专题三数列综合题的解答
- 格式:ppt
- 大小:1.63 MB
- 文档页数:22
⾼考数学专题03数列求和问题(第⼆篇)(解析版)备战2020年⾼考数学⼤题精做之解答题题型全覆盖⾼端精品第⼆篇数列与不等式【解析版】专题03 数列求和问题【典例1】【福建省福州市2019-2020学年⾼三上学期期末质量检测】等差数列{}n a 的公差为2, 248,,a a a 分别等于等⽐数列{}n b 的第2项,第3项,第4项. (1)求数列{}n a 和{}n b 的通项公式;(2)若数列{}n c 满⾜12112n n nc c c b a a a ++++=L ,求数列{}n c 的前2020项的和.【思路引导】(1)根据题意同时利⽤等差、等⽐数列的通项公式即可求得数列{}n a 和{}n b 的通项公式; (2)求出数列{}n c 的通项公式,再利⽤错位相减法即可求得数列{}n c 的前2020项的和.解:(1)依题意得: 2324b b b =,所以2111(6)(2)(14)a a a +=++ ,所以22111112361628,a a a a ++=++解得1 2.a = 2.n a n ∴= 设等⽐数列{}n b 的公⽐为q ,所以342282,4b a q b a ==== ⼜2224,422.n n n b a b -==∴=?= (2)由(1)知,2,2.n n n a n b ==因为11121212n n n n nc c c c a a a a +--++++= ①当2n ≥时,1121212n n n c c c a a a --+++= ②由①-②得,2n n nc a =,即12n n c n +=?,⼜当1n =时,31122c a b ==不满⾜上式,18,12,2n n n c n n +=?∴=?≥ .数列{}n c 的前2020项的和34202120208223220202S =+?+?++?2342021412223220202=+?+?+?++?设2342020202120201222322019220202T =?+?+?++?+? ③,则34520212022202021222322019220202T =?+?+?++?+? ④,由③-④得:234202120222020222220202T -=++++-?2202020222(12)2020212-=-?-2022420192=--? ,所以20222020201924T =?+,所以2020S =202220204201928T +=?+.【典例2】【河南省三门峡市2019-2020学年⾼三上学期期末】已知数列{}n a 的前n 项和为n S ,且满⾜221n S n n =-+,数列{}n b 中,2+,对任意正整数2n ≥,113nn n b b -??+=.(1)求数列{}n a 的通项公式;(2)是否存在实数µ,使得数列{}3nn b µ+是等⽐数列?若存在,请求出实数µ及公⽐q 的值,若不存在,请说明理由;(3)求数列{}n b 前n 项和n T . 【思路引导】(1)根据n S 与n a 的关系1112n nn S n a S S n -=?=?-≥?即可求出;(2)假设存在实数µ,利⽤等⽐数列的定义列式,与题⽬条件1331n n n n b b -?+?=,⽐较对应项系数即可求出µ,即说明存在这样的实数;(3)由(2)可以求出1111(1)4312nn n b -??=?+?- ,所以根据分组求和法和分类讨论法即可求出.解:(1)因为221n S n n =-+,当1n =时,110a S ==;当2n ≥时,22121(1)2(1)123n n n a S S n n n n n -=-=-+-----=-.故*0,1 23,2,n n a n n n N =?=?-∈?…;(2)假设存在实数µ,使得数列{}3xn b µ?+是等⽐数列,数列{}n b 中,2133a b a =+,对任意正整数2n (113)n n b b -??+=.可得116b =,且1331n nn n b b -?+?=,由假设可得(n n n b b µµ--?+=-?+,即1334n n n n b b µ-?+?=-,则41µ-=,可得14µ=-,可得存在实数14µ=-,使得数列{}3nn b µ?+是公⽐3q =-的等⽐数列;(3)由(2)可得11111133(3)(3)444nn n n b b ---=-?-=?- ,则1111(1)4312nn n b -??=?+?- ,则前n 项和11111111(1)123643121212nn n T -=++?+?+-+?+?-?? ? ????????? 当n 为偶数时,111111*********n n n T ??- =+=- ???- 当n 为奇数时,11111115112311128312248313n n n nT ??- =+=-+=- ????- 则51,21248311,2883nn n n k T n k ?-=-=??-=(*k N ∈).【典例3】【福建省南平市2019-2020学年⾼三上学期第⼀次综合质量检查】已知等⽐数列{}n a 的前n 项和为n S ,且( )*21,nn S a a n =?-∈∈R N.(1)求数列{}n a 的通项公式;(2)设11n n n n a b S S ++=,求数列{}n b 的前n 项和n T .【思路引导】(1)利⽤临差法得到12n n a a -=?,再根据11a S =求得1a =,从⽽求得数列通项公式;(2)由题意得1112121n n n b +=---,再利⽤裂项相消法求和. 解:(1)当1n =时,1121a S a ==-.当2n ≥时,112n n n n a S S a --=-=?()*,因为{}n a 是等⽐数列,所以121a a =-满⾜()*式,所以21a a -=,即1a =,因此等⽐数列{}n a 的⾸项为1,公⽐为2,所以等⽐数列{}n a 的通项公式12n n a -=.(2)由(1)知21nn S =-,则11n n n n a b S S ++=,即()()1121121212121n n n n n n b ++==-----,所以121111111113377152121n n n n T b b b +?=++???+=-+-+-+???+- ? ? ? ?--?,所以11121n n T +=--.【典例4】【⼭东省⽇照市2019-2020学年上学期期末】已知数列{}n a 的⾸项为2,n S 为其前n 项和,且()120,*n n S qS q n +=+>∈N (1)若4a ,5a ,45a a +成等差数列,求数列{}n a 的通项公式;(2)设双曲线2221ny x a -=的离⼼率为n e ,且23e =,求222212323n e e e ne ++++L .【思路引导】(1)先由递推式()120,*n n S qS q n +=+>∈N 求得数列{}n a 是⾸项为2,公⽐为q 的等⽐数列,然后结合已知条件求数列通项即可;(2)由双曲线的离⼼率为求出公⽐q ,再结合分组求和及错位相减法求和即可得解. 解:解:(1)由已知,12n n S qS +=+,则212n n S qS ++=+,两式相减得到21n n a qa ++=,1n ≥.⼜由212S qS =+得到21a qa =,故1n n a qa +=对所有1n ≥都成⽴.所以,数列{}n a 是⾸项为2,公⽐为q 的等⽐数列. 由4a ,5a ,45+a a 成等差数列,可得54452=a a a a ++,所以54=2,a a 故=2q .所以*2()n n a n N =∈.(2)由(1)可知,12n n a q-=,所以双曲线2的离⼼率n e ==由23e ==,得q =.所以()()()()2122222123231421414n n e e e n e q n q -++++?=++++++ ()()()21214122n n n q nq -+=++++,记()212123n n T q q nq -=++++①()()2122221n n n q T q q n qnq -=+++-+②①-②得()()221222221111n n nnq q ---=++++-=-- 所以()()()()222222222211122121(1)111nn n n n n n n q nq q nq T n n q q q q --=-=-=-+?=-+----. 所以()()222212121242n n n n e e n e n +++++?=-++. 【典例5】已知数列{}n a 的各项均为正数,对任意*n ∈N ,它的前n 项和n S 满⾜()()1126n n n S a a =++,并且2a ,4a ,9a 成等⽐数列. (1)求数列{}n a 的通项公式;(2)设()111n n n n b a a ++=-,n T 为数列{}n b 的前n 项和,求2n T .【思路引导】(1)根据n a 与n S 的关系,利⽤临差法得到13n n a a --=,知公差为3;再由1n =代⼊递推关系求1a ;(2)观察数列{}n b 的通项公式,相邻两项的和有规律,故采⽤并项求和法,求其前2n 项和. 解:(1)Q 对任意*n ∈N ,有() ()1126n n n S a a =++,①∴当1a =时,有()()11111126S a a a ==++,解得11a =或2. 当2n ≥时,有()()1111126n n n S a a ---=++.②①-②并整理得()()1130n n n n a a a a --+--=. ⽽数列{}n a 的各项均为正数,13n n a a -∴-=.当11a =时,()13132n a n n =+-=-,此时2429a a a =成⽴;当12a =时,()23131n a n n =+-=-,此时2429a a a =,不成⽴,舍去.32n a n ∴=-,*n ∈N .(2)2122n n T b b b =+++=L 12233445221n n a a a a a a a a a a +-+-+-L()()()21343522121n n n a a a a a a a a a -+=-+-++-L242666n a a a =----L ()2426n a a a =-+++L246261862n n n n +-=-?=--.【典例6】【2020届湖南省益阳市⾼三上学期期末】已知数列{}n a 的前n 项和为112a =,()1122n n n S a ++=-. (1)求2a 及数列{}n a 的通项公式;(2)若()1122log n n b a a a =L ,11n n nc a b =+,求数列{}n c 的前n 项和n T . 【思路引导】(1)利⽤临差法将递推关系转化成2112n n a a ++=,同时验证2112a a =,从⽽证明数列{}n a 为等⽐数列,再利⽤通项公式求得n a ;(2)利⽤对数运算法则得11221nn c n n ??=+- ?+??,再⽤等⽐数列求和及裂项相消法求和,可求得n T 。
新高考数学(理)数列03 等差数列(等差数列的和与性质)一、具体目标:等差数列 (1) 理解等差数列的概念.(2) 掌握等差数列的通项公式与前n 项和公式.(3) 能在具体的问题情境中识别数列的等差关系关系,并能用有关知识解决相应的问题. (4) 了解等差数列与一次函数的关系.等差数列的和与二次函数的关系及最值问题. 二、知识概述: 一)等差数列的有关概念1.定义:等差数列定义:一般地,如果一个数列从第项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母表示.用递推公式表示为或.2.等差数列的通项公式:;()d m n a a m n-+=.说明:等差数列(通常可称为数列)的单调性:为递增数列,为常数列, 为递减数列.3.等差中项的概念:定义:如果,,成等差数列,那么叫做与的等差中项,其中 . ,,成等差数列. 4.等差数列的前和的求和公式:. 5.要注意概念中的“从第2项起”.如果一个数列不是从第2项起,而是从第3项或第4项起,每一项与2d 1(2)n n a a d n --=≥1(1)n n a a d n +-=≥1(1)n a a n d =+-A P d 0>0d =0d <a A b A a b 2a bA +=a Ab ⇔2a bA +=n 11()(1)22n n n a a n n S na d +-==+【考点讲解】它前一项的差是同一个常数,那么此数列不是等差数列. 6.注意区分等差数列定义中同一个常数与常数的区别. 二)方法规律:1.等差数列的四种判断方法(1) 定义法:对于数列{}n a ,若d a a n n =-+1()n N ∈*(常数),则数列{}n a 是等差数列; (2) 等差中项:对于数列{}n a ,若212+++=n n n a a a ()n N ∈*,则数列{}n a 是等差数列; (3)通项公式:n a pn q =+(,p q 为常数,n N ∈*)⇔是等差数列;(4)前n 项和公式:2n S An Bn =+(,A B 为常数, n N ∈*)⇔是等差数列;(5)是等差数列⇔n S n ⎧⎫⎨⎬⎩⎭是等差数列. 2.活用方程思想和化归思想在解有关等差数列的问题时可以考虑化归为1a 和d 等基本量,通过建立方程(组)获得解.即等差数列的通项公式及前n 项和公式,共涉及五个量1,,,,n n a d n a S ,知其中三个就能求另外两个,即知三求二,多利用方程组的思想,体现了用方程的思想解决问题,注意要弄准它们的值.运用方程的思想解等差数列是常见题型,解决此类问题需要抓住基本量1a 、d ,掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算. 3.特殊设法:三个数成等差数列,一般设为,,a d a a d -+; 四个数成等差数列,一般设为3,,,3a d a d a d a d --++. 这对已知和,求数列各项,运算很方便.4.若判断一个数列既不是等差数列又不是等比数列,只需用123,,a a a 验证即可. 5.等差数列的前n 项和公式:若已知首项1a 和末项n a ,则1()2n n n a a S +=,或等差数列{a n }的首项是1a , 公差是d ,则其前n 项和公式为1(1)2n n n S na d -=+. 三)等差数列的性质: 1.等差数列的性质:(1)在等差数列中,从第2项起,每一项是它相邻二项的等差中项;1(1)n a a n d =+-11()(1)22n n n a a n n S na d +-==+{}n a(2)在等差数列中,相隔等距离的项组成的数列是等差数列, 如:,,,,……;,,,,……;(3)在等差数列中,对任意,,,;(4)在等差数列中,若,,,且,则,特殊地,时,则,是的等差中项.(5)等差数列被均匀分段求和后,得到的数列仍是等差数列,即成等差数列.(6)两个等差数列{}n a 与{}n b 的和差的数列{}n n a b ±仍为等差数列. (7)若数列{}n a 是等差数列,则{}n ka 仍为等差数列.2.设数列是等差数列,且公差为,(Ⅰ)若项数为偶数,设共有项,则①-S S nd =奇偶; ②;(Ⅱ)若项数为奇数,设共有项,则①S S -偶奇(中间项);②. 3.(),p q a q a p p q ==≠,则0p q a +=,m n m n S S S mnd +=++.4.如果两个等差数列有公共项,那么由它们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是两个原等差数列公差的最小公倍数.5.若与{}n b 为等差数列,且前n 项和分别为n S 与'n S ,则2121'm m m m a S b S --=. 四)方法规律:1. 等差数列的性质是等差数列的定义、通项公式以及前n 项和公式等基础知识的推广与变形,熟练掌握和 灵活应用这些性质可以有效、方便、快捷地解决许多等差数列问题.2.等差数列的性质多与其下标有关,解题需多注意观察,发现其联系,加以应用, 故应用等差数列的性质解答问题的关键是寻找项的序号之间的关系.3.应用等差数列的性质要注意结合其通项公式、前n 项和公式.4.解综合题的成败在于审清题目,弄懂来龙去脉,透过给定信息的表象,抓住问题的本质,揭示问题的内在联系和隐含条件,明确解题方向、形成解题策略. 五)等差数列的和1. 等差数列的前n 项和公式{}n a 1a 3a 5a 7a 3a 8a 13a 18a {}n a m n N +∈()n m a a n m d =+-n ma a d n m-=-()m n ≠{}n a m n p q N +∈m n p q +=+m n p q a a a a +=+{}n a d 2n 1n n S a S a +=奇偶21n -n a a ==中1S nS n =-奇偶{}n a若已知首项1a 和末项n a ,则1()2n n n a a S +=,或等差数列{a n }的首项是1a ,公差是d ,则其前n 项和公式为1(1)2n n n S na d -=+. 2.等差数列的增减性:0d >时为递增数列,且当10a <时前n 项和n S 有最小值.0d <时为递减数列,且当10a >时前n 项和n S 有最大值.六)求等差数列前n 项和的最值,常用的方法:1.利用等差数列的单调性或性质,求出其正负转折项,便可求得和的最值.当10a >,0d <时,n S 有最大值;10a <,0d >时,n S 有最小值;若已知n a ,则n S 最值时n 的值(n N +∈)则当10a >,0d <,满足100n n a a +≥⎧⎨≤⎩的项数n 使得n S 取最大值,(2)当10a <,0d >时,满足100n n a a +≤⎧⎨≥⎩的项数n 使得n S 取最小值.2.利用等差数列的前n 项和:2n S An Bn =+(,A B 为常数, n N ∈*)为二次函数,通过配方或借助图像,二次函数的性质,转化为二次函数的最值的方法求解;有时利用数列的单调性(0d >,递增;0d <,递减);3. 利用数列中最大项和最小项的求法:求最大项的方法:设为最大项,则有11n n n n a a a a -+≥⎧⎨≥⎩;求最小项的方法:设为最小项,则有11n n nn a a a a -+≤⎧⎨≤⎩.只需将等差数列的前n 项和1,2,3,n =L 依次看成数列{}n S ,利用数列中最大项和最小项的求法即可.4.在解含绝对值的数列最值问题时,注意转化思想的应用.1.【2019年高考全国I 卷理数】记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则( ) A .25n a n =-B . 310n a n =-C .228n S n n =- D .2122n S n n =- n a n a 【真题分析】【解析】由题知,41514430245d S a a a d ⎧=+⨯⨯=⎪⎨⎪=+=⎩,解得132a d =-⎧⎨=⎩,∴25n a n =-,24n S n n =-,故选A . 【答案】A2.【2018年高考全国I 卷理数】设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则5a =( )A .12-B .10-C .10D .12【解析】设等差数列的公差为d ,根据题中的条件可得3243332224222d d d ⨯⨯⎛⎫⨯+⋅=⨯++⨯+⋅ ⎪⎝⎭, 整理解得3d =-,所以51421210a a d =+=-=-,故选B . 【答案】B3.【2017年高考全国III 卷理数】等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为( ) A .24-B .3-C .3D .8【解析】设等差数列{}n a 的公差为d ,由a 2,a 3,a 6成等比数列可得2326a a a =,即()()()212115d d d +=++,整理可得220d d +=,又公差不为0,则2d =-,故{}n a 前6项的和为()()()6166166166122422S a d ⨯-⨯-=+=⨯+⨯-=-.故选A . 【答案】A4.【2017年高考浙江卷】已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的 A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【解析】由46511210212(510)S S S a d a d d +-=+-+=,可知当0d >时,有46520S S S +->,即4652S S S +>,反之,若4652S S S +>,则0d >,所以“d >0”是“S 4 + S 6>2S 5”的充要条件,选C .【答案】C5.【2019年高考全国III 卷文数】记n S 为等差数列{}n a 的前n 项和,若375,13a a ==,则10S =___________. 【解析】设等差数列{}n a 的公差为d ,根据题意可得317125,613a a d a a d =+=⎧⎨=+=⎩得11,2a d =⎧⎨=⎩101109109101012100.22S a d ⨯⨯∴=+=⨯+⨯= 【答案】1006.【2019年高考全国III 卷理数】记S n 为等差数列{a n }的前n 项和,12103a a a =≠,,则105S S =___________. 【解析】设等差数列{a n }的公差为d ,因213a a =,所以113a d a +=,即12a d =,所以105S S =11111091010024542552a d a a a d ⨯+==⨯+. 【答案】47.【2019年高考北京卷理数】设等差数列{a n }的前n 项和为S n ,若a 2=−3,S 5=−10,则a 5=__________,S n的最小值为___________.【解析】法一:等差数列{}n a 中,53510S a ==-,得32,a =-又23a =-,所以公差321d a a =-=,5320a a d =+=,由等差数列{}n a 的性质得5n ≤时,0n a ≤,6n ≥时,n a 大于0,所以n S 的最小值为4S 或5S ,即为10-.法二:等差数列{}n a 中,53510S a ==-,得32,a =-又23a =-,所以公差321d a a =-=,5320a a d =+=,可得()()22224n a a n d n n =+-=-+-=-,()()()12818222n n a a n n n S n n +-===-,所以结合题意可知,n S 的最小值为4S 或5S ,即为10-. 【答案】 0,10-.8.【2019年高考江苏卷】已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是___________.【解析】由题意可得:()()()25811191470989272a a a a d a d a d S a d ⎧+=++++=⎪⎨⨯=+=⎪⎩, 解得:152a d =-⎧⎨=⎩,则8187840282162S a d ⨯=+=-+⨯=. 【答案】169.【2017课标II ,理15】等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS ==∑ 。
专题三 数列第一讲 等差数列与等比数列——小题备考常考常用结论 1.等差数列(1)通项公式:a n =a 1+(n -1)d ; (2)求和公式:S n =n (a 1+a n )2=na 1+n (n−1)2d ;(3)性质:①若m ,n ,p ,q ∈N *,且m +n =p +q ,则a m +a n =a p +a q ; ②a n =a m +(n -m)d ;③S m ,S 2m -S m ,S 3m -S 2m ,…成等差数列. 2.等比数列(1)通项公式:a n =a 1q n -1(q ≠0); (2)求和公式:q =1,S n =na 1;q ≠1,S n =a 1(1−q n )1−q=a 1−a n q 1−q;(3)性质:①若m ,n ,p ,q ∈N *,且m +n =p +q ,则a m ·a n =a p ·a q ;②a n =a m ·q n -m ;③S m ,S 2m -S m ,S 3m -S 2m ,…(S m ≠0)成等比数列.微专题1 等差数列与等比数列的基本量计算保分题1.[2022·河北石家庄二模]等差数列{a n }的前n 项和记为S n ,若a 2+a 2 021=6,则S 2 022=( )A .3 033B .4 044C .6 066D .8 0882.[2022·辽宁沈阳三模]在等比数列{a n }中,a 2,a 8为方程x 2-4x +π=0的两根,则a 3a 5a 7的值为( )A .π√πB .-π√πC .±π√πD .π33.[2022·全国乙卷]已知等比数列{a n }的前3项和为168,a 2-a 5=42,则a 6=( ) A .14 B .12 C .6D .3提分题例1 (1)[2022·江苏盐城三模]已知数列{a n},{b n}均为等差数列,且a1=25,b1=75,a2+b2=120,则a37+b37的值为()A.760 B.820C.780 D.860(2)[2022·广东佛山三模]已知公比为q的等比数列{a n}的前n项和S n=c+2·q n,n∈N*,且S3=14,则a4=()A.48B.32 C.16D.8听课笔记:技法领悟1.等差、等比数列基本运算的关注点(1)基本量:在等差或等比数列中,首项a1和公差d(公比q)是两个基本元素;(2)解题思路:①设基本量a1和d(q);②列、解方程(组);把条件转化为关于a1和d(q)的方程(组),然后求解,注意整体计算,减少计算量.2.等差、等比数列性质问题的求解策略(1)解决此类问题的关键是抓住项与项之间的关系及项的序号之间的关系,从这些特点入手选择恰当的性质进行求解.(2)应牢固掌握等差、等比数列的性质,特别是等差数列中“若m+n=p+q,则a m+a n =a p+a q”这一性质与求和公式S n=n(a1+a n)2的综合应用.巩固训练11.[2022·河北邯郸二模]在我国古代著作《九章算术》中,有这样一个问题:“今有五人分五钱,令上二人与下三人等,问各得几何?”意思是有五个人分五钱,且得钱最多的两个人的钱数之和与另外三个人的钱数之和相等,问每个人分别分得多少钱?若已知这五人分得的钱数从多到少成等差数列,则这个等差数列的公差d=()A.-16B.-15C.-14D.-132.[2022·山东淄博一模]已知等比数列{a n },其前n 项和为S n .若a 2=4,S 3=14,则a 3=________.微专题2 等差数列与等比数列的综合保分题1.[2022·辽宁沈阳一模]已知等差数列{a n }的公差为2,且a 2,a 3,a 5成等比数列,则{a n }的前n 项和S n =( )A .n(n -2)B .n(n -1)C .n(n +1)D .n(n +2) 2.各项均为正数的等比数列{a n }的前4项和为15,4a 1,2a 3,a 5成等差数列,则a 1=( ) A .5√2-5 B .5√2+5 C .5√2 D .53.已知正项等比数列{a n }的前n 项和为S n ,若S 3=4,S 9=19,则S 6,S 9的等差中项为________.提分题例2 (1)[2022·山东日照三模]在公差不为0的等差数列{a n }中,a 1,a 2,a k 1,a k 2,a k 3成公比为3的等比数列,则k 3=( )A .14B .34C .41D .86(2)[2022·山东潍坊三模](多选)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,则下列结论正确的是( )A .数列{Snn }为等差数列B .对任意正整数n ,b +n 2b n+22 ≥2b n +12 C .数列{S 2n +2-S 2n }一定是等差数列 D .数列{T 2n +2-T 2n }一定是等比数列 听课笔记:技法领悟等差、等比数列综合问题的求解策略对于等差数列与等比数列交汇的问题,要从两个数列的特征入手,理清它们的关系,常用“基本量法”求解,但有时灵活地运用等差中项、等比中项等性质,可使运算简便.巩固训练21.已知等比数列{a n }的前n 项和为S n ,且a 2,2a 5,3a 8成等差数列,则S6S 3=( )A .1或43B .1或13C .2或43D .13或432.[2022·湖北荆州三模](多选)等差数列{a n }的前项n 和为S n ,数列{b n }为等比数列,则下列说法正确的选项有 ( )A .数列{2a n }一定是等比数列B .数列{b a n }一定是等比数列C .数列{Snn }一定是等差数列D .数列{b n +b n +1}一定是等比数列微专题3 数列的递推保分题1.[2022·广东汕头三模]已知数列{a n }中,a 1=-14,当n>1时,a n =1-1a n−1,则a 2 022=( )A .-14 B .45 C .5 D .-45 2.数列{a n }中,若a 1=2,a n +1=2a n a n +2,则a 7=( )A .18 B .17 C .27 D .143.[2022·山东泰安三模]已知数列{a n }满足:对任意的m ,n ∈N *,都有a m a n =a m +n ,且a 2=3,则a 20=( )A .320B .315C .310D .35提分题 例3 (1)[2022·湖南雅礼中学二模](多选)著名的“河内塔”问题中,地面直立着三根柱子,在1号柱上从上至下、从小到大套着n 个中心带孔的圆盘.将一个柱子最上方的一个圆盘移动到另一个柱子,且保持每个柱子上较大的圆盘总在较小的圆盘下面,视为一次操作.设将n 个圆盘全部从1号柱子移动到3号柱子的最少操作数为a n ,则( )A .a 2=3B .a 3=8C .a n +1=2a n +nD .a n =2n -1(2)设{a n }是首项为1的正项数列,且(n +1)a n+12-na n 2+a n +1a n =0(n =1,2,3,…),则它的通项公式是a 100=( )A .100B .1100C .101D .1101听课笔记:技法领悟1.通过验证或者推理得出数列的周期性后求解.2.根据已知递推关系式,变形后构造出等差数列或等比数列,再根据等差数列或等比数列的知识求解.3.三种简单的递推数列:a n +1-a n =f(n),a n+1a n=f(n),a n +1=pa n +q(p ≠0,1,q ≠0),第一个使用累加的方法,第二个使用累乘的方法,第三个可以使用待定系数法化为等比数列(设a n +1+λ=p(a n +λ),展开比较系数得出λ).巩固训练3 1.南宋数学家杨辉所著的《详解九章算法·商功》中出现了如图所示的形状,后人称为“三角垛”.“三角垛”的最上层(即第一层)有1个球,第二层有3个球,第三层有6个球,…,设“三角垛”从第一层到第n层的各层的球数构成一个数列{a n},则() A.a5-a4=4 B.a100=5 000C.2a n+1=a n+a n+2D.a n+1-a n=n+12.[2022·福建漳州二模]已知S n是数列{a n}的前n项和,a1=1,a2=2,a3=3,记b n=a n+a n+1+a n+2且b n+1-b n=2,则S31=()A.171 B.278 C.351 D.395第一讲等差数列与等比数列微专题1等差数列与等比数列的基本量计算保分题=1 011×6 1.解析:由等差数列{a n}知,a2+a2 021=a1+a2 022=6,所以S2 022=2 022(a1+a2 022)2=6 066.答案:C2.解析:在等比数列{a n}中,因为a2,a8为方程x2-4x+π=0的两根,所以a2a8=π=a52,所以a5=±√π,所以a3a5a7=a53=±π√π.故选C.答案:C3.解析:设等比数列{a n }的公比为q.由题意知,{a 2q+a 2+a 2q =168,a 2−a 2q 3=42.两式相除,得1+q+q 2q (1−q 3)=4,解得q =12.代入a 2-a 2q 3=42,得a 2=48,所以a 6=a 2q 4=3.故选D .答案:D提分题[例1] 解析:(1)∵数列{a n },{b n }均为等差数列,设公差分别为d 1,d 2 (a n +1+b n +1)-(a n +b n )=(a n +1-a n )+(b n +1-b n )=d 1+d 2, 则数列{a n +b n }也为等差数列, a 1+b 1=100,a 2+b 2=120,数列{a n +b n }的首项为100,公差为20, ∴a 37+b 37=100+20×36=820,故选B .(2)因为公比为q 的等比数列{a n }的前n 项和S n =c +2·q n ①, 当n =1时a 1=S 1=c +2·q , 当n ≥2时S n -1=c +2·q n -1 ②, ①-②得a n =2·q n -2·q n -1=(2q -2)·q n -1,所以2q -2=c +2q ,则c =-2,又S 3=14,所以S 3=-2+2·q 3=14,解得q =2, 所以a n =2n ,则a 4=24=16. 答案:(1)B (2)C [巩固训练1]1.解析:若分得的钱从多到少分别为a 1,a 2,a 3,a 4,a 5, 所以{a 1+a 2=a 3+a 4+a 5a 1+a 2+a 3+a 4+a 5=5,所以{a 1=−8d5a 1+10d =5,可得{a 1=43d =−16.答案:A2.解析:设等比数列的公比为q ,因为a 2=4,S 3=14,所以a 1+a 3=10,即a2q +a 2q =10,所以2q2-5q+2=0,解得q=2或q=12,所以当q=2时,a3=8;当q=12时,a3=2所以,a3=2或a3=8.答案:2或8微专题2等差数列与等比数列的综合保分题1.解析:设等差数列{a n}公差d=2,由a2,a3,a5成等比数列得,a32=a2·a5,即(a1+2d)2=(a1+d)(a1+4d),解得a1=0,∴S n=n×0+n(n−1)2×2=n(n-1).答案:B2.解析:设等比数列{a n}的公比为q,(q>0),a1≠0,故由题意可得:{a1(1+q+q2+q3)=154a3=4a1+a5,{a1(1+q+q2+q3)=154q2=4+q4,解得q2=2,q=√2,a1=5√2-5.答案:A3.解析:设S6=x,因为{a n}为等比数列,所以S3,S6-S3,S9-S6成等比数列.因为S3=4,S9=19,所以4(19-x)=(x-4)2,解得x=10或x=-6(舍去).所以S6,S9的等差中项为292.答案:292提分题[例2]解析:(1)因为a1,a2,a k1,a k2,a k3成公比为3的等比数列,可得a2=3a1,所以a k3=a1·34=81a1,又因为数列{a n}为等差数列,所以公差d=a2-a1=2a1,所以a k 3=a 1+(k 3-1)d =a 1+2(k 3-1)a 1=(2k 3-1)a 1, 所以(2k 3-1)a 1=81a 1,解得k 3=41. 故选C .(2)设等差数列{a n }的公差为d ,则S n =na 1+n (n−1)2d ,所以,S n n =a 1+(n−1)d 2.对于A 选项,S n+1n+1−S n n=a 1+nd 2-a 1-(n−1)d 2=d 2,所以,{S n n}为等差数列,A 对;对于B 选项,对任意的n ∈N *,b n ≠0,由等比中项的性质可得b n+12=b n b n +2,由基本不等式可得b n 2 +b n +22≥2b n b n +2=2b n+12,B 对;对于C 选项,令c n =S 2n +2-S 2n =a 2n +2+a 2n +1, 所以,c n +1-c n =(a 2n +4+a 2n +3)-(a 2n +2+a 2n +1)=4d , 故数列{S 2n +2-S 2n }一定是等差数列,C 对; 对于D 选项,设等比数列{b n }的公比为q ,当q =-1时,T 2n +2-T 2n =b 2n +2+b 2n +1=b 2n +1(q +1)=0, 此时,数列{T 2n +2-T 2n }不是等比数列,D 错. 答案:(1)C (2)ABC [巩固训练2]1.解析:设等比数列公比为q ,由a 2,2a 5,3a 8成等差数列可得,2×2a 1·q 4=a 1·q +3a 1·q 7,化简得3q 6-4q 3+1=0,解得q 3=13或q 3=1,当q 3=1时,S6S 3=2;当q 3=13时,S 6S 3=a 1(1−q 6)1−q a 1(1−q 3)1−q=1+q 3=43.答案:C2.解析:若{a n }公差为d ,{b n }公比为q , A :由2a n+12a n=2a n+1−a n =2d 为定值,故{2a n }为等比数列,正确; B :由b a n+1b a n=b a n +d b a n=b a n q d b a n=q d 为定值,故{b a n }为等比数列,正确;C :由Sn+1n+1−S nn=a 1+a n+12−a 1+a n 2=a n+12−a n2=d 2为定值,故{Snn}为等差数列,正确; D :当q =-1时b n +b n +1=0,显然不是等比数列,错误. 答案:ABC微专题3 数列的递推保分题1.解析:由题意得:a 2=1-1a 1=5,a 3=1-1a 2=45,a 4=1-1a 3=-14,则数列{a n }的周期为3,则a 2 022=a 674×3=a 3=45.答案:B2.解析:因为a n +1=2a n a n +2,所以1a n+1=12+1a n,即1a n+1−1a n=12,又1a 1=12,则{1a n}是以12为首项,12为公差的等差数列,即1a n=12+12(n -1)=n2,则a n =2n ,所以a 7=27. 答案:C3.解析:因为对任意的m ,n ∈N *,都有a m a n =a m +n , 所以a 1a 1=a 2,a 1a n =a 1+n , 又a 2=3,所以a 1=±√3,所以a n+1a n=a 1,所以数列{a n }是首项为a 1,公比为a 1的等比数列, 所以a n =a 1·(a 1)n -1=(a 1)n , 所以a 20=(a 1)20=310. 答案:C提分题[例3] 解析:(1)将圆盘从小到大编为1,2,3,…号圆盘,则将第n +1号圆盘移动到3号柱时,需先将第1~n 号圆盘移动到2号柱,需a n 次操作;将第n +1号圆盘移动到3号柱需1次操作;再将1~n 号圆需移动到3号柱需a n 次操作,故a n +1=2a n +1,a n +1+1=2(a n +1),又a 1=1,∴{a n +1}是以2为首项,2为公比的等比数列,∴a n +1=2×2n -1=2n ,即a n =2n -1,∴a 2=3,a 3=7.(2)∵(n +1)a n+12−na n 2+a n +1a n =0,∴(n +1)a n+12+anan +1-na n 2=0,[(n +1)a n +1-na n ](a n +1+a n )=0,又∵a n >0,∴a n +1=n n+1·a n ,即a n+1a n =n n+1, ∴a 2a 1·a 3a 2·…·a n a n−1=12·23·…·n−1n ,即a n a 1=1n , 又∵a 1=1,∴a n =1n ,∴a 100=1100.答案:(1)AD (2)B[巩固训练3]1.解析:由相邻层球的个数差,归纳可知a n +1-a n =n +1,a 1=1, 对a n +1-a n =n +1累加得a n =n (n+1)2. 所以,a 5-a 4=5,a 100=100(100+1)2=5 050,2a n +1≠a n +a n +2,所以ABC 错误,故选D.答案:D2.解析:由b n +1-b n =2,b n +1-b n =a n +1+a n +2+a n +3-(a n +a n +1+a n +2)=a n +3-a n =2, ∴a 1,a 4,a 7,…是首项为1,公差为2的等差数列,a 2,a 5,a 8,…是首项为2,公差为2的等差数列,a 3,a 6,a 9,…是首项为3,公差为2的等差数列,S 31=(a 1+a 4+…+a 31)+(a 2+a 5+…+a 29)+(a 3+a 6+…+a 30)=1×11+11×10×22+2×10+10×9×22+3×10+10×9×22=351.故选C.答案:C。
第2讲数列求和及其综合应用错位相减法求和[学生用书P34]共研典例类题通法错位相减法适用于由一个等差数列和一个等比数列对应项的乘积构成的数列的求和,其依据是:c n =a n b n ,其中{a n }是公差为d 的等差数列,{b n }是公比为q (q ≠1)的等比数列,则qc n =qa n b n =a n b n +1,此时c n +1-qc n =(a n +1-a n )·b n +1=db n +1,这样就把对应相减的项变成了一个等比数列,从而达到求和的目的.(2016·高考山东卷)已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n=b n +b n +1.(1)求数列{b n }的通项公式;(2)令c n =(a n +1)n +1(b n +2)n.求数列{c n }的前n 项和T n .【解】(1)由题意知当n ≥2时,a n =S n -S n -1=6n +5, 当n =1时,a 1=S 1=11,符合上式.所以a n =6n +5. 设数列{b n }的公差为d ,由⎩⎪⎨⎪⎧a 1=b 1+b 2,a 2=b 2+b 3,得⎩⎪⎨⎪⎧11=2b 1+d ,17=2b 1+3d ,可解得b 1=4,d =3. 所以b n =3n +1.(2)由(1)知c n =(6n +6)n +1(3n +3)n=3(n +1)·2n +1. 又T n =c 1+c 2+…+c n ,所以T n =3×[2×22+3×23+…+(n +1)×2n +1], 2T n =3×[2×23+3×24+…+(n +1)×2n +2],两式作差,得-T n =3×[2×22+23+24+ (2)+1-(n +1)×2n +2]=3×⎣⎢⎡⎦⎥⎤4+4(1-2n )1-2-(n +1)×2n +2=-3n ·2n +2, 所以T n =3n ·2n +2.应用错位相减法求和需注意的问题(1)错位相减法适用于求数列{a n ·b n }的前n 项和,其中{a n }为等差数列,{b n }为等比数列.(2)所谓“错位”,就是要找“同类项”相减.要注意的是相减后所得部分,求等比数列的和,此时一定要查清其项数.(3)为保证结果正确,可对得到的和取n =1,2进行验证. [跟踪训练](2016·兰州模拟)等差数列{a n }中,已知a n >0,a 1+a 2+a 3=15,且a 1+2,a 2+5,a 3+13构成等比数列{b n }的前三项.(1)求数列{a n },{b n }的通项公式; (2)求数列{a n ·b n }的前n 项和T n .[解] (1)设等差数列{a n }的公差为d ,则由已知得: a 1+a 2+a 3=3a 2=15,即a 2=5. 又(5-d +2)(5+d +13)=100, 解得d =2或d =-13(舍去),所以a 1=a 2-d =3,a n =a 1+(n -1)×d =2n +1. 又b 1=a 1+2=5,b 2=a 2+5=10,所以公比q =2, 所以b n =5×2n -1.(2)因为T n =5[3+5×2+7×22+…+(2n +1)×2n -1], 2T n =5[3×2+5×22+7×23+…+(2n +1)×2n ],两式相减得-T n =5[3+2×2+2×22+…+2×2n -1-(2n +1)×2n ]=5[(1-2n )2n -1], 则T n =5[(2n -1)2n +1].裂项相消法求和[学生用书P35]共研典例类题通法 1.常见的裂项类型 (1)1n (n +1)=1n -1n +1; (2)1n (n +k )=1k ⎝⎛⎭⎫1n -1n +k ;(3)1n 2-1=12⎝⎛⎭⎫1n -1-1n +1;(4)14n 2-1=12⎝⎛⎭⎫12n -1-12n +1;(5)n +1n (n -1)·2n =2n -(n -1)n (n -1)·2n =1(n -1)2n -1-1n ·2n. 2.裂项相消法求和的基本思想是把数列的通项公式a n 分拆成a n =b n +k -b n (k ≥1,k ∈N *)的形式,从而达到在求和时某些项相消的目的,在解题时要善于根据这个基本思想变换数列{a n }的通项公式,使之符合裂项相消的条件.(2016·海口调研测试)在等差数列{a n }中,公差d ≠0,a 1=7,且a 2,a 5,a 10成等比数列.(1)求数列{a n }的通项公式及其前n 项和S n ; (2)若b n =5a n ·a n +1,求数列{b n }的前n 项和T n .【解】(1)因为a 2,a 5,a 10成等比数列, 所以(7+d )(7+9d )=(7+4d )2, 又因为d ≠0,所以d =2,所以a n =2n +5,S n =(7+2n +5)n 2=n 2+6n .(2)由(1)可得b n =5(2n +5)(2n +7)=52⎝ ⎛⎭⎪⎫12n +5-12n +7, 所以T n =52⎝ ⎛⎭⎪⎫17-19+19-111+…+12n +5-12n +7=5n14n +49.裂项相消法的技巧在裂项时要注意把数列的通项分拆成的两项一定是某个数列中的相邻的两项,或者是等距离间隔的两项,只有这样才能实现逐项相消,只剩余有限的几项,从而求出其和.[跟踪训练](2016·石家庄模拟)已知等差数列{a n }中,2a 2+a 3+a 5=20,且前10项和S 10=100.(1)求数列{a n }的通项公式;(2)若b n =1a n a n +1,求数列{b n }的前n 项和.[解] (1)由已知得⎩⎪⎨⎪⎧2a 2+a 3+a 5=4a 1+8d =20,10a 1+10×92d =10a 1+45d =100, 解得⎩⎪⎨⎪⎧a 1=1,d =2.所以{a n }的通项公式为a n =1+2(n -1)=2n -1.(2)由(1)知,b n =1(2n -1)(2n +1)=12×⎝ ⎛⎭⎪⎫12n -1-12n +1,所以数列{b n }的前n 项和T n =12×⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫11-13+⎝⎛⎭⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1 =12×⎝ ⎛⎭⎪⎫1-12n +1=n 2n +1.分组转化求和[学生用书P35]共研典例类题通法 分组转化求和的三种类型分组转化求和是把数列之和分为几组,每组中的各项是可以利用公式(或其他方法)求和的,求出各组之和即得整体之和,这类试题一般有如下三种类型:(1)数列是周期数列,先求出每个周期内的各项之和,然后把整体之和按照周期进行划分,再得出整体之和;(2)奇偶项分别有相同的特征的数列(如奇数项组成等差数列、偶数项组成等比数列),按照奇数项和偶数项分组求和;(3)通项中含有(-1)n 的数列,按照奇数项、偶数项分组,或者按照n 为奇数、偶数分类求和.(2016·呼和浩特模拟)在数列{a n }中,a 1=3,a n =2a n -1+(n -2)(n ≥2,n ∈N *). (1)证明:数列{a n +n }是等比数列,并求{a n }的通项公式; (2)求数列{a n }的前n 项和S n .【解】(1)因为a n +n =2[a n -1+(n -1)],a n +n ≠0, 所以{a n +n }是首项为4,公比为2的等比数列,所以a n +n =4×2n -1=2n +1. 所以a n =2n +1-n .(2)S n =(22+23+24+…+2n +1)-(1+2+3+…+n )=2n +2-n 2+n +82.分组求和的常见方法 (1)根据等差、等比数列分组. (2)根据正号、负号分组.(3)根据数列的周期性分组.[题组通关]1.已知数列{a n }的通项公式是a n =(-1)n -1(n +1),则a 1+a 2+a 3+…+a 2017=( )A .1009B .1010C .-1009D .-1010B [解析] 因为a n =(-1)n -1(n +1),所以a 1+a 2+a 3+…+a 2017=(2-3)+(4-5)+…+(2016-2017)+2018=1008×(-1)+2018=1010.2.设数列{a n }的前n 项和为S n (n ∈N *),数列{a 2n -1}是首项为1的等差数列,数列{a 2n }是首项为2的等比数列,且满足S 3=a 4,a 3+a 5=a 4+2.(1)求数列{a n }的通项公式; (2)求S 2n .[解] (1)设等差数列的公差为d ,等比数列的公比为q ,则a 1=1,a 2=2,a 3=1+d ,a 4=2q ,a 5=1+2d ,所以⎩⎪⎨⎪⎧4+d =2q ,(1+d )+(1+2d )=2+2q ,解得d =2,q =3.所以a n =⎩⎪⎨⎪⎧n ,n =2k -1,2·3n 2-1,n =2k ,(k ∈N *).(2)S 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n )=(1+3+5+…+2n -1)+(2×30+2×31+…+2×3n -1) =(1+2n -1)n 2+2(1-3n )1-3=n 2-1+3n .等差、等比数列的综合问题[学生用书P36]共研典例类题通法解决等差数列、等比数列的综合问题,要从两个数列的特征入手,理清它们的关系;数列与不等式、函数、方程的交汇问题,可以结合数列的单调性、最值求解.已知数列{a n }满足a 1=12,a n +1a n +1-1-1a n -1=0,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =a n +1a n -1,数列{b n }的前n 项和为S n ,证明:S n <34.【解】(1)由已知a n +1a n +1-1-1a n -1=0,n ∈N *,得(a n +1-1)+1a n +1-1-1a n -1=0,即1+1a n +1-1-1a n -1=0,亦即1a n +1-1-1a n -1=-1(常数).所以数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n -1是以1a 1-1=-2为首项, -1为公差的等差数列.可得1a n -1=-2+(n -1)×(-1)=-(n +1),所以a n =nn +1.(2)证明:因为b n =a n +1a n -1=(n +1)2n (n +2)-1=1n (n +2)=12⎝⎛⎭⎪⎫1n -1n +2,所以S n =b 1+b 2+…+b n=12⎝⎛⎭⎫1-13+12⎝⎛⎭⎫12-14+12⎝⎛⎭⎫13-15+…+12⎝ ⎛⎭⎪⎫1n -1-1n +1+12⎝ ⎛⎭⎪⎫1n -1n +2 =12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2<12×⎝⎛⎭⎫1+12=34.解决数列综合问题的方法(1)等差数列与等比数列交汇的问题,常用“基本量法”求解,但有时灵活地运用性质,可使运算简便.(2)数列的项或前n 项和可以看作关于n 的函数,然后利用函数的性质求解数列问题.(3)数列中的恒成立问题可以通过分离参数,通过求数列的值域求解. [跟踪训练](2016·武汉模拟)已知S n 是公差不为0的等差数列{a n }的前n 项和,S 1,S 2,S 4成等比数列,且a 3=-52.(1)求数列{a n }的通项公式;(2)设b n =1(2n +1)a n ,求数列{b n }的前n 项和T n .[解] (1)设{a n }的公差为d (d ≠0), 因为S 1,S 2,S 4成等比数列,所以S 22=S 1S 4,即(2a 1+d )2=a 1(4a 1+6d ),化简得d 2=2a 1d .因为d ≠0,所以d =2a 1.① 因为a 3=-52,所以a 1+2d =-52.②联立①②,解得⎩⎪⎨⎪⎧a 1=-12d =-1,所以a n =-12+(n -1)×(-1)=-n +12.(2)因为b n =1(2n +1)a n =1(2n +1)⎝⎛⎭⎫-n +12=-2(2n +1)(2n -1)=12n +1-12n -1,所以T n =⎝⎛⎭⎫13-1+⎝⎛⎭⎫15-13+⎝⎛⎭⎫17-15+…+⎝ ⎛⎭⎪⎫12n +1-12n -1=-1+12n +1=-2n 2n +1. 课时作业[学生用书P120(独立成册)]1.设各项均为正数的等差数列{a n }的前n 项和为S n ,且a 4a 8=32,则S 11的最小值为( ) A .22 2B .442C .22D .44B [解析] 因为数列{a n }为各项均为正数的等差数列,所以a 4+a 8≥2a 4a 8=82,S 11=(a 1+a 11)×112=112(a 4+a 8)≥112×82=442,故S 11的最小值为442,当且仅当a 4=a 8=42时取等号.2.已知在数列{a n }中,a 1=-60,a n +1=a n +3,则|a 1|+|a 2|+|a 3|+…+|a 30|等于( ) A .445 B .765 C .1080D .3105B [解析] 因为a n +1=a n +3,所以a n +1-a n =3. 所以{a n }是以-60为首项,3为公差的等差数列. 所以a n =-60+3(n -1)=3n -63. 令a n ≤0,得n ≤21. 所以前20项都为负值. 所以|a 1|+|a 2|+|a 3|+…+|a 30| =-(a 1+a 2+…+a 20)+a 21+…+a 30 =-2S 20+S 30.因为S n =a 1+a n 2n =-123+3n 2×n ,所以|a 1|+|a 2|+|a 3|+…+|a 30|=765.3.已知数列{a n }满足a 1=1,a 2=3,a n +1a n -1=a n (n ≥2),则数列{a n }的前40项和S 40等于( )A .20B .40C .60D .80C [解析] 由a n +1=a na n -1(n ≥2),a 1=1,a 2=3,可得a 3=3,a 4=1,a 5=13,a 6=13,a 7=1,a 8=3,…,这是一个周期为6的数列,一个周期内的6项之和为263,又40=6×6+4,所以S 40=6×263+1+3+3+1=60.4.(2016·郑州模拟)设等比数列{a n }的各项均为正数,且a 1=12,a 24=4a 2a 8,若1b n=log 2a 1+log 2a 2+…+log 2a n ,则数列{b n }的前10项和为( )A .-2011B.2011C .-95D.95A [解析] 设等比数列{a n }的公比为q ,因为a 24=4a 2a 8,所以(a 1q 3)2=4a 1q ·a 1q 7,即4q 2=1,所以q =12或q =-12(舍),所以a n =⎝⎛⎭⎫12n =2-n ,所以log 2a n =log 22-n =-n ,所以1b n =-(1+2+3+…+n )=-n (1+n )2,所以b n =-2n (1+n )=-2⎝ ⎛⎭⎪⎫1n -1n +1,所以数列{b n }的前10项和为-2⎣⎡⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13⎦⎤+…+⎝⎛⎭⎫110-111=-2·⎝⎛⎭⎫1-111=-2011. 5.设b n =a n (a n +1)(a n +1+1)(其中a n =2n -1),数列{b n }的前n 项和为T n ,则T 5=( )A.3133B.3233C.3166D.1633C [解析] 由题意得,b n =2n -1(2n -1+1)(2n +1)=12n -1+1-12n +1,所以T n =⎝ ⎛⎭⎪⎫120+1-121+1+⎝ ⎛⎭⎪⎫121+1-122+1+…+ ⎝ ⎛⎭⎪⎫12n -1+1-12n +1=12-12n +1,所以T 5=12-133=3166.6.已知f (x ),g (x )都是定义在R 上的函数,g (x )≠0,f ′(x )g (x )>f (x )g ′(x ),且f (x )=a x g (x )(a>0,且a ≠1),f (1)g (1)+f (-1)g (-1)=52.若数列⎩⎨⎧⎭⎬⎫f (n )g (n )的前n 项和大于62,则n 的最小值为( )A .8B .7C .6D .9C [解析] 由⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )g 2(x )>0,知f (x )g (x )在R 上是增函数,即f (x )g (x )=a x 为增函数,所以a >1.又因为a +1a =52,所以a =2或a =12(舍).数列⎩⎨⎧⎭⎬⎫f (n )g (n )的前n 项和S n =21+22+…+2n =2(1-2n)1-2=2n +1-2>62.即2n >32,所以n >5.7.(2016·海口调研测试)设数列{a n }的前n 项和为S n ,且a 1=1,a n +a n +1=12n (n =1,2,3,…),则S 2n +3=________.[解析] 依题意得S 2n +3=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 2n +2+a 2n +3)=1+14+116+…+14n +1=1-14n +21-14=43⎝ ⎛⎭⎪⎫1-14n +2. [答案]43⎝⎛⎭⎫1-14n +28.若等比数列的各项均为正数,前4项的和为9,积为814,则前4项倒数的和为________.[解析] 设等比数列的首项为a 1,公比为q ,则第2,3,4项分别为a 1q ,a 1q 2,a 1q 3,依题意得a 1+a 1q +a 1q 2+a 1q 3=9,a 1·a 1q ·a 1q 2·a 1q 3=814⇒a 21q 3=92,两式相除得a 1+a 1q +a 1q 2+a 1q 3a 21q 3=1a 1+1a 1q +1a 1q 2+1a 1q3=2. [答案]29.数列{a n }满足a n +a n +1=12(n ∈N *),a 2=2,S n 是数列{a n }的前n 项和,则S 2017=________.[解析] 因为a n +a n +1=12(n ∈N *),所以a 1=12-a 2=12-2,a 2=2,a 3=12-2,a 4=2,…,故a 2n =2,a 2n -1=12-2,所以S 2017=1009a 1+1008a 2=1009×⎝⎛⎭⎫12-2+1008×2=10052. [答案]1005210.已知数列{a n }中,a 1=1,a 2=2,设S n 为数列{a n }的前n 项和,对于任意的n >1,n ∈N *,S n +1+S n -1=2(S n +1)都成立,则S 10=________.[解析]因为⎩⎪⎨⎪⎧S n +1+S n -1=2S n +2,S n +2+S n =2S n +1+2,所以a n +2+a n =2a n +1,所以数列{a n }从第二项开始为等差数列,当n =2时,S 3+S 1=2S 2+2,所以a 3=a 2+2=4,所以S 10=1+2+4+6+…+18=1+9(2+18)2=91. [答案]9111.(2016·东北四市联考)已知数列{a n }满足a 1=511,a 6=-12,且数列{a n }的每一项加上1后成为等比数列.(1)求a n ;(2)令b n =|log 2(a n +1)|,求数列{b n }的前n 项和T n .[解] (1)由题意数列{a n +1}是等比数列,设公比为q ,a 1+1=512,a 6+1=12=512×q 5, 解得q =14. 则数列{a n +1}是以512为首项,14为公比的等比数列, 所以a n +1=211-2n ,a n =211-2n -1.(2)由(1)知b n =|11-2n |,当n ≤5时,T n =10n -n 2,当n ≥6时,T n =n 2-10n +50,所以T n =⎩⎪⎨⎪⎧10n -n 2,n ≤5n 2-10n +50,n ≥6. 12.(2016·哈尔滨模拟)已知数列{a n }是等比数列,a 2=4,a 3+2是a 2和a 4的等差中项.(1)求数列{a n }的通项公式;(2)设b n =2log 2a n -1,求数列{a n b n }的前n 项和T n .[解] (1)设数列{a n }的公比为q ,因为a 2=4,所以a 3=4q ,a 4=4q 2.因为a 3+2是a 2和a 4的等差中项,所以2(a 3+2)=a 2+a 4.即2(4q +2)=4+4q 2,化简得q 2-2q =0.因为公比q ≠0,所以q =2.所以a n =a 2q n -2=4×2n -2=2n (n ∈N *).(2)因为a n =2n ,所以b n =2log 2a n -1=2n -1,所以a n b n =(2n -1)2n ,则T n =1×2+3×22+5×23+…+(2n -3)2n -1+(2n -1)2n ,①2T n =1×22+3×23+5×24+…+(2n -3)2n +(2n -1)·2n +1,②由①-②得,-T n =2+2×22+2×23+…+2×2n -(2n -1)2n +1=2+2×4(1-2n -1)1-2-(2n -1)2n +1 =-6-(2n -3)2n +1,所以T n =6+(2n -3)2n +1.13.数列{a n }满足a n +1=a n 2a n +1,a 1=1. (1)证明:数列⎩⎨⎧⎭⎬⎫1a n 是等差数列; (2)求数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和S n ,并证明1S 1+1S 2+…+1S n >n n +1. [解] (1)证明:因为a n +1=a n 2a n +1,所以1a n +1=2a n +1a n ,化简得1a n +1=2+1a n , 即1a n +1-1a n =2,故数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,2为公差的等差数列. (2)由(1)知1a n =2n -1,所以S n =n (1+2n -1)2=n 2. 1S 1+1S 2+…+1S n =112+122+…+1n 2>11×2+12×3+…+1n (n +1)=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1. 14.(选做题)已知函数f (x )=2sin(ωx +φ)(ω>0,|φ|<π)的图象经过点⎝⎛⎭⎫π12,-2,⎝⎛⎭⎫7π12,2,且在区间⎝⎛⎭⎫π12,7π12上为单调函数. (1)求ω,φ的值;(2)设a n =nf ⎝⎛⎭⎫n π3(n ∈N *),求数列{a n }的前30项和S 30. [解] (1)由题可得ωπ12+φ=2k π-π2,k ∈Z ,7ωπ12+φ=2k π+π2,k ∈Z , 解得ω=2,φ=2k π-2π3,k ∈Z , 因为|φ|<π,所以φ=-2π3. (2)因为a n =2n sin ⎝ ⎛⎭⎪⎫2n π3-2π3(n ∈N *),数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫2sin ⎝ ⎛⎭⎪⎫2n π3-2π3(n ∈N *)的周期为3,前三项依次为0,3,-3,所以a 3n -2+a 3n -1+a 3n =(3n -2)×0+(3n -1)×3+3n ×(-3)=-3(n ∈N *), 所以S 30=(a 1+a 2+a 3)+…+(a 28+a 29+a 30)=-10 3.。
一、选择题1.(2011·安徽高考)若数列{a n }的通项公式是a n =(-1)n ·(3n -2),则a 1+a 2+…+a 10=( )A .15B .12C .-12D .-15解析:a 1+a 2+…+a 10=-1+4-7+10+…+(-1)10·(3×10-2)=(-1+4)+(-7+10)+…+[(-1)9·(3×9-2)+(-1)10·(3×10-2)]=3×5=15.答案:A2.向量v =(a n +1-a n 2,a 2n +12a n),v 是直线y =x 的方向向量,a 1=5,则数列{a n }的前10项和为( )A .50B .100C .150D .200解析:依题意得a 2n +12a n =a n +1-a n 2,化简得a n +1=a n .又a 1=5,所以a n =5,数列{a n }的前10项和为5×10=50.答案:A3.等差数列{a n }中,a 1>0,公差d <0,S n 为其前n 项和,对任意自然数n ,若点(n ,S n )在以下4条曲线中的某一条上,则这条曲线应是( )解析:∵S n =na 1+n (n -1)2d ,∴S n =d 2n 2+(a 1-d 2)n ,又a 1>0,公差d <0,所以点(n ,S n )所在抛物线开口向下,对称轴在y 轴右侧.答案:C4.已知函数f (x )=⎩⎪⎨⎪⎧(1-3a )x +10a ,x ≤6,a x -7, x >6.若数列{a n }满足a n =f (n )(n ∈N *),且{a n }是递减数列,则实数a 的取值范围是( )A.⎝⎛⎭⎫13,1B.⎝⎛⎭⎫13,12C.⎝⎛⎭⎫13,58D.⎝⎛⎭⎫58,1解析:∵f (n )=⎩⎪⎨⎪⎧(1-3a )n +10a ,n ≤6,a n -7, n >6是递减数列, ∴⎩⎪⎨⎪⎧ 1-3a <0,0<a <1,f (6)>f (7),即⎩⎪⎨⎪⎧ 1-3a <0,0<a <1,6-8a >1,解得13<a <58. 答案:C二、填空题 5.(2011·北京高考)在等比数列{a n }中,若a 1=12,a 4=-4,则公比q =____________;|a 1|+|a 2|+…+|a n |=____________.解析:设等比数列{a n }的公比为q ,则a 4=a 1q 3,代入数据解得q 3=-8,所以q =-2;等比数列{|a n |}的公比为|q |=2,则|a n |= 12×2n -1,所以|a 1|+|a 2|+|a 3|+…+|a n |=12(1+2+22+…+2n -1) =12(2n -1)=2n -1-12. 答案:-2 2n -1-126.设曲线y =x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,x n =________,令a n =lg x n ,则a 1+a 2+…+a 99的值为________.解析:∵y =x n +1, ∴y ′=(n +1)x n ,它在点(1,1)处的切线方程为y -1=(n +1)(x -1),它与x 轴交点的横坐标为x n =1-1n +1=n n +1. 由a n =lg x n ,得a n =lg n -lg(n +1),于是a 1+a 2+…+a 99=lg1-lg2+lg2-lg3+…+lg99-lg100=lg1-lg100=0-2=-2. 答案:n n +1-2 7.(2011·陕西高考)植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米.开始时需将树苗集中放置在某一树坑旁边.使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小,这个最小值为________(米).解析:当放在最左侧坑时,路程和为2×(0+10+20+…+190);当放在左侧第2个坑时,路程和为2×(10+0+10+20+…+180)(减少了360米);当放在左侧第3个坑时,路程和为2×(20+10+0+10+20+…+170)(减少了680米);依次进行,显然当放在中间的第10、11个坑时,路程和最小,为2×(90+80+…+0+10+20+…+100)=2 000米.答案:2 000三、解答题8.已知二次函数f (x )=x 2-2(10-3n )x +9n 2-61n +100(n ∈N *).(1)设函数y =f (x )的图像的顶点的横坐标构成数列{a n },求证:数列{a n }是等差数列;(2)在(1)的条件下,若数列{c n }满足c n =1+14n -252+a n (n ∈N *),求数列{c n }中最大的项和最小的项.解:(1)证明:y =f (x )的图像的顶点的横坐标为x =-b 2a =--2(10-3n )2=10-3n ,∴a n =10-3n ,∴a n -a n -1=-3.∴{a n }是等差数列.(2)∵c n =1+14n -252+a n =1+14n -252+10-3n =1+22n -5, 当n ≤2时,22n -5<0,且c 1>c 2, 当n ≥3时,22n -5>0且c n >c n +1. ∴{c n }中最小的项为c 2=-1,最大的项为c 3=3.9.(2011·北京海淀)数列{a n }的前n 项和为S n ,若a 1=2,且S n =S n -1+2n (n ≥2,n ∈N *).(1)求S n ;(2)是否存在等比数列{b n }满足b 1=a 1,b 2=a 3,b 3=a 9?若存在,则求出数列{b n }的通项公式;若不存在,则说明理由.解:(1)因为S n =S n -1+2n ,所以有S n -S n -1=2n 对n ≥2,n ∈N *成立.即a n =2n 对n ≥2成立.又a 1=S 1=2×1,所以a n =2n 对n ∈N *成立.所以a n +1-a n =2对n ∈N *成立.所以{a n }是等差数列. 所以S n =a 1+a n 2·n =n 2+n ,n ∈N *. (2)存在.由(1)知a n =2n 对n ∈N *成立,则a 3=6,a 9=18.又a 1=2,所以由b 1=a 1,b 2=a 3,b 3=a 9,得b 2b 1=b 3b 2=3.即存在以b1=2为首项,公比为3的等比数列{b n},其通项公式为b n=2·3n-1.10.已知数列{a n}满足a1=1,a2=4,a n+2+2a n=3a n+1(n∈N*).(1)求数列{a n}的通项公式;(2)记数列{a n}的前n项和S n,求使得S n>21-2n成立的最小整数n.解:(1)由a n+2+2a n-3a n+1=0得a n+2-a n+1=2(a n+1-a n),∴数列{a n+1-a n}是以a2-a1=3为首项,公比为2的等比数列.∴a n+1-a n=3·2n-1,∴n≥2时,a n-a n-1=3·2n-2,…,a3-a2=3·2,a2-a1=3,累加得a n-a1=3·2n-2+…+3·2+3=3(2n-1-1),∴a n=3·2n-1-2(当n=1时,也满足).(2)由(1)利用分组求和法得S n=3(2n-1+2n-2+…+2+1)-2n=3(2n-1)-2n,S n=3(2n-1)-2n>21-2n得3·2n>24,即2n>8=23,∴n>3,∴使得S n>21-2n成立的最小整数n=4.。
数列创新题型突破-------一、分段数列前后分段:和分段讨论,临界点,下标,首项,项或项数分段奇偶分段:递推,下标,首项,和分组,奇偶项联系,项或项数分奇偶(一)通项公式前后分段例1(上海高考题)数列中,则数列的极限值()A.等于B.等于C.等于或D.不存在分析:此数列的前1000项与后面的项的通项公式是不一样的,但数列的极限与数列的前有限项是没有关系的,因此,只需考虑当n≥1001时数列的通项公式来求极限.解:,选B.例2(上海高考题).如果有穷数列(为正整数)满足条件,,…,,即(),我们称其为“对称数列”.例如,数列与数列都是“对称数列”.(1)设是7项的“对称数列”,其中是等差数列,且,.依次写出的每一项;(2)设是项的“对称数列”,其中是首项为,公比为的等比数列,求各项的和;(3)设是项的“对称数列”,其中是首项为,公差为的等差数列.求前项的和.分析:此题首先大家通过阅读要“读懂”什么叫“对称数列”.通过分析大家可以知道“对称数列”它的前若干项与后若干项通项公式是不一样的,它们之间存在着一种“对称”关系,而解此题的关键就在于理解并应用这种“对称”关系.尤其是第三问,由于数列的前后若干项的通项公式不同导致它们的前项和也只能以“分段”的形式给出.解:(1)由题意,数列的公差为,数列为.(2)67108861.(3). 由题意得是首项为,公差为的等差数列.当时,.当时,.故(二)通项公式奇偶分段例3.已知数列的通项,求其前项和.分析:很显然,此数列的奇数列项与偶数项的通项公式不一样,奇数项成等差数列,偶数项成等比数列,因此我们在求其前项和时出必须对奇数项与偶数项分别求和.但要注意奇数项并不是以1为首项6为公差的等差数列,而是以1为首项12为公差的等差数列;偶数列项也不是以为首项公比为2的等比数列,而是以为首项公比为4的等比数列.解:当为奇数时,奇数项有项,偶数项有项,∴当为偶数时,奇数项和偶数项分别有项,∴所以,例4在数列中,=0,且对任意k,成等差数列,其公差为2k.(1)证明成等比数列;(2)求数列的通项公式;分析:本题最核心的条件当然是成等差数列,且公差为2k.对于题(1),可利用这一核心条件写出数列的前6项,即知成等比数列,而对于题(2),则可利用这一核心条件,先得到所有奇数项中的后一项与前一项的关系,从而通过累加的方法等到奇数项的通项公式,然后再得到偶数项的通项公式.解:(1)证明:由题设可知,,,,,.从而,所以,,成等比数列.(2)解:由题设可得所以.由,得,从而.所以数列的通项公式为.(三)递推公式前后分段例7(2008上海)已知以为首项的数列满足:.(1)当时,求数列的通项公式;(2)当,,时,试用表示数列前100项的和.分析:此数列后一项与前一项的关系依赖于前一项的大小。
专题3——数列数列通项公式的求法一、定义法 —— 直接利用等差或等比数列的定义求通项。
特征:适应于已知数列类型的题目.例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式.二、公式法求数列{}n a 的通项n a 可用公式⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-2111n S S n S a n n n 求解。
特征:已知数列的前n 项和n S 与n a的关系例2.已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S n n n .求数列{}n a 的通项公式。
三、由递推式求数列通项法 类型1 特征:递推公式为)(1n f a a n n +=+对策:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。
例3. 已知数列{}n a 满足211=a ,nn a a n n ++=+211,求n a 。
类型2 特征:递推公式为 n n a n f a )(1=+ 对策:把原递推公式转化为)(1n f a a nn =+,利用累乘法(逐商相乘法)求解。
例4. 已知数列{}n a 满足321=a ,n n a n n a 11+=+,求n a 。
类型3 特征:递推公式为q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq ) 对策:把原递推公式转化为:)(1t a p t a n n -=-+,其中pqt -=1,再利用换元法转化为等比数列求解。
例5. 已知数列{}n a 中,11=a ,321+=+n n a a ,求n a .类型4 特征:递推公式为n n n qa pa a +=++12(其中p ,q 均为常数)。
对策:先把原递推公式转化为)(112n n n n sa a t sa a -=-+++ 其中s ,t 满足⎩⎨⎧-==+qst pt s ,再应用前面类型3的方法求解。
第3讲数列求和及其综合应用[考情分析]数列求和常与数列的综合应用一起考查,常以解答题的形式出现,有时与函数、不等式综合在一起考查,难度中等偏上.考点一数列求和r核心提炼、1.裂项相消法就是把数列的每一项分解,使得相加后项与项之间能够相互抵消,但在抵消的过程中,有的是依次项抵消,有的是间隔项抵消.常见的裂项方式有:1 _1 1 , 1 _^=if_U__UYn(n+∖) n Λ+Γn(n+k) n+k)' n1-∖丸—1 n+∖)' 4??2—1 2∖2n —1 2∕ι÷l∕2.如果数列{小}是等差数列,{d}是等比数列,那么求数列{4・儿}的前〃项和S〃时,可采用错位相减法.用错位相减法求和时,应注意:(1)等比数列的公比为负数的情形;(2)在写出ff的表达式时应特别注意将两式“错项对齐”,以便准确写出“Sn—qSj的表“SJ和a qSn达式.考向1分组转化法求和例1已知在等比数列{斯}中,m=2,且两,的内一2成等差数列.⑴求数列{斯}的通项公式;⑵若数列{小}满足儿=J+21og2斯- 1,求数列{d}的前n项和解(1)设等比数列{〃“}的公比为4,由Q], 〃2,。
3 —2成等差数列,得2。
2 =。
1+。
3-2,即4夕=2 + 2/-2,解得夕=2(4=0舍去),则m=α∣尸=2〃,n∈ N*.(2)⅛Λ=~+21og2Λrt— l=^+21og22n- l=^∏+2n-↑,则数列{九}的前〃项和考向2裂项相消法求和例2 (2020•莆田市第一联盟体学年联考)设数列{斯}的前〃项和为S”,且&=久一2〃,{d }为正项等比数列,且〃∣=α∣+3, 63=604+2. ⑴求数列{斯}和{d }的通项公式;⑵设c 〃=——j~~;—,求{c 〃}的前〃项和T n .4"+l∙∣0g2%+l解 (1)由工=/一2〃,得当〃 =1 时,0=S] = —1, 当九22 时,S n -ι=(n -l)2-2(n- l)=n 2-4n+3f所以当时,a∏=S n —S n -\=2n —3, a\ — — 1也满足此式.所以斯=2〃一3, Q @N*. 又加=。