 1=-12,公比q =12. 又c n =a n -1,
∴{c n }是以-12为首项,公比为1
2的等比数列. (2)解 由(1)可知c n =⎝ ⎛⎭⎪⎫-12·⎝ ⎛⎭⎪⎫12n -1=-⎝ ⎛⎭⎪⎫
12n , ∴a n =c n +1=1-⎝ ⎛⎭
⎪⎫12n
.
∴当n ≥2时,b n =a n -a n -1=1-⎝ ⎛⎭⎪⎫12n -⎣⎢⎡⎦⎥⎤
1-⎝ ⎛⎭⎪⎫12n -1
=⎝ ⎛⎭⎪⎫12n -1-⎝ ⎛⎭⎪⎫12n =⎝ ⎛⎭
⎪⎫
12n . 又b 1=a 1=12代入上式也符合,∴b n =⎝ ⎛⎭⎪⎫12n .
6.已知两个等比数列{a n },{b n },满足a 1=a (a >0),b 1-a 1=1,b 2-a 2=2,b 3-a 3=3.
(1)若a =1,求数列{a n }的通项公式; (2)若数列{a n }唯一,求a 的值.
解(1)设数列{a n}的公比为q,则b1=1+a=2,b2=2+aq=2+q,b3=3+aq2=3+q2,由b1,b2,b3成等比数列得(2+q)2=2(3+q2).
即q2-4q+2=0,解得q1=2+2,q2=2- 2.
所以数列{a n}的通项公式为a n=(2+2)n-1或a n=(2-2)n-1.
(2)设数列{a n}的公比为q,则由(2+aq)2=(1+a)(3+aq2),得aq2-4aq+3a-1=0(*),
由a>0得Δ=4a2+4a>0,故方程(*)有两个不同的实根.
由数列{a n}唯一,知方程(*)必有一根为0,代入(*)得a=1 3.。