平行线与三角形(含答案)教学文稿
- 格式:doc
- 大小:726.00 KB
- 文档页数:5
数学北师大版八年级上册第七章平行线的证明《三角形内角和定理》一等奖创新教案第2课时(含答案)第七章平行线的证明7.5 三角形内角和定理第2 课时一、教学目标1.掌握三角形内角和定理的两个推理,并能运用这些定理解决简单的问题.2.经历探索与证明的过程,进一步发展推理能力.3.在一题多解、一题多变中,积累解决几何问题的经验,提升解决问题的能力.二、教学重点及难点重点:了解并掌握三角形的外角的定义.难点:掌握三角形内角和定理的两个推论,利用这两个推论进行简单的证明和计算.三、教学用具多媒体课件,三角板、直尺。
四、相关资源《三角形外角》动画,《三角形其他外角》动画.五、教学过程【新知导入】△ABC内角的一条边与另一条边的反向延长线组成的角,称为△ABC的外角.请试着画出△ABC的其他外角.设计意图:外角概念探究意义不大,所以直接明晰这一概念,通过在图中标注其他外角,深化学生对外角概念的理解,同时,在图中标注其他外角的过程也为发现有关外角的结论做了铺垫.【合作探究】图中,∠ACD与其他角有什么关系?请证明你的结论.通过学生讨论,发现:定理三角形的一个外角等于和它不相邻的两个内角的和.定理三角形的一个外角大于任何一个和它不相邻的内角.已知:△ABC.求证:∠ACD=∠A+∠B,∠ACD>∠A,∠ACD>∠B.证明:∵∠A+∠B+∠ACB=180°(三角形内角和定理),∴∠A+∠B=180°-∠ACB(等式的性质),∵∠ACD+∠ACB=180°(平角的定义)∴∠ACD=180°-∠ACB(等式的性质)∴∠ACD=∠A+∠B(等量代换)∴∠ACD>∠A,∠ACD>∠B.在这里,我们通过三角形的内角和定理直接推导出两个新定理.像这样,由一个基本事实或定理直接推出的定理,叫做这个基本事实或定理的推论.推论可以当做定理使用.设计意图:希望发现有关外角的两个定理.可以对学生进行适当的引导,关系既可以是不等关系,也可以是等量关系.【典例精析】例1 已知,如图,在△ABC中,∠B=∠C,AD平分外角∠EAC.求证:AD∥BC分析:要证明AD∥BC,只需证明“同位角相等”或“内错角相等”或“同旁内角互补”.证明:∵∠EAC=∠B+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∠B=∠C(已知)∴∠B=∠EAC(等式的性质)∵AD平分∠EAC(已知)∴∠DAE=∠EAC(角平分线的定义)∴∠DAE=∠B(等量代换)∴AD∥BC(同位角相等,两直线平行)想一想,还有没有其他的证明方法呢?这个题还可以用“内错角相等,两直线平行”来证.证明:∵∠EAC=∠B+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∠B=∠C(已知)∴∠C=∠EAC(等式的性质)∵AD平分∠EAC(已知)∴∠DAC=∠EAC(角平分线的定义)∴∠DAC=∠C(等量代换)∴AD∥BC(内错角相等,两直线平行)还可以用“同旁内角互补,两直线平行”来证.证明:∵∠EAC=∠B+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∠B=∠C(已知)∴∠C=∠EAC(等式的性质)∵AD平分∠EAC(已知)∴∠DAC=∠EAC∴∠DAC=∠C(等量代换)∵∠B+∠BAC+∠C=180°∴∠B+∠BAC+∠DAC=180°即:∠B+∠DAB=180°∴AD∥BC(同旁内角互补,两直线平行)设计意图:例题的图形较复杂,可以给出分析过程,鼓励学生先自行解决,同时对有困难的学生给予必要的指导.“想一想”关注解决问题方法的多样化,通过多种解法,开拓学生思维.例2 如图,P是△ABC内的一点,求证:∠BPC>∠A.解析:由题意无法直接得出∠BPC>∠A,延长BP交AC于D,就能得到∠BPC>∠PDC,∠PDC>∠A.即可得证.证明:延长BP,交AC于D,∵∠BPC是△PDC的外角(外角定义),∴∠BPC>∠PDC(三角形的一个外角大于任何一个和它不相邻的内角).∵∠PDC是△ABD的外角(外角定义),∴∠PDC>∠A(三角形的一个外角大于任何一个和它不相邻的内角).∴∠BPC>∠A.方法总结:利用推论2证明角的大小时,两个角应是同一个三角形的内角和外角.若不是,就需借助中间量转化求证.设计意图:让学生复习“三角形的一个外角大于任何一个和它不相邻的内角”,同时体会某些不等关系的递推和论证过程.鼓励学生寻求多种解法,如还可以连接AP,并延长AP交BC于点D ,这时∠BPC 和∠A分别被分成了两个小角,用“三角形的一个外角大于任何一个和它不相邻的内角”可以证明.【课堂练习】1.判断下列命题的对错.(1)三角形的外角和是指三角形的所有外角的和. ()×(2)三角形的外角和等于它的内角和的2倍. ()√(3)三角形的一个外角等于两个内角的和. ()×(4)三角形的一个外角等于与它不相邻的两个内角的和.()√(5)三角形的一个外角大于任何一个内角. ()×(6)三角形的一个内角小于任何一个与它不相邻的外角.()√2.若一个三角形的一个外角小于与它相邻的内角,则这个三角形是( )CA.直角三角形B.锐角三角形C.钝角三角形D.无法确定3.如图所示,若∠A=32°,∠B=45°,∠C=38°,则∠DFE等于( )BA.120°B.115°C.110°D.105°4.如图,AB//CD,∠A=37°, ∠C=63°,那么∠F等于()A.26°B.63°C.37°D.60°5.如图,如果∠1=100°,∠2=145°,那么∠3等于( )A.110°B.160°C.137°D.115°解析:方法总结:三角形的外角等于与它不相邻的两个内角的和,而不是等于任意两个内角的和.6.如图,求证:(1)∠BDC>∠A.(2)∠BDC=∠B+∠C+∠A.证法一:(1)连接AD,并延长AD,如图,则∠1是△ABD的一个外角,∠2是△ACD的一个外角.∴∠1>∠3.∠2>∠4(三角形的一个外角大于任何一个和它不相邻的内角)∴∠1+∠2>∠3+∠4(不等式的性质)即:∠BDC>∠BAC.(2)连结AD,并延长AD,如图.则∠1是△ABD的一个外角,∠2是△ACD的一个外角.∴∠1=∠3+∠B∠2=∠4+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∴∠1+∠2=∠3+∠4+∠B+∠C(等式的性质)即:∠BDC=∠B+∠C+∠BAC证法二:(1)延长BD交AC于E(或延长CD交AB于E),如图.则∠BDC是△CDE的一个外角.∴∠BDC>∠DEC.(三角形的一个外角大于任何一个和它不相邻的内角)∵∠DEC是△ABE的一个外角(已作)∴∠DEC>∠A(三角形的一个外角大于任何一个和它不相邻的内角)∴∠BDC>∠A(不等式的性质)(2)延长BD交AC于E,则∠BDC是△DCE的一个外角.∴∠BDC=∠C+∠DEC(三角形的一个外角等于和它不相邻的两个内角的和)∵∠DEC是△ABE的一个外角∴∠DEC=∠A+∠B(三角形的一个外角等于和它不相邻的两个内角的和)∴∠BDC=∠B+∠C+∠BAC(等量代换)设计意图:巩固三角形外角定理.六、课堂小结今天这节课你学到了什么知识?1.外角2.三角形的外角等于与它不相邻的两个内角的和3.三角形的一个外角大于任何一个和它不相邻的内角设计意图:通过对三角形外角及性质的学习,使学生的认识有进一步的升华,再一次体会证明格式的严谨,体会到数学的严密性.七、板书设计7.5 三角形内角和定理(2)1.外角2.三角形的外角等于与它不相邻的两个内角的和3.三角形的一个外角大于任何一个和它不相邻的内角。
三角形一边的平行线是九年级数学上学期第一章第二节的内容,本讲主要讲解三角形一边平行线性质定理及推论,重点是掌握该定理及其推论,分清该定理及其推论之间的区别和联系,难点是理解该定理和推论的推导过程中所蕴含的分类讨论思想和转化思想,并认识“A ”字型和“X ”字形这两个基本图形,为后面学习相似三角形奠定基础.1、三角形一边的平行线性质定理平行于三角形一边的直线截其他两边所在的直线,截得的对应线段成比例. 如图,已知ABC ∆,直线//l BC ,且与AB 、AC 所在直线交于点D 和点E ,那么AD AEDB EC=.三角形一边的平行线(一)内容分析知识结构模块一 三角形一边的平行线性质定理知识精讲- 2 -【例1】如图,在ABC ∆中,15AB =,10AC =,//DE BC ,6BD =,求CE . 【答案】4.【解析】BD CEAB AC =,代入可得:=4CE . 【总结】考查三角形一边平行线的性质定理.【例2】阳光通过窗口照在教室内,在地面上留下2.7米宽的亮区(如图).已知亮区一边到窗下的墙角距离8.7CE =米,窗口 1.8AB =米,求窗口底边离地面的高BC .【难度】★ 【答案】5.8m .【解析】射入的光线平行,则有AB DEAC CE=,代入可求得: 5.8AC m =,4BC AC AB m =-=. 【总结】考查三角形一边平行线性质定理的应用, 在路灯、太阳光线中经常用到.【例3】在ABC ∆中,点D 、E 分别在AB 、AC 的反向延长线上,//DE BC ,若:2:3AD AB =,12EC =厘米,则AC =.【答案】7.2cm .【解析】由//DE BC ,可得23AE AD AC AB ==,故53EC AC =,代入求得7.2AC cm =. 【总结】考查三角形一边平行线的性质定理和比例合比性的综合应用.例题解析【例4】如图在ABC ∆中,CD 平分ACB ∠,//DE BC ,5AC =厘米,3:5ADAB=,求DE 的长.【答案】2cm . 【解析】//DE BC ,35AE AD AC AB ∴==. 由5AC cm =,代入可求得:32AE cm CE cm ==,. 又//DE BC ,EDC DCB ∴∠=∠. 又CD 平分ACB ∠, ECD DCB ∴∠=∠. ECD EDC ∴∠=∠, 2DE CE cm ∴==.【总结】本题中涉及一个基本图形,平行线与角平分线一起会产生等腰三角形,同时应用三角形一边平行线的性质定理.【例5】如图,已知在ABC ∆中,//DE BC ,//EF AB ,2AE CE =,6AB =,9BC =,求四边形BDEF 的周长.【答案】16.【解析】2AE CE =,2133AE CE AC AC ∴==,. 又//DE BC ,//EF AB ,2133AD AE EF CE AB AC AB AC ∴====,, 四边形BDEF 为平行四边形. 代入可求得:62DE EF ==,, ()2=16BDEF C DE EF ∴=+四边形.【总结】考查三角形一边平行线性质定理的综合应用.- 4 -【例6】如图,在ABC ∆中,10AB =,8AC =,点D 在直线AB 上,过点D 作//DE BC 交直线AC 与点E .如果4BD =,求AE 的长.【答案】245或565.【解析】(1)D 在线段AB 上时,6AD AB BD =-=,由//DE BC ,可得:AD AE AB AC =,代入可得:245AE =; (2)D 在线段AB 延长线上时,14AD AB BD =+=, 由//DE BC ,可得:AD AE AB AC =,代入可得:565AE =; (3)D 在线段AB 反向延长线上的情况不存在.【总结】题目中的点是在直线或者射线上时,要注意仔细看题,考虑多解情况的出现.【例7】如图,在ABC ∆中,AB AC >,AD BC ⊥于点D ,点F 是BC 中点,过点F 作BC的垂线交AB 于点E ,:3:2BD DC =,则:BE EA =.【答案】5:1.【解析】由:3:2BD DC =,BF FC =,即得:32BF FD BF FD +=-,可得:51BF FD =. 又AD BC ⊥,EF BC ⊥, EF ∴//AD ,::5:1BE EA BF FD ∴==.【总结】考查三角形一边平行线性质定理的综合应用.【例8】如图,已知////AB CD EF ,14OA =,16AC =,8CE =,12BD =,求OB 、DF 的长.【答案】212OB =,6DF =.【解析】由////AB CD EF ,OA OBAC BD∴=. 代入可得:141221162OB ⨯==.同时根据比例的合比性,可得:OA AC OB BD AC BD ++=,即OC ODAC BD=, 又根据平行,可得:OC OD CE DF =, AC BDCE DF ∴=.代入求得:812616DF ⨯==. 【总结】考查三角形一边平行线定理的变形应用,实际上,任意两条直线被三条平行线所截得的线段对应成比例.【例9】如图,已知ABC ∆是边长为2的等边三角形,//DE BC ,:3:4ECD BCD S S ∆∆=,求EC 的长.【答案】12.【解析】∵ECD 和BCD 为等高三角形, 故34ECD BCDS DE BCS==, 由//DE BC ,2BC =,ABC ∆为等边三角形, 可知ADE 也为等边三角形,∴32DE =,∴31222EC AC AE =-=-=. 【总结】平行于等边三角形一边截得的三角形也是等边三角形.- 6 -【例10】如图,P 为ABCD 对角线BD 上任意一点.求证:PQ PI PR PS =.【答案】略.【解析】证明:四边形ABCD 为平行四边形, ////AB CD AD BC ∴,, ////RB DI SD BQ ∴,.根据三角形一边平行线的性质定理,则有PI PD PSPR PB PQ==, PQ PI PR PS ∴⋅=⋅.【总结】初步认识相似三角形中的“X 字型,一个图形中存在往往不只一个,可用来进行等比例转化.【例11】如图,在平行四边形ABCD 中,CD 的延长线上有一点E ,BE 交AC 于点F ,交 AD 于点G .求证:2BF FG EF =.【答案】略.【解析】证明:四边形ABCD 为平行四边形, ////AB CD AD BC ∴,, ////AB CE AG BC ∴,.根据三角形一边平行线的性质定理,则有:EF CF BFBF AF FG==, ∴2BF FG EF =.【总结】初步认识相似三角形中的“X 字型,一个图形中存在往往不只一个,可用来进行等比例转化.【例12】如图,点C 在线段AB 上,AMC ∆和CBN ∆都是等边三角形.求证:(1)MD AMDC CN=;(2)MD EB ME DC =.【答案】略.【解析】证明:(1)AMC ∆和CBN ∆是等边三角形,60ACM NCB AMC ∴∠=∠=∠=︒.∵点C 在线段AB 上,18060MCN ACM NCB AMC ∴∠=︒-∠-∠=︒=∠.//AM CN ∴,∴MD AMDC CN=. (2)同(1)易证得//CM BN ,则有ME MCEB NB =.AMC ∆和CBN ∆是等边三角形,MC AM NB CN ∴==,,MD MEDC EB∴=, ∴MD EB ME DC =. 【总结】初步认识相似三角形中的“X 字型,一个图形中存在往往不只一个,可用来进行等比例转化.1、三角形一边的平行线性质定理推论平行于三角形一边的直线截其他两边所在的直线,截得的三角形的三边与原三角形的三边对应成比例.如图,点D 、E 分别在ABC ∆的边AB 、AC 上,//DE BC ,那么DE AD AEBC AB AC==.2、三角形的重心定义:三角形三条中线交于一点,三条中线交点叫三角形的重心.性质:三角形重心到一个顶点的距离,等于它到这个顶点对边中点的距离的两倍.模块二:三角形一边的平行线性质定理推论知识精讲- 8 -【例15】如图,D 、E 分别是ABC ∆的边AB 、AC 上的点,且//DE BC . (1)如果2DE =,6BC =,3AD =,求AB 的长;(2)如果2DE =,6BC =,8BD =,求AD 、AB 的长;(3)如果35AD BD =,求DEBC的值. 【答案】(1)9;(2)412AD AB ==,;(3)38.【解析】(1)∵//DE BC ,13AD DE AB BC ==,9AB =; (2)∵//DE BC ,∴13AD DE AD BD BC ==+,∴4AD =,∴12AB AD BD =+=; (3)∵//DE BC ,∴33358DE AD BC AB ===+. 【总结】考查三角形一边平行线的性质定理.【例16】如图,BE 、CF 是ABC ∆的中线,交于点G .求证:12GE GF GB GC ==. 【答案】略.【解析】证明:过点F 作//FD BE 交AC 于点D . F 是AB 中点,D ∴是AE 中点,故12DF AD BE AE ==, 又E 是AC 中点,//FD EG ,12GF DE GC CE ∴==,23EG CE FD CD ==,即()2132EG EG BG =+,整理得:12GE GF GB GC ==. 【总结】考查三角形重心性质的证明,通过一个中点作对边的平行线即可.【例17】已知小智的身高是 1.6CD =米,他在路灯下的影长2DE =米,小智与路灯灯杆的底部B 的距离为3DB =米,则路灯灯泡A 距地面的高度AB =米.【答案】4.例题解析Da NbQx c P M x NaQc b P M c NxQa b PM c N bQa x PM 【解析】∵//AB CD ,∴22235CD DE AB BE ===+,∴4AB m =. 【总结】考查三角形一边平行线定理的实际应用.【例18】如图,一根直立于水平地面的木杆AB 在灯光下形成影子,当木杆绕点A 按逆时针 反向旋转直至到达地面时,影子的长度发生变化.设AB 垂直于地面时的影子为AC (假 定AC AB >),影子的最大值为m ,最小值为n ,有下列结论:① m AC >;②m=AC ;③n AB =;④影子的长度先增大后减小.其中正确的序号是.【答案】①③④. 【解析】木杆绕点A 逆时针旋转时,当AB 与BC 光线垂直 时,m 最大,则m AC >,①成立,②不成立;最小值为AB 与AC 重合,故③成立;由上可知,影子长度先 增大后减小,故④成立.【总结】找准临界值,注意进行思维分析.【例19】已知:MN // PQ ,a b ≠,c x ≠,则满足关系式bcx a=的图形是( )A .B .C .D .【答案】C【解析】交叉相乘,满足ax bc =的是C 选项. 【总结】考查三角形一边平行线性质的简单应用.【例20】如图,ABC ∆中,//DE BC ,3AE =,4DE =,2DF =,5CF =,求EC 的长.【答案】92EC =. 【解析】//DE BC ,25DE DF AE BC CF AC ∴===, 即3235EC =+,求得:92EC =. 【总结】相似三角形中“A 字型和“X 字型的综合应用,可得到相等比例关系式.- 10 -【例21】如图,在平行四边形ABCD 中,点E 在边DC 上,若:1:2DE EC =,则:BF BE =.【答案】3:5.【解析】:1:2DE EC =,可知23CE CE CD AB ==,由//CE AB ,可知32BF AB EF CE ==,故:3:5BF BE =.【总结】初步认识相似三角形中的“X 字型.【例22】如图,在ABC ∆中,6BC =,G 是ABC ∆的重心,过G 作边BC 的平行线交AC 于 点H ,求GH 的长. 【答案】2.【解析】连结AG 并延长交BC 于点D ,根据重心的定义, 可知D 为BC 中点,则132DC BC ==,根据重心的性质,又//GH DC ,可得:23GH AG DC AD ==,求得2GH =. 【总结】考查三角形重心的性质.【例23】如图,已知////AB CD EF .AB m =,CD n =,求EF 的长.(用m 、n 的代数式表示).【答案】mnm n+.【解析】由////AB CD EF ,则有EF CF EF BFAB BC CD BC==,, 即1EF EF m n +=,得mnEF m n =+.【总结】考查相似三角形中“X 字型的综合应用,得到比例关系.D【例24】如图,E 为平行四边形ABCD 的对角线AC 上一点,13AE EC =,BE 的延长线交CD的延长线于点G ,交AD 于点F ,求:BF FG 的值.【答案】1:2.【解析】由//AF BC ,可得13AF AE BC EC ==,即13AF AD =, 故12AF FD =,由//AB DG ,可得:::1:2BF FG AF FD ==.【总结】考查相似三角形中“X 字型的综合应用,得到比例关系.【例25】如图,12//l l ,:2:5AF FB =,:4:1BC CD =,求:AE EC 的值. 【答案】2:1.【解析】由12//l l ,得:25AG AF BD FB ==,又:4:1BC CD =, 可得21AG CD =,故::2:1AE EC AG CD ==. 【总结】考查相似三角形中“X 字型的综合应用,得到比例关系.【例26】如图,在梯形ABCD 中,//AD BC ,对角线AC 、BD 交于点O ,点E 在AB 上,且//EO BC ,已知3AD =,6BC =.求EO 的长.【答案】2.【解析】由//AD BC ,可得:3162AO AD CO BC ===, 故13AO AC =,由//EO BC ,13EO AO BC AC ==,求得2EO =.【总结】相似三角形中“A 字型和“X 字型的综合应用,可得到相等比例关系式.- 12 -MFEDCBA 【例27】如图,在梯形ABCD 中,//AD BC ,3AD =,5BC =,E 、F 是两腰上的点,且//EF AD ,:1:2AE EB =,求EF 的长.【答案】113.【解析】过点A 作//AH DC 交BC 于H ,交EF 于G ,则有32CH FG AD BH ====,,又//EG BH ,可得:13EG AE BH AB ==,解得:23EG =,故113EF EG GF =+=.【总结】两条直线被三条平行线所截得的线段长对应成比例.【例28】如图,在ABC ∆中,D 是BC 边上的一点,:3:1BD DC =,G 为AD 的中点,联结BG 并延长AC 交于E ,求:EG GB 的值.【答案】1:7.【解析】过点D 作//DF BE 交AC 于F .此时则有14DF CF DC BE CE BC ===,又G 为AD 中点, 根据平行可得:12GE DF =,故18GE BE =, 即18EG EG GB =+,可得:1:7EG GB =.【总结】构造平行线,构造比例线段是解决这类问题的根本.【例29】已知点D 是ABC ∆的BC 边上的一点,13CD BC =,E 是AD 的中点,BE 的延长 线交AC 于F ,求:AF AC 的值. 【答案】2:5.【解析】过点D 作//DM BF 交AC 于点M .∵13CD BC =,∴13CM CD CF BC ==, ∴12CM MF =.GHF又E 为AD 中点,//DM BF , ∴F 为AM 中点,即AF FM =,∴:2:5AF FC =.【总结】考查三角形一边平行线的性质定理,通过构造平行线等比例转化即可得出答案.【习题1】如图,在ABC ∆,//DE BC ,DE 与边AB 、AC 分别交于点D 、E . (1)已知6AD =,8BD =,4AE =,求CE 、AC 的长;(2)已知:2:5AE AC =,10AB =,求AD 的长.【难度】★【答案】(1)162833AE CE ==,;(2)4. 【解析】(1)∵//DE BC ,∴AE AD CE DB =,∴163CE =; (2)∵//DE BC ,:2:5AE AC =,∴25AD AE AB AC ==,∴4AD =. 【总结】考查三角形一边平行线的性质.随堂检测- 14 -【习题2】如图,//EF AB ,//DE BC ,下列各式正确的是()(A )AD BF BD CF = (B )AE CE ED BC =(C )AE BD EC AD = (D )AD AB ED BC =【难度】★ 【答案】A【解析】根据三角形边平行线的性质进行比例线段转化可 知A 选项正确;B 、C 、D 错误.【总结】考查三角形一边平行线的性质的应用.【习题3】如图,菱形ADEF 内接于ABC ∆,16AB =,14BC =,12AC =,求BE 的长. 【答案】8.【解析】根据三角形一边平行线的性质,DE BE EF CEAC BC AB BC==,, 即有1DE EF AC AB +=,可解得菱形边长487DE AD ==,故647BD AB AD =-=,BE BDBC BA=,∴8BE =.【总结】考查三角形一边平行线的性质的综合应用.【习题4】如图,P 是ABC ∆的中线AD 上一点,//PE AB ,//PF AC .求证:BE CF =.【答案】略.【解析】证明://PE AB ,//PF AC ,BE AP CF AP BD DA DC DA ∴==,, BE CF BD DC ∴=, 又BD CD =,BE CF ∴=.【总结】考查三角形一边平行线的性质的综合应用,用固定线段的比值作为中间量.【习题5】如图,在ABC ∆中,//DE BC ,且:2:3AD AB =,求:EO EB 的值.GMDCBA【答案】2:5.【解析】由//DE BC ,可得23DE AD BC AB ==,则23EO DE BO BC ==,根据比例的合比性,可得:2:5EO EB =.【总结】找准图形中的“A 字型和“X 字型进行比例线段的转化构造.【习题6】在ABC ∆中,AB AC =,如果中线BM 与高AD 相交于点G ,求AGAD .【答案】23.【解析】AB AC AD BC =⊥,,BD CD ∴=.即D 为BC 中点,M 为AC 中点,G ∴为ABC ∆重心,23AG AD ∴=. 【总结】考查重心的意义和性质,先证明再利用性质.【习题7】如图ABC ∆,点D 、E 分别在BC 、AC 上,BE 平分ABC ∠,//DE BA .如果24CE =, 26AE =,45AB =,求DE 和CD 的长.【答案】1085DE =,129665CD =. 【解析】根据三角形一边平行线的性质,可得DE CEAB AC=, ∴452410824265AB CE DE AC ⋅⨯===+.由BE 平分ABC ∠,则有ABE DBE ∠=∠,由//DE BA ,可得:DEB ABE ∠=∠,即DEB DBE ∠=∠,故1085BD DE ==,进而可得:CD CE BD AE =,∴129665BD CE CD AE ⋅==. 【总结】考查三角形一边平行线的性质定理的应用,同时考查平行线与角平分线一起出现会产生等腰三角形的基本图形.- 16 -【作业1】已知线段a 、m 、n ,且ax mn =,求作x ,作法正确的是()(A ) (B ) (C ) (D )【难度】★ 【答案】C【解析】考查三角形一边平行线的性质定理,变形即为a nm x=,可知C 选项满足题意. 【总结】考查三角形一边平行线的性质定理,进行简单的变形应用,可知线段错位相乘满足题意的即为所求选项.【作业2】如图,ABC ∆中,AB AC BE EC =,53AB AC =,//DE AC ,求:AB BD 的值. 【答案】8:5.【解析】由AB AC BE EC =,53AB AC =,可得53BE EC =,根据比 例的合比性质,可得58BE BC =,由//DE AC ,可得::8:5AB BD BC BE ==.【总结】考查三角形一边平行线性质的综合应用.【作业3】如图,////AB EF CD ,2AB =,8CD =,:1:5AE EC =,求EF 的长度.课后作业NEFMDCB A EGFMDA 【答案】3EF =.【解析】过点B 作//BN AC 交EF 于点M ,交CD 于点N . ∵////AB EF CD ,∴四边形AEMB 、ACNB 、ECNM 都为平行四边形,∴2CN EM AB ===,且有FM BMDN BN =.:1:5AE EC =,16BM AE BN AC ∴==. 16FM BM ND BN ∴==/ ∵6ND CD CN =-=, ∴1FM =,3EF EM FM ∴=+=.【总结】三条平行线被两条直线所截,将其中一条直线平移,放到同一个三角形中解答.【作业4】平行四边形ABCD ,E 是AB 的中点,在直线AD 上截取2AF FD =,EF 交AC- 18 -EG FMDCBA于G ,求AGGC 的值. 【答案】25或23.【解析】(1)当点F 在AD 上时,如图. 过点E 作//EM BC 交AC 于点M , 由E 为AB 中点,则M 为AC 中点, 四边形ABCD 为平行四边形,//AD BC AD BC ∴=,.又2AF FD =, 223AF AF AF AD BC EM ∴===. 由//AF EM , 43AG AF GM EM ∴==,42105AG AG GC GM AM ∴===+. (2)当点F 在AD 延长线上时,如图, 过点E 作//EM BC 交AC 于点M , 由E 为AB 中点,则M 为AC 中点, 四边形ABCD 为平行四边形,//AD BC AD BC ∴=,.又2AF FD =, 22AF AF AF AD BC EM ∴===. 由//AF EM , 4AG AF GM EM ∴==4263AG AG GC GM AM ∴===+. 【总结】注意题目中的关键词语,在直线上,由此要进行分类讨论,根据三角形一边平行线的性质构造“A 字型、“X 字型即可.【作业5】如图,////AB EF DC ,已知20AB =,80CD =,求EF 的长.【答案】16【解析】由////AB EF DC ,可得:BF EF BC CD =,CF EFBC AB=,则有1EF EF AB CD+=,代入计算得16EF =. 【总结】考查三角形一边平行线性质的综合应用,利用比例线段之间的关系构造等式求解.【作业6】如图,在ABC ∆中,D 是边BC 上一点,//DF AB ,//DE CA .(1)求证:AE CF EB FA =; (2)如果2CF =,5AC =,6AB =,求AE 、DE 的长.【答案】(1)略;(2)1235AE DE ==,.【解析】(1)证明://DE CA ,AE CD EB DB ∴=, 又//DF AB , CD CF DB FA ∴=,AE CF EB FA∴=. (2)解:由(1)可得AE CF EB FA=, 根据比例的合比性质,得:AE CFAB AC=, 代入可解得:621255AE ⨯==, 由//DE CA ,//DF AB , 可知四边形AEDF 为平行四边形,即得:3DE AF AC CF ==-=.【总结】考查三角形一边平行线性质的综合应用,进行比例线段转化.。
专题07 平行线与三角形重点分析在中考中,直线与线段主要以选择题和填空题形式考查;角及角平分线主要在选择题中考查;平行线常与角度结合考查,以选择题和填空题形式为主。
难点解读难点一:直线和线段难点二:角及角平分线1.角的度量及计算2.余角、补角、角平分线难点三:相交线1.三线八角性质:对顶角相等如图,∠1与∠3,∠与∠性质:邻补角之和等于如图,∠1与∠4,∠2.垂线难点4 平行线难点5命题真题演练1.如图,将直线向上平移到的位置,若,则的度数为( )A. 130°B. 50°C. 45°D. 35°【答案】B【解析】先求出的对顶角,在利用两直线平行同旁内角互补,即可求出的度数.【详解】如图:故选:B.【点拨】本题考查了对顶角的性质,平行线的性质,熟练掌握两直线平行,同位角相等,内错角相等,同旁内角互补是解题关键.2.如图,一条公路修到湖边时,需拐弯绕道而过,如果第一次拐,第二次拐的,第三次拐的,这时的道路恰好和第一次拐弯之前的道路平行,则是()A. B. C. D.【答案】D【解析】过点B作直线BD与第一次拐弯的道路平行,由题意可得,进而可得,然后问题可求解.【详解】解:过点B作直线BD与第一次拐弯的道路平行,如图所示:∵第三次拐的,这时的道路恰好和第一次拐弯之前的道路平行,∴直线BD与第三次拐弯的道路也平行,∵,∴,,∵,∴,∴;故选D.【点拨】本题主要考查平行线的性质,熟练掌握平行线的性质是解题的关键.3.如果一个三角形能被一条线段分割成两个等腰三角形,那么称这个三角形为特异三角形.若△ABC是特异三角形,∠A=30°,∠B为钝角,则符合条件的∠B有( )个.A. 1B. 2C. 3D. 4【答案】B【解析】【详解】如下图,当30°角为等腰三角形的底角时有两种情况:∠B=135°或90°,当30°角为等腰三角形的顶角时有一种情况:∠B=112.5°,所以符合条件的∠B有三个.又因为∠B为钝角,则符合答案的有两个,故本题应选B.【点拨】:因为不确定这个等腰三角形的底边,所以应当以点A为一个确定点进行分类讨论:①当以B为顶点时,即以B为圆心,AB长为半径画弧交AC于点D,构成等腰△BAD;②当以点A为顶点时,即以点A 为圆心,AB长为半径画弧,交AC于点D,构成等腰△ABD;或作线段AB的垂直平分线交AC于点D构成等腰△DAB.4.如图,下列条件不能判断的是()A. B. C. D.【答案】C【解析】根据平行线的判定进行判断求解.【详解】解:A. ,根据同旁内角互补,两直线平行,可判定,故此选项不符合题意;B. ,根据内错角相等,两直线平行可判定,故此选项不符合题意;C. ,根据内错角相等,两直线平行可判定,但不能判断,故此选项符合题意;D. ,根据同位角相等,两直线平行可判定,故此选项不符合题意;故选:C.【点拨】本题考查平行线的判定,掌握平行线的判定方法正确推理论证是解题关键.5.如图,是等边三角形,两个锐角都是的三角尺的一条直角边在上,则的度数为()A. B. C. D.【答案】D【解析】根据等边三角形的性质和三角形的内角和即可得到结论.【详解】∠1=∠3=180°-∠2-∠B=180°-45°-60°=75°,故选:D.【点拨】本题考查了等边三角形的性质,三角形的内角和,正确的识别图形是解题的关键.6.将三角板与直尺按如图所示的方式叠放在一起.在图中标记的角中,与∠1互余的角共有( )A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】由平行线的性质可得∠4=∠5;再由对顶角相等可得∠5=∠6,∠1=∠2,又因∠2+∠5=90°,即可得∠1的余角有:∠6,∠5,∠4.【详解】∵直尺的两边平行,∴∠4=∠5;∵∠5=∠6,∠1=∠2,∠2+∠5=90°,∴∠1的余角有:∠6,∠5,∠4.故选C.【点拨】本题考查了平行线的性质、对顶角的性质及余角的性质,熟练运用相关性质是解决问题的关键.7.如图,是四边形的对角线.若,,则等于()A. B. C. D.【答案】C【解析】先根据内错角相等,两直线平行判定AB∥CD,再利用两直线平行,同旁内角互补计算即可.【详解】解:∵∠1=∠2,∴AB∥CD,∴∠A+∠ADC=180°,∵∠ADC=100°,∴∠A=180°﹣100°=80°,故选:C.【点拨】本题考查了平行线的判定和性质,熟练掌握平行线的判定定理和性质是解题的关键.8.如图,直线a∥b,点B在a上,且AB⊥BC,若∠1=35°,那么∠2等于()A. 45°B. 50°C. 55°D. 60°【答案】C【解析】【分析】先根据直线平行的性质得到∠BAC=∠1=35°,再由三角形内角和定理求出,再根据对顶角的性质即可得到答案.【详解】解:∵直线a∥b,∴∠BAC=∠1=35°(两直线平行,内错角相等),又∵AB⊥BC,∴∠ABC=90°,∴(三角形内角和定理),∴(对顶角相等),故选:C.【点拨】本题主要考查了直线平行的性质、三角形内角和定理、对顶角的性质,掌握对顶角相等以及两直线平行内错角相等是解题的关键.9.如图,AB∥CD,CB平分∠ECD,若∠B=26°,则∠1的度数是 .【答案】52°.【分析】根据平行线的性质得出∠B=∠BCD=26°,根据角平分线定义求出∠ECD=2∠BCD=52°,再根据平行线的性质即可得解.【解答】解:∵AB∥CD,∠B=26°,∴∠BCD=∠B=26°,∵CB平分∠ECD,∴∠ECD=2∠BCD=52°,∵AB∥CD,∴∠1=∠ECD=52°,故答案为:52°.10.如图,直线m经过点B且平行于AC,点P为直线m上的一动点,连接PC,PA,随着点P在直线m上移动,则下列说法中一定正确的是()A. 与全等B. 与的周长相等C. 与的面积相等D. 四边形ACBP是平行四边形【答案】C【解析】由全等三角形和平行四边形的判定,以及同底等高三角形的面积相等,可以得出正确的选项.【详解】解:选项A,因为点A,B,C是定点,而点P是直线m上的动点,所以与不一定全等,故A错误;选项B,的周长是定值,而的周长随着点P位置的变化而变化,所以B错误;选项C,由于与都可以看作是以AC为底边的三角形,且直线m平行于AC,可由平行线间的距离处处相等知道与属于同底等高的三角形,故二者面积相等,所以选项C正确;选项D,由于P是动点,点A,B,C,是定点,所以BP不总是等于AC,而平行四边形的对边应该相等,所以选项D错误.故选:C.【点拨】本题是考查全等三角形和平行四边形的判定,以及同底等高三角形的面积相等的,属于中等难度的题目.。
B EAC F平行线、三角形内角和定理一、基本知识1.平行线性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。
平行线判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。
3.三角形内角和定理:三角形三个内角的和等于180°。
直角三角形两锐角互余;四边形的内角和等于360°。
三角形的一个外角等于和它不相邻的两个内角的和;三角形的外角大于和它不相邻的任何一个内角。
二、训练题1.下列说话正确的是( B )A 、互补的两个角一定是邻补角B 、同一平面内,b // a, c // a,则b//cC 、同一平面内,,,.a c b c a b ⊥⊥⊥则D 相等的角一定是对顶角。
2.如图1,∠1=∠2,则有( A )A 、 EB//CF,B 、 AB//CF,C 、 EB//CD,D 、 AB//CD,3.如图2,已知∠1=80°, m//n, 则∠4=( A ) A 、100°, B 、70° C 、80°, D 、60°,4.如图3,AB//EF,BC//DE, ∠B=40°,则∠E=( C )A 、90°,B 、120°C 、140°,D 、360°,5.如图4,点E 在AC 的延长线上,下列条件中能判断AB//CD 的是( A ) A 、∠1=∠2, B 、∠3=∠4 C 、∠D=∠DCE D ∠D+∠ACD=180°6.如图5,AB//CD//EF, ∠ABE=38°,∠ECD=100°,则∠BEC=( A ) A 、42°, B 、32° C 、62°, D 、38°,7.如图6,AE//CD, DE 平分∠ADC ,∠EAD=50°则∠DEA= 65° 。
三角形一边的平行线【知识梳理】1、三角形一边的平行线性质定理平行于三角形一边的直线截其他两边所在的直线,截得的对应线段成比例. 如图,已知ABC ∆,直线//l BC ,且与AB 、AC 所在直线交于点D 和点E ,那么AD AEDB EC=.2、三角形一边的平行线性质定理推论平行于三角形一边的直线截其他两边所在的直线,截得的三角形的三边与原三角形的三边对应成比例. 如图,点D 、E 分别在ABC ∆的边AB 、AC 上, //DE BC ,那么DE AD AE BC AB AC ==.3、三角形的重心定义:三角形三条中线交于一点,三条中线交点叫三角形的重心.性质:三角形重心到一个顶点的距离,等于它到这个顶点对边中点的距离的两倍. 4、三角形一边的平行线判定定理如果一条直线截三角形的两边所得的对应线段成比例,那么这条直线平行于三角形的第三边. 5、三角形一边的平行线判定定理推论如果一条直线截三角形的两边的延长线(这两边的延长线在第三边的同侧)所得的对应线段成比例,那么这条直线平行于三角形的第三边.如图,在ABC ∆中,直线l 与AB 、AC 所在直线交于点D 和点E ,如果AD AEDB EC=那么l //BC .6、平行线分线段成比例定理两条直线被三条平行的直线所截,截得的对应线段成比例. 如图,直线1l //2l //3l ,直线m 与直线n 被直线1l 、2l 、3l 所截,那么DF EGFB GC=.7、平行线等分线段定理两条直线被三条平行的直线所截,如果一条直线上截得的线段相等,那么另一条直线上截得的线段也相等.【考点剖析】 一.三角形的重心(共13小题)1.(2023•青浦区一模)三角形的重心是( ) A .三角形三条角平分线的交点 B .三角形三条中线的交点C .三角形三条边的垂直平分线的交点D .三角形三条高的交点【分析】根据三角形的重心概念作出回答,结合选项得出结果. 【解答】解:三角形的重心是三角形三条中线的交点. 故选:B .【点评】考查了三角形的重心的概念.三角形的外心是三角形的三条垂直平分线的交点;三角形的内心是三角形的三条角平分线的交点.2.(2023•奉贤区一模)在△ABC 中,AD 是BC 边上的中线,G 是重心.如果AD =6,那么线段DG 的长是 .BCD E FG【分析】根据重心的性质三角形的重心到一顶点的距离等于到对边中点距离的2倍,直接求得结果.【解答】解:∵三角形的重心到顶点的距离是其到对边中点的距离的2倍,∴DG=AG=2.故答案为:2.【点评】本题考查的是三角形的重心,熟知心到顶点的距离与重心到对边中点的距离之比为2:1是解题的关键.3.(2022秋•杨浦区期末)如图,△ABC中,∠BAC=90°,点G是△ABC的重心,如果AG=4,那么BC 的长为.【分析】延长AG交BC于点D,根据重心的性质可知点D为BC的中点,且AG=2DG=4,则AD=6,再根据直角三角形斜边的中线等于斜边的一半即可求解.【解答】解:如图,延长AG交BC于点D.∵点G是△ABC的重心,AG=4,∴点D为BC的中点,且AG=4,∴DG=2,∴AD=AG+DG=6,∵△ABC中,∠BAC=90°,AD是斜边的中线,∴BC=2AD=12.故答案为12.【点评】本题考查了三角形重心的定义及性质,三角形的重心是三角形三边中线的交点,重心到顶点的距离与重心到对边中点的距离之比为2:1.同时考查了直角三角形的性质.4.(2022秋•青浦区校级期末)如图,已知在Rt△ABC中,∠C=90°,点G是△ABC的重心,GE⊥AC,垂足为E,如果CB=10,则线段GE的长为()A.B.C.D.【分析】因为点G是△ABC的重心,根据三角形的重心是三角形三条中线的交点以及重心的性质:重心到顶点的距离与重心到对边中点的距离之比是2:1,可知点D为BC的中点,,根据GE⊥AC,可得∠AEG=90°,进而证得△AEG∽△ACD,从而得到,代入数值即可求解.【解答】解:如图,连接AG并延长交BC于点D.∵点G是△ABC的重心,∴点D为BC的中点,,∵CB=10,∴,∵GE⊥AC,∴∠AEG=90°,∵∠C=90°,∴∠AEG=∠C=90°,∵∠EAG=∠CAD(公共角),∴△AEG∽△ACD,∴,∵,∴,∴,∴.故选:D.【点评】本题考查了相似三角形的判定和性质,三角形的重心的定义及其性质,熟练运用三角形重心的性质是解题的关键.5.(2021秋•松江区期末)如图,已知点G是△ABC的重心,那么S△BCG:S△ABC等于()A.1:2B.1:3C.2:3D.2:5【分析】连接AG延长交BC于点D,由G是重心可得D是BC的中点,所以S△ABD=S△ACD,S△BG=S△CDG,又由重心定理可AG=2GD,则2S△BGD=S△ABG,进而得到3S△BDG=S△ABC,即可求解.【解答】解:连接AG延长交BC于点D,∵G是△ABC的重心,∴D是BC的中点,∴S△ABD=S△ACD,S△BDG=S△CDG,∵AG=2GD,∴2S△BDG=S△ABG,∴3S△BGD=S△ABD,∴3S△BDG=S△ABC,∴S△BDG:S△ABC=1:3,故选:B.【点评】本题考查三角形的重心,熟练掌握三角形重心定理,利用等底、等高三角形面积的特点求解是解题的关键.6.(2022秋•杨浦区校级期末)如图,G是△ABC的重心,延长BG交AC于点D,延长CG交AB于点E,P、Q分别是△BCE和△BCD的重心,BC长为6,则PQ的长为.【分析】连接DE,由G是△ABC的重心,可证DE是△ABC的中位线,从而可求出DE的长.延长EP交BC 于F点,连接DF,利用三角形重心的定义和性质得到EP=2PF,DQ=2QF,再证明△FPQ∽△FED得到即可.【解答】解:连接DE,延长EP交BC于F点,连接DF,如图,∵G是△ABC的重心,∴D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴.∵P点是△BCE的重心,∴F点为BC的中点,EP=2PF,∵Q点是△BCD的重心,∴点Q在中线DF上,DQ=2QF,∵∠PFQ=∠EFD,,∴△FPQ∽△FED,∴,∴,故答案为:1.【点评】本题考查了三角形的重心,三角形的中位线,相似三角形的判定与性质.三角形的重心是三角形三边中线的交点;重心到顶点的距离与重心到对边中点的距离之比为2:1.7.(2022秋•徐汇区期末)在Rt△ABC中,∠B=90°,∠BAC=30°,BC=1,以AC为边在△ABC外作等边△ACD,设点E、F分别是△ABC和△ACD的重心,则两重心E与F之间的距离是.【分析】取AC中点O,连接OB、OD、BD、EF.根据含30度角的直角三角形的性质求出AC=2BC=2,利用勾股定理得出AB=,根据等边三角形的性质得出CD=AD=AC=2,∠CAD=60°,那么∠BAD=∠BAC+∠CAD=90°,利用勾股定理求出BD=.然后证明△EOF∽△BOD,得出EF=BD=.【解答】解:如图,取AC中点O,连接OB、OD、BD、EF.在Rt△ABC中,∠B=90°,∠30°,BC=1,∴AC=2BC=2,AB===,∵△ACD是等边三角形,∴CD=AD=AC=2,∴∠CAD=60°,∴∠BAD=∠BAC+∠CAD=90°,∴BD===.∵点E、F分别是△ABC和△ACD的重心,∴==,又∠EOF=∠BOD,∴△EOF∽△BOD,∴===,∴EF=BD=.故答案为:.【点评】本题考查了相似三角形的判定与性质,含30度角的直角三角形的性质,等边三角形的性质,三角形重心的定义与性质,掌握重心到顶点的距离与重心到对边中点的距离之比为2:1是解题的关键.8.(2022秋•黄浦区月考)已知点G是△ABC的重心,那么S△ABG:S△ABC=.【分析】三角形的重心是三角形三边中线的交点,重心到顶点的距离与重心到对边中点的距离之比为2:1,由此即可计算.【解答】解:延长AG交BC于D,∵点G是△ABC的重心,∴BD=CD,AG:DG=2:1,∴AG:AD=2:3,∴S△ABG:S△ABD=2:3,∵S△ABD:S△ABC=1:2,∴S△ABG:S△ABC=1:3.故答案为:1:3.【点评】本题考查三角形的重心,关键是掌握三角形重心的性质.9.(2023•金山区一模)如图,△ABC为等腰直角三角形,∠A=90°,AB=6,G1为△ABC的重心,E为线段AB上任意一动点,以CE为斜边作等腰Rt△CDE(点D在直线BC的上方),G2为Rt△CDE的重心,设G1、G2两点的距离为d,那么在点E运动过程中d的取值范围是.【分析】分别求出d的最小值和最大值,即可得到d的取值范围.【解答】解:当E与B重合时,G1与G2重合,此时d最小为0,当E与A重合时,G1G2最大,连接并延长AG1交BC于H,连接并延长DG2交AC于K,连接HK,过G2作G2T⊥AH于T,如图:∵G1为等腰直角三角形ABC的重心,∴H为BC中点,∴∠AHB=∠AHC=90°,∴△ABH和△ACH是等腰直角三角形,∴BH=CH=AH==3,∵AG1=2G1H,∴AG1=2,G1H=,∵G2是为等腰Rt△CDE的重心,∴K为AC中点,∴∠AKD=∠CKD=90°,∠AKH=∠CKH=90°,∴∠AKD+∠AKH=180°,∴D,K,H共线,∵AK=CK=DK=AC=AB=3=HK,∴G2K=DK=1,G2D=DK﹣G2K=2,∴G2H=G2K+HK=4,∵TG2∥ED,∴====,即==,∴TG2=2,TH=2,∴TG1=TH﹣G1H=,∴G1G2==,∴G1G2最大值为,∴G1G2的范围是0≤G1G2≤,故答案为:0≤d≤.【点评】本题考查三角形的重心,涉及等腰直角三角形的性质及应用,解题的关键是掌握三角形重心的性质.10.(2023•松江区一模)已知△ABC,P是边BC上一点,△P AB、△P AC的重心分别为G1、G2,那么的值为.【分析】由重心的性质:重心到顶点的距离与重心到对边中点的距离之比为2:1,得到△AG1G2∽△ADE,推出△AG1G2的面积:△ADE的面积=4:9,而△ADE的面积=×△ABC的面积,即可解决问题.【解答】解:延长AG1交PB于D,延长AG2交PC于E,∵△PAB、△PAC的重心分别为G1、G2,∴AG1:AD=AG2:AE=2:3,D是PB中点,E是PC中点,∵∠G1AG2=∠DAE,∴△AG1G2∽△ADE,∴△AG1G2的面积:△ADE的面积=4:9,∵D是PB中点,E是PC中点,∴△ADE的面积=×△ABC的面积,∴的值为.故答案为:.【点评】本题考查三角形的重心,三角形的面积,相似三角形的判定和性质,关键是掌握三角形重心的性质.11.(2022秋•徐汇区期中)已知点G是等腰直角三角形ABC的重心,AC=BC=6,那么AG的长为.【分析】根据三角形的重心到顶点的距离等于到对边中点的距离的2倍解答即可.【解答】解:∵G是等腰直角△ABC的重心,AC=BC=6,∴CD=BC=3,由勾股定理得:AD==3,∴AG=×=2,故答案为:2.【点评】本题考查了三角形的重心,熟记三角形的重心到顶点的距离等于到对边中点的距离的2倍是解题的关键.12.(2018•宝山区校级自主招生)G为重心,DE过重心,S△ABC=1,求S△ADE的最值,并证明结论.【分析】设AD=mAB,AE=nAC,由G为△ABC重心得=3,再由当==时,有最大值,则mn有最小值,而无论D、E任何移动,mn,即可求出S△ADE的最值.【解答】解:S△ADE的最大值为,最小值为.证明:假设△ABC面积为S1,△ADE面积为S2,设AD=mAB,AE=nAC,∵G为△ABC重心,∴=3,∴S2=AD•AE•sinA=mAB•nAC•sinA=mnS1,当==时,有最大值,则mn有最小值,而无论D、E任何移动,mn,∴S1≤S2≤S1,∴S△ADE的最大值为,最小值为.【点评】本题主要考查了三角形重心的性质,解决此题的关键是根据G为△ABC重心得到=3.13.(2019秋•嘉定区校级月考)如图,点G是△ABC的重心,过点G作EF∥BC,分别交AB、AC于点E、F,且EF+BC=7.2cm,求BC的长.【分析】如果连接AG并延长,交BC于点P,由三角形的重心的性质可知AG=2GP,则AG:AP=2:3.又EF∥BC,根据相似三角形的判定可知△AGF∽△APC,得出AF:AC=2:3,最后由EF∥BC,得出△AEF∽△ABC,从而求出EF:BC=AF:AC=2:3,结合EF+BC=7.2cm来求BC的长度.【解答】解:如图,连接AG并延长,交BC于点P.∵G为△ABC的重心,∴AG=2GP,∴AG:AP=2:3,∵EF过点G且EF∥BC,∴△AGF∽△APC,∴AF:AC=AG:AP=2:3.又∵EF∥BC,∴△AEF∽△ABC,∴==.又EF+BC=7.2cm,∴BC=4.32cm.【点评】本题主要考查了三角形的重心的性质,相似三角形的判定及性质.三角形三边的中线相交于一点,这点叫做三角形的重心.重心到顶点的距离等于它到对边中点距离的两倍.平行于三角形一边的直线截其它两边,所得三角形与原三角形相似.相似三角形的三边对应成比例.二.平行线分线段成比例(共1914.(2022秋•徐汇区期末)在△ABC中,点D、E分别在边AB和BC上,AD=2,DB=3,BC=10,要使DE∥AC,那么BE必须等于.【分析】此题主要考查了平行线分线段成比例定理的逆定理,根据题意得出要使DE∥AC,必须即可得出BE的长.【解答】解:∵在△ABC中,点D、E分别在边AB和BC上,AD=2,DB=3,BC=10,∴要使DE∥AC,∴,∴,解得:BE=6.故答案为:6.【点评】此题主要考查了平行线分线段成比例定理的逆定理,根据题意得出要使DE∥AC,必须是解决问题的关键.15.(2022秋•闵行区期末)如图,已知AB∥CD∥EF,它们依次交直线l1、l2于点A、C、E和点B、D、F,如果AC:CE=3:1,BF=10,那么DF等于()A.B.C.D.【分析】由AB∥CD∥EF,可得出=,代入AC=3CE,BF=10,即可求出DF的长.【解答】解:∵AB∥CD∥EF,∴=,即=,∴DF=.故选:C.【点评】本题考查了平行线分线段成比例,牢记“三条平行线截两条直线,所得的对应线段成比例”是解题的关键.16.(2023•宝山区一模)在△ABC中,点D、E分别在边AB、AC上,如果AD:BD=1:3,那么下列条件中能判断DE∥BC的是()A.=B.=C.=D.【分析】如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边,进而可得出结论.【解答】解:∵AD:BD=1:3,∴,∴当时,,∴DE∥BC,故A选项能够判断DE∥BC;而C,B,D选项不能判断DE∥BC.故选:A.【点评】本题主要考查了由平行线分线段成比例来判定两条直线是平行线的问题,能够熟练掌握并运用.17.(2022秋•嘉定区校级期末)如果点H、G分别在△DEF中的边DE和DF上,那么不能判定HG∥EF 的比例式是()A.DH:EH=DG:GF B.HG:EF=DH:DEC.EH:DE=GF:DF D.DE:DF=DH:DG【分析】根据平行线分线段成比例定理判断即可.【解答】解:A、当DH:EH=DG:GF,即=时,HG∥EF,本选项不符合题意;B、当HG:EF=DH:DE∥EF,本选项符合题意;C、当EH:DE=GF:DF,即=时,HG∥EF,本选项不符合题意;D、当DE:DF=DH:DG,即=时,HG∥EF,本选项不符合题意;故选:B.【点评】本题考查的是平行线分线段成比例定理成比例定理,灵活运用定理、找准对应关系是解题的关键.18.(2023•徐汇区一模)如图,a∥b∥c,若,则下面结论错误的是()A.B.C.D.【分析】已知a∥b∥c,根据平行线分线段成比例定理,对各项进行分析即可.【解答】解:由,得==,故A不符合题意;∵a∥b∥c,∴==,故B不符合题意;根据已知条件得不出=,故C符合题意;由=,得==,故D不符合题意;故选:C.【点评】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.19.(2021秋•嘉定区期末)如图,已知AB∥CD∥EF,AC:AE=3:5,那么下列结论正确的是()A.BD:DF=2:3B.AB:CD=2:3C.CD:EF=3:5D.DF:BF=2:5【分析】根据平行线分线段成比例定理判断即可.【解答】解:∵AB∥CD∥EF,∴BD:DF=AC:CE=3:2,A选项错误,不符合题意;AB:CD的值无法确定,B选项错误,不符合题意;CD:EF的值无法确定,C选项错误,不符合题意;DF:BF=CE:AE=2:5,D选项正确,符合题意;故选:D.【点评】本题考查的是平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例,灵活运用定理、找准对应关系是解题的关键.20.(2023•长宁区一模)如图,AD∥BE∥CF,已知AB=5,DE=6,AC=15,那么EF的长等于.【分析】由AD∥BE∥CF,可得=,即=,可解得DF=18,从而EF=DF﹣DE=12.【解答】解:如图:∵AD∥BE∥CF,∴=,∵AB=5,DE=6,AC=15,∴=,解得DF=18,∴EF=DF﹣DE=18﹣6=12,故答案为:12.【点评】本题考查平行线分线段成比例,解题的关键是掌握平行线分线段成比例定理,列出比列式.21.(2023•松江区一模)如图,已知直线AD∥BE∥CF,如果=,DE=3,那么线段EF的长是.【分析】根据平行线分线段成比例解答即可.【解答】解:∵AD∥BE∥CF,∴=,∵DE=3,∴=,∴EF=,故答案为:.【点评】本题主要考查平行线分线段成比例,掌握平行线分线段所得线段对应成比例是解题的关键.22.(2022秋•松江区月考)如图,在△ABC中,点D在AB上,点E在AC上,且DE∥BC,AD=3,AB =4,AC=6,求EC.【分析】根据平行线分线段成比例定理列出比例式,把已知数据代入计算即可.【解答】解:∵DE∥BC,∴=,即=,解得:AE=,∴EC=AC﹣AE=6﹣=.【点评】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.23.(2022秋•松江区月考)如图,DE∥BC,EF∥CG,AD:AB=1:3,AE=3.(1)求EC的值;(2)求证:AD•AG=AF•AB.【分析】(1)由平行可得=,可求得AC,且EC=AC﹣AE,可求得EC;(2)由平行可知==,可得出结论.【解答】(1)解:∵DE∥BC,∴=,又=,AE=3,∴=,解得AC=9,∴EC=AC﹣AE=9﹣3=6;(2)证明:∵DE∥BC,EF∥CG,∴==,∴AD•AG=AF•AB.【点评】本题主要考查平行线分线段成比例的性质,掌握平行线分线段所得线段对应成比例是解题的关键.24.(2023•崇明区一模)四边形ABCD中,点F在边AD上,BF的延长线交CD的延长线于E点,下列式子中能判断AD∥BC的式子是()A.=B.=C.=D.=【分析】根据各个选项中的条件和图形,利用相似三角形的判定和性质、平行线的判定,可以判断哪个选项符合题意.【解答】解:当时,无法判断AD∥BC,故选项A不符合题意;当=时,∠AFB=∠DFE,则△AFB∽△DFE,故∠ABF=∠DEF,AB∥CD,但无法判断AD∥BC,故选项B不符合题意;当时,无法判断AD∥BC,故选项C不符合题意;当时,∠FED=∠BEC,则△FED∽△BEC,故∠EFD=∠EBC,可以判断判断AD∥BC,故选项D符合题意;故选:D.【点评】本题考查平行线分线段成比例、平行线的判定、相似三角形的判定和性质,解答本题的关键是明确题意,利用数形结合的思想解答.25.(2022秋•杨浦区校级期末)如图,已知AB∥CD∥EF,AD:AF=3:5,BE=24,那么BC的长等于()A.4B.C.D.8【分析】根据平行线分线段成比例得到,即可求出BC.【解答】解:∵AB∥CD∥EF,∴,∵BE=24,∴,解得:.故选:C.【点评】本题考查了平行线分线段成比例;熟练掌握三条平行线截两条直线,所得的对应线段成比例是本题的关键.26.(2022秋•浦东新区期末)如图,DF∥AC,DE∥BC,下列各式中正确的是()A.B.C.D.【分析】根据平行线分线段成比例定理逐个判定即可.【解答】解:A.∵DE∥BC,∴=,∴=,故本选项符合题意;B.∵DF∥AC,∴=,故本选项不符合题意;C.∵DE∥BC,∴=,∴=,即=,故本选项不符合题意;D.∵DE∥BC,DF∥AC,∴,,∴=,故本选项不符合题意;故选:A.【点评】本题考查了平行线分线段成比例定理和比例的性质,能根据平行线分线段成比例定理得出正确的比例式是解此题的关键.27.(2022秋•青浦区校级期末)如图,已知直线l1、l2、l3分别交直线l4于点A、B、C,交直线l5于点D、E、F,且l1∥l2∥l3,AB=6,BC=3,DF=12,则DE=.【分析】根据平行线分线段成比例,即可进行解答.【解答】解:∵l1∥l2∥l3,∴,即,∵DF=12,∴DE+DE=12,解得:DE=8.故答案为:8.【点评】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.掌握平行线分线段成比例是解题关键.28.(2022•宝山区二模)已知:如图,点D、E、F分别在△ABC的边AB、AC、BC上,DF∥AC,BD=2AD,AE=2EC.(1)如果AB=2AC,求证:四边形ADFE是菱形;(2)如果AB=AC,且BC=1,联结DE,求DE的长.【分析】(1)根据菱形的判定方法解答即可;(2)根据相似三角形的判定和性质解答即可.【解答】(1)证明:∵BD=2AD,AE=2EC,∴=,∵DF∥AC,∴=,∴=,∴EF∥AB,又∵DF∥AC,∴四边形ADFE是平行四边形,∵AB=2AC,AE=AC,∴AE=AB,∴AD=AE,∵四边形ADFE是平行四边形,∴四边形ADFE是菱形;(2)如图,在△ADE和△ACB中,∠A是公共角,===,===,∴△ADE∽△ACB,∵BC=1,∴DE=.【点评】本题主要考查了菱形的判定和相似三角形的判定和性质,熟练掌握这些判定定理和性质定理是解答本题的关键.29.(2021秋•杨浦区校级月考)如图,点D为△ABC中内部一点,点E、F、G分别为线段AB、AC、AD 上一点,且EG∥BD,GF∥DC.(1)求证:EF∥BC;(2)当,求的值.【分析】(1)先根据相似比的性质得出=,=,故可得出=,由此即可得出结论;(2)先根据EF∥BC得出∠AEF=∠ABC,再由DG∥BD得出∠AEG=∠ABD,故可得出∠GEF=∠DBC,同理可得,∠GEF=∠DBC,故可得出△EGF∽△BDC根据相似三角形面积的比等于相似比的平方即可得出结论.【解答】(1)证明:∵EG∥BD,∴=,∵GF∥DC,∴=,∴=,∴EF∥BC;(2)解:∵EF∥BC,∴∠AEF=∠ABC,∵EG∥BD,∴∠AEG=∠ABD,∴∠AEF﹣∠AEG=∠ABC﹣∠AED,即∠GEF=∠DBC,同理可得,∠GEF=∠DBC,∴△EGF∽△BDC,∵,∴==,∴=()2=.【点评】熟知相似三角形对应边的比等于相似比,面积的比等于相似比的平方是解答此题的关键.30.(2021秋•宝山区校级月考)如图,已知直线l1、l2、l3分别截直线l4于点A、B、C,截直线l5于点D、E、F,且l1∥l2∥l3.(1)如果AB=4,BC=8,EF=12,求DE的长.(2)如果DE:EF=2:3,AB=6,求AC的长.【分析】(1)由平行线分线段成比例定理得出比例式,即可得出DE的长;(2)由平行线分线段成比例定理得出比例式,求出BC的长,即可得出AC的长.【解答】解:(1)∵l1∥l2∥l3.∴==,∴DE=EF=6;(2)∵l1∥l2∥l3.∴=,∴BC=AB=×6=9,∴AC=AB+BC=6+9=15.【点评】本题考查了平行线分线段成比例定理;熟练掌握平行线分线段成比例定理,并能进行推理计算是解决问题的关键.31.(2022秋•奉贤区期中)如图,已知直线l1∥l2∥l3,直线AC和DF被l1、l2、l3所截.若AB=3cm,BC =5cm,EF=4cm.(1)求DE、DF的长;(2)如果AD=40cm,CF=80cm,求BE的长.【分析】(1)利用平行线分线段成比例定理求解;(2)过点A作AK∥DF交BE于点J,交CF于点K,则AD=JE=FK=40cm.求出BJ,可得结论.【解答】解:(1)∵l1∥l2∥l3,∴=,∴=,∴DE=(cm),∴DF=DE+EF=4+=(cm).(2)如图,过点A作AK∥DF交BE于点J,交CF于点K,则AD=JE=FK=40cm.∴CK=CF﹣FK=40cm,∵BJ∥CK,∴=,∴=,∴BJ=15cm,∴BE=BJ+JE=15+40=55cm.【点评】本题考查平行线分线段成比例定理,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考常考题型.32.(2022秋•浦东新区校级月考)如图,已知点A、C、E和点B、F、D分别是∠O两边上的点,且AB∥ED,BC∥EF,AF、BC交于点M,CD、EF交于点N.(1)求证:AF∥CD;(2)若OA:AC:CE=3:2AM=1,求线段DN的长.【分析】(1)根据平行线分线段成比例定理,由AB∥DE得到OA•OD=OE•OB,由BC∥EF得到OC•OF=OE •OB,所以OA•OD=OC•OF,即=,于是可判断AF∥CD;(2)先利用BC∥EF得到==,则可设OB=5x,BF=4x,再由AF∥CD得到==,==,所以FD=6x,接着由FN∥BC得到==,于是可设DN=3a,则CN=2a,然后证明四边形MFNC为平行四边形得到MF=CN=2a,最后利用=得到=,求出a从而得到DN的长.【解答】(1)证明:∵AB∥DE,∴=,即OA•OD=OE•OB,∵BC∥EF,∴=,即OC•OF=OE•OB,∴OA•OD=OC•OF,即=,∴AF∥CD;(2)解:∵OA:AC:CE=3:2:4,∴OC:CE=5:4,∵BC∥EF,∴==,设OB=5x,则BF=4x,∵AF∥CD,∴==,==∴FD=OF=×9x=6x,∵FN∥BC,∴===,设DN=3a,则CN=2a,∵FN∥CM,MF∥CN,∴四边形MFNC为平行四边形,∴MF=CN=2a,∵=,即=,解得a=1,∴DN=3a=3.【点评】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.【过关检测】一、单选题A.4【答案】C【分析】根据平行线分线段成比例得到35BC ADBE AF==,即可求出BC.【详解】解:∵AB CD EF∥∥,∴35 BC ADBE AF==,∵24 BE=,∴3 245 BC=,解得:725 BC=.故选:C【点睛】本题考查了平行线分线段成比例;熟练掌握三条平行线截两条直线,所得的对应线段成比例是本题的关键.九年级校考期中)在ABC中,分别在ABC的边【答案】A【分析】根据平行线分线段成比例定理对各个选项进行判断即可.【详解】解:A、AD DEAB BC=,不能判定DE BC∥,故A符合题意;B、∵AD AE AB AC=,∴DE BC∥,故B不符合题意;C、∵AED C∠=∠,∴DE BC∥,故C不符合题意;D、∵AD AE BD EC=,∴DE BC∥,故D不符合题意.故选:A.【点睛】本题主要考查了平行线分线段成比例定理,平行线的判定,如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.九年级单元测试)在ABC中,点【答案】B【分析】根据题目的已知条件画出图形,然后利用平行线分线段成比例解答即可.【详解】如图:∵DE∥AC,AE:EB=3:2,∴32 AE CDEB BD==∴23BD CD =∵DF AB ∥, ∴23AF BD FC CD == 故选:B【点睛】本题考查了平行线分线段成比例,熟练掌握平行线分线段成比例这个基本事实是解题的关键. 在ABC 的边 【答案】A【分析】根据平行线分线段成比例可得47AE AD AC AB ==,则可以推出当47AF AE AD AC ==,即37DF AD =时,EF CD ∥.【详解】解:DE BC ∥,43AD DB =,∴44437AE AD AD AC AB AD DB ====++,∴当47AF AE AD AC ==时,EF CD ∥,此时74377DF AD AF AD AD −−===,故A 选项符合题意; B ,C ,D 选项均不能得出EF CD ∥.故选A .【点睛】本题考查平行线分线段成比例,解题的关键是掌握“如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边”.5.(2023·上海浦东新·校考一模)如图,点D 、E 分别在AB 、AC 上,以下能推得DE BC ∥的条件是( )A .::AD AB DE BC =B .::AD DB DE BC = C .::AD DB AE EC =D .::AE AC AD DB =【答案】C 【分析】平行于三角形一边的直线截其他两边或延长线,所得的对应线段成比例.如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.【详解】解:设DE BC ∥,那么AD AB AE AC AD DB AE EC DB AB EC AC ===::,::,::,选项A 、B 、D 、不符合平行线分段成比例定理.如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.∵AD DB AE EC =::,∴DE BC ∥.故选:C .【点睛】此题主要考查平行线分线段成比例,解答此题的关键的是明确哪些对应线段成比例.学生初学,容易出错.九年级校考期中)在ABC 中,点【答案】B【分析】利用如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边可对各选项进行判断即可.【详解】当AD AE DB EC =或AD AE AB AC =时, DE BC ∥, 当AD AE DB EC =时,可得23AE EC =,当AD AE AB AC =时,可得25AE AC =, 即23AE EC =或25AE AC =.所以B 选项是正确的,故选:B .【点睛】本题考查了平行线分线段成比例定理,熟练掌握和灵活运用相关知识是解题的关键.二、填空题 7.(2022秋·上海嘉定·九年级校考期中)在ABC 中,点D 、E 分别在线段AB 、AC 的延长线上,DE 平行于BC ,1AB =,3BD =,2AC =,那么AE =___________.【答案】8【分析】根据平行线分线段陈比例定理求解即可.【详解】∵DE AB ∥ ∴AB AC AD AE = ∵1AB =,3BD =,2AC =,∴124AE =∴8AE =故答案为:8.【点睛】此题考查了平行线分线段陈比例定理,解题的关键是掌握平行线分线段陈比例定理.8.(2022春·上海普陀·九年级校考期中)如图,ABCD Y 中,E 是边AD 的中点,BE 交对角线AC 于点F ,那么:AFE FEDC S S 四边形的值为____.【答案】15/0.2【分析】证明12AF EF AE CF BF BC ===,推出24BCF ABF AEF S S S ==,设AEF S m =,则2ABF S m =,4CBF S m =,求出四边形FEDC 的面积,可得结论.【详解】解:∵四边形ABCD 是平行四边形,∴AD BC =,AD BC ∥,∴AF EF AE CF BF BC ==, ∵ E 是边AD 的中点,∴1122AE DE AD BC ===,∴12AF EF AE CF BF BC ===, ∴24BCF ABF AEF S S S ==,设AEF S m =,则2ABF S m =,4S m , ∴6ACB ADC S S m ==, ∴65FECD S m m m =−=四边形, 1::55AFE FECD S S m m ==四边形; 故答案为:15.【点睛】本题考查相似三角形的判定和性质,平行四边形的性质等知识,解题的关键是掌握平行线分线段成比例定理,属于中考常考题型.9.(2022秋·上海黄浦·九年级统考期中)如图,AD 、BC 相交于点O ,点E 、F 分别在BC 、AD 上,AB CD EF ∥∥,如果6CE =,4EO =,5BO =,6AF =,那么AD = ___________.【答案】10【分析】利用平行线分线段成比例定理得到EO FO BO AO =,EO FO CE DF =,求得4893FO AF ==,4DF =即可解决问题.【详解】解:∵AB CD EF ∥∥,EO FO BO AO =,EO FO CE DF =,∵4EO =,5BO =,∴45FO AO =, ∵6AF =,∴4893FO AF ==,∵6CE =,∴8436DF =,∴4DF =,∴6410AD AF DF =+=+=.故答案为:10.【点睛】本题考查平行线分线段成比例定理,解题的关键是灵活运用所学知识解决问题.10.(2022秋·上海奉贤·九年级校联考期中)如图,四边形ABCD 中,AD BC EF ∥∥,如果3810AE AB CD ===,,,则CF 的长是________.【答案】254【分析】根据平行线分线段成比例得出AE DF AB CD =,求出154DF =,即可得出答案. 【详解】∵AD BC EF ∥∥, ∴AE DF AB CD =, ∵3810AE AB CD ===,,, ∴3810DF =, 解得:154DF =, ∴15251044CF CD DF =−=−=, 故答案为:254.【点睛】本题考查平行线分线段成比例,正确得出比例线段是解题的关键. 11.(2022秋·上海宝山·九年级统考期中)在ABC 中,点D 、E 分别在直线AB 、AC 上,如果DE BC ∥,1AB =,2AC =,3AD =,那么CE =________.【答案】4【分析】根据平行线分线段陈比例定理求解即可.【详解】解:作如下图:∵DE BC ∥,∴AB AC AD AE =, ∵1AB =,2AC =,3AD =,∴123AE =,∴6AE =,∴624CE AE AC =−=−=,故答案为:4.【点睛】此题考查了平行线分线段陈比例定理,解题的关键是掌握平行线分线段陈比例定理.。
平行线等分线段定理,三角形、梯形的中位线重点与难点:三角形、梯形中位线的综合运用 一、知识点(1)平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其它直线上截取的线段也相等。
推论1:经过梯形一腰与底平行的直线,必平分另一腰。
推论2:经过三角形一边的中点与另一边平行的直线平分第三边。
(2)三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。
(3)梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半。
二、例题:例1、下列图形是不是中心对称图形?若是,请指出对称中心。
(1)线段;(2)直线;(3)平行四边形;(4)圆解: (1)线段是中心对称图形,对称中心是线段的中点;(2)直线是中心对称图形,对称中心是直线上的任意一点;(3)平行四边形(当然也就包括了矩形、菱形、正方形)是中心对称图形,对称中心是两条对角线的交点;(4)圆是中心对称图形,对称中心是圆心。
例2、判断下列说法是否正确:(1)矩形的对边关于对角线交点对称。
( ) (2)圆上任意两点关于圆心对称。
( )(3)两个全等三角形必关于某一点中心对称。
( ) (4)成中心对称的两个图形中,对应线段平行且相等。
( ) 解:(1)(4)正确(2)(3)错误例3、在下列图形中既是轴对称图菜,又是中心对称图形的是( )①任意平行四边形;②矩形;③菱形;④正方形;⑤正三角形;⑥等腰直角三角形 解:①②③例4、下列图形是中心对称图形而不是轴对称图形的是( ) ①平行四边形;②一条线段;③一个角;④圆 解:①*例5、在△ABC 中,∠A≠90°,作既是轴对称又是中心对称的四边形ADEF ,使D 、E 、F 分别在AB 、BC 、CA 上,这样的四边形可以作( )个D C FEBDCF B A3DCEB A21DCF B A解:如图:因为四边形ADEF 是中心对称图形, 所以它一定是平行四边形; 因为四边形ADEF 是轴对称图形, 所以它的对角线互相垂直。
初中六年级数学教案平行线与三角形教案:平行线与三角形【教学目标】1. 理解平行线的概念,认识平行线的性质。
2. 掌握平行线与三角形的相关性质。
3. 运用所学知识解决与平行线与三角形相关的问题。
【教学准备】教师准备:教学课件、黑板、彩色粉笔等。
学生准备:数学课本、练习册。
【教学过程】一、导入(5分钟)教师利用实物或图片引导学生回顾平行线的概念,并带入今天的课题。
二、讲解平行线的性质(15分钟)1. 定义教师通过示意图和语言解释平行线的定义,并引导学生回答平行线的特点:在同一个平面内,不相交且共面的两条直线叫做平行线。
2. 平行线的判定定理教师针对平行线之间的判定条件进行讲解,包括同位角相等定理、内错角相等定理等,并通过具体例子演示。
3. 平行线的性质定理教师介绍平行线的性质,如平行线的平行线仍然平行、平行线截割同位角相等等,并结合图示进行解释。
三、讲解平行线与三角形的性质(20分钟)1. 两条平行线与横截线教师引导学生观察平行线与横截线之间的关系,并引入同位角、内错角的概念。
通过实例讲解平行线与横截线的相关性质:同位角相等、内错角相等。
2. 平行线与三角形的性质教师介绍平行线与三角形的性质,包括平行线切割三角形、平行线平分三角形等,结合图示进行解释和演练。
四、练习与讨论(15分钟)教师发布一些练习题供学生独立完成,并组织学生互相讨论解题思路和方法。
教师可以选取一些学生的解题过程进行讲解,引导学生思考和发现问题。
五、拓展应用(15分钟)教师出示一些生活中与平行线与三角形相关的问题,并引导学生应用所学知识,结合实际进行解答和讨论。
教师可以引导学生自己设计一道与平行线与三角形相关的问题并上台展示,并与全班进行互动。
六、总结归纳(5分钟)教师带领学生一起回顾今天的学习内容,总结平行线与三角形的相关性质和应用。
【课堂作业】完成课后练习册的相关练习题,巩固所学知识。
【板书设计】主题:平行线与三角形内容:- 平行线的定义- 平行线的判定定理- 平行线的性质定理- 平行线与三角形性质:1. 平行线切割三角形2. 平行线平分三角形【教学反思】通过本节课的教学,学生能够理解平行线的概念和基本性质,并能运用所学知识解决与平行线与三角形相关的问题。
数学平行线与三角形关系应用题解析在解析数学平行线与三角形关系应用题之前,我们先来了解一下什么是平行线和三角形。
平行线是指在同一个平面内始终保持相同的距离且永不相交的两条直线。
而三角形是由三条线段连接而成的一种多边形。
在数学中,平行线与三角形之间存在一些重要的关系。
下面我们将通过应用题来解析这些关系。
假设有一条直线l,平行于边AB的直线为m。
另外,在直线m的上方有一点C,下方有一点D。
我们需要找到与线段CD平行的边。
解题思路:我们可以通过以下步骤来解决这个问题:步骤一:确定平行线与三角形的关系。
步骤二:分析已知条件。
步骤三:应用平行线与三角形的关系,解出答案。
解题步骤:步骤一:确定平行线与三角形的关系根据平行线与三角形的关系,我们知道如果两条直线l和m平行,那么它们与一条横截线所构成的三角形内的两个对顶角是相等的。
即∠ACD = ∠BAE,其中∠ACD和∠BAE分别是三角形ACD与三角形BAE内的对应角。
步骤二:分析已知条件我们已知直线l平行于边AB,即l || AB。
同时,线段CD与直线l平行。
步骤三:应用平行线与三角形的关系,解出答案由已知条件可得,∠ACD = ∠BAE。
根据该等角关系,我们可以得出结论:∠ACD = ∠BAE。
而又因为三角形ACD内角之和为180度,所以∠ACD + ∠CAD + ∠ADC = 180度。
根据这个等式,我们可以得出∠CAD + ∠ADC = 180度- ∠ACD,即∠CAD + ∠ADC = 180度 - ∠BAE。
由此可见,在三角形ACD内,与线段CD平行的两条边分别是边AC和边AD。
综上所述,与线段CD平行的边是边AC和边AD。
结论:根据我们的分析和推理,与线段CD平行的边是边AC和边AD。
通过这个应用题的解析,我们可以看到数学中平行线与三角形的关系是相当重要的。
在解决这类问题时,我们需要运用平行线与三角形的性质和定理,合理推理和分析已知条件,并灵活运用相关等角关系和三角形内角之和等等知识,从而得出准确的结论。
第15讲-三角形与平行线.pdf介绍本文档是第15讲讲义的内容总结,主要涵盖了三角形与平行线的相关知识点。
在本讲中,我们将学习如何判断三角形的相似性、平行线的性质以及应用平行线定理解题等内容。
三角形的相似性三角形的定义三角形是由三条非平行线段连接而成的图形。
根据三个角的大小关系,三角形可以分为锐角三角形、直角三角形和钝角三角形。
三角形的相似判定两个三角形相似的条件有两种:AAA相似判定和AA相似判定。
•AAA相似判定:如果两个三角形的对应角度相等,则这两个三角形相似。
•AA相似判定:如果两个三角形的对应两个角度相等,并且对应的两边成比例,则这两个三角形相似。
相似三角形的性质相似三角形具有相应角相等、对应边成比例的性质。
根据这些性质,我们可以通过已知三角形的一些长度关系来求解另一个相似三角形的各边长度。
平行线的性质平行线的定义如果两条直线在同一平面内,且它们的方向相同或者完全重合,我们称这两条直线为平行线。
平行线的判定平行线的判定有几种方法:•直线与平行线的判定:如果一条直线与两条平行线相交,那么这两条平行线之间的夹角将等于与这两条平行线相交的直线对其产生的两个内错角之和。
•三角形内部的角与平行线的判定:如果一条直线与一条平行线相交,则这两条直线所对应的内角互为余角。
平行线的性质在平行线的基础上,我们可以推导出一些平行线的性质,如同位角相等、对应角相等等。
这些性质在解题过程中经常被用到。
应用平行线定理解题通过理解平行线的性质和应用平行线定理,我们可以解决一些与平行线相关的实际问题。
例题1已知平行线l1与l2的夹角为50°,求与l1和l2相交的直线所对应的内错角的度数。
解析:根据平行线的性质可知,与l1和l2相交的直线所对应的内错角的度数为50°。
例题2在三角形ABC中,AB//CD,BC//ED,AD与CE相交于点F。
已知AD = 3cm,DF = 4cm,DE = 6cm,求CE的长度。
平行线与三角形的外角学案知识梳理1. 三角形的__________________组成的角,叫做三角形的外角.2. 三角形外角定理:三角形的一个外角等于____________________________________.已知:如图,∠2是△ABC 的一个外角. 求证:∠2=∠A +∠B .证明:如图,∵∠A +∠B +∠1=180°(___________________________) ∠1+∠2=180° (___________________________) ∴∠2=∠A +∠B (___________________________)例1:已知:如图,点E 是直线AB ,CD 外一点,连接DE 交AB 于点F ,∠D =∠B +∠E . 求证:AB ∥CD .①读题标注 ②梳理思路要证AB ∥CD ,需要考虑同位角、内错角、同旁内角.因为已知∠D =∠B +∠E ,而由外角定理得∠AFE =∠B +∠E ,故∠D =∠AFE ,所以AB ∥CD .③过程书写 证明:如图,∵∠AFE 是△BEF 的一个外角(外角的定义)∴∠AFE =∠B+∠E (三角形的一个外角等于和它不相邻的两个内角的和) ∵∠D =∠B +∠E (已知) ∴∠AFE =∠D (等量代换)∴AB ∥CD (同位角相等,两直线平行)ABCD 12D C EA B F D C EA BF练习题1. 如图,D 是AB 上一点,E 是AC 上一点,BE ,CD 相交于点F ,∠A =60°,∠ACD =35°,∠ABE =20°,则∠BDC =______,∠BEC =_______.2. 已知:如图,在△ABE 中,D 是BE 上一点,C 是AE 延长线上一点,连接CD .若∠BDC =140°,∠B =35°,∠C =25°,求∠A 的度数.3. 已知:如图,AC ∥ED ,∠C =25°,∠B =35°,则∠E 的度数是( )A .60°B .85°C .70°D .50°4. 将一副直角三角板如图放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则α=______.5. 已知:如图,在△ABC 中,DE ∥BC ,F 是AB 上一点,FE 的延长线交BC 的延长线于点G .若∠A =45°,∠ADE =60°,∠CEG =40°,则∠EGH =______.第5题图 第6题图6. 如图,在△ABC 中,AD ⊥BC ,垂足为D ,AE 平分∠BAC 交BC 于点E ,BF 平分∠ABC交AC 于点F ,AE ,BF 相交于点O .若∠BAC =50°,∠C =70°,则∠DAC =_____,∠AED =_____,∠BOE =_________.FECDAABDEED CBAαA F DB C EGH 第6题图O FE D C BA7.已知:如图,在△ABC中,∠B=∠C,AD平分外角∠EAC.求证:AD∥BC.8.已知:如图,BE是∠ABC的平分线,AB∥CE,∠A=50°,∠E=30°,求△ABC的外角∠ACD的度数.解:如图,∵AB∥CE(__________________________)∴∠ABE=_______(__________________________)∵∠E=30° (__________________________)∴∠ABE=_______(__________________________)∵BE是∠ABC的平分线(______________________)∴∠ABC=2∠ABE=2×30°=60° (角平分线的定义)∵∠ACD是△ABC的一个外角(外角的定义)∴∠ACD=______+______(_____________________)∵∠A=50° (__________________________)∴∠ACD=______+______=_______(__________________________)9.已知:如图,在△ABC中,BD平分∠ABC,且∠ADE=∠C.求证:∠AED=2∠EDB.证明:如图,∵∠ADE=∠C(____________________________)∴_____∥_____ (____________________________)∴∠1=_____ (____________________________)∵BD平分∠ABC(____________________________)∴∠2=∠3 (角平分线的定义)∴∠1=∠3(____________________________)∵∠AED是△BDE的一个外角(___________________)EDCBAAB C DE3 21A 第9题图E DC∴∠AED =_______+_______ =2∠1(____________________________)即∠AED =2∠EDB10. 已知:如图,在△ABC 中,CD 平分∠ACB 交AB 于点D ,∠ADE =∠B ,DE 交AC 于点F .求证:∠EFC =2∠FDC .11. 如图,已知∠B =∠ADB ,∠1=15°,∠C =20°,则∠EAC 的度数为___________.12. 如图,AB ∥CD ,EG 与AB ,CD 分别交于点F ,G ,∠A =30°,∠EGD =70°,求∠E 的度数.13. 如图,在△ABC 中,∠1是它的一个外角,∠1=115°,∠A =40°,∠D =35°,则∠2=________.14. 已知:如图,在△ABC 中,∠BAC =50°,∠C =60°,AD ⊥BC ,BE 是∠ABC 的平分线,AD ,BE 交于点F ,则∠AFB 的度数为____________.第2题图 第3题图第10题图FEDB A1E D CB AGFB CDEA 21E F DCBAF BAEC Dα15. 将一副直角三角板按如图所示的方式叠放在一起,则图中∠α的度数为( )A .45°B .60°C .75°D .9016. 如图,已知∠A =25°,∠EFB =95°,∠B =40°,则∠D 的度数为_____________.第4题图 第5题图17. 如图,已知AD 是△ABC 的外角∠CAE 的平分线,∠B =30°,∠DAE =50°,则∠D =_______,∠ACB =_______.18. 如图,在△ABC 中,∠A =40°,∠ABC 的平分线BD 交AC 于点D ,∠BDC =70°,求∠C 的度数.解:如图,∵∠BDC 是△ABD 的一个外角 (_____________________) ∴∠BDC =∠A +∠ABD(_____________________)∵∠A =40°,∠BDC =70° (_____________________)∴∠ABD =_______ - ________=________ - ________ =________(_____________________)∵BD 平分∠ABC(_____________________)∴∠ABC =2∠ABD=_____×______ =__________ (_____________________)∴∠C =180°-∠A -∠ABC=180°-________ - _______=________ (_____________________)19. 已知:如图,CE 是△ABC 的一个外角平分线,且EF ∥BC 交AB 于点F ,已知∠A =60°,∠E =55°,求∠B 的度数.FEDCB AD CEAB第4题图DCABFBC DAE【参考答案】1.95°,80°2.证明:如图,∵∠BDC为△DCE的一个外角(外角的定义)∴∠BDC=∠DEC+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∵∠BDC=140°,∠C=25°(已知)∴∠DEC=∠BDC-∠C=140°-25°=115°(等式性质)∵∠DEC为△ABE的一个外角(外角的定义)∴∠DEC=∠A+∠B(三角形的一个外角等于和它不相邻的两个内角的和)∵∠B=35°(已知)∴∠A=∠DEC-∠B=115°-35°=80°(等式性质)3.A4.75°5.145°6.20°,85°,55°7.证明:如图,∵∠EAC为△ABC的一个外角(外角的定义)∴∠EAC=∠B+∠C (三角形的一个外角等于和它不相邻的两个内角的和)∵∠B=∠C(已知)∴∠EAC=2∠C(等式性质)∵AD平分∠EAC(已知)∴∠EAC=2∠DAC(角平分线的定义)∴∠C=∠DAC(等式性质)∴AD∥BC(内错角相等,两直线平行)8.已知∠E;两直线平行,内错角相等已知30°,等量代换已知已知∠A,∠ABC,三角形的一个外角等于和它不相邻的两个内角的和已知50°,60°110°,等式的性质9.已知BC,DE;同位角相等,两直线平行∠2;两直线平行,内错角相等已知等量代换EDCB AABCD EG FB CDEA 外角的定义 ∠1,∠3三角形的一个外角等于和它不相邻的两个内角的和 10. 证明:如图,∵∠ADE =∠B (已知)∴BC ∥DE(同位角相等,两直线平行)∴∠EDC =∠DCB (两直线平行,内错角相等) ∵CD 平分∠ACB (已知)∴∠DCB =∠FCD (角平分线的定义) ∴∠EDC =∠FCD (等量代换)∵∠EFC 是△DFC 的一个外角(外角的定义) ∴∠EFC =∠EDC +∠FCD=2∠FDC (三角形的一个外角等于和它不相邻的两个内角的和)11. 55°12. 解:如图,∵AB ∥CD (已知)∴∠EFB =∠EGD (两直线平行,同位角相等) ∵∠EGD =70°(已知) ∴∠EFB =70°(等量代换)∵∠EFB 是△AEF 的一个外角(外角的定义)∴∠EFB =∠A +∠E (三角形的一个外角等于和它不相邻的两个内角的和)∵∠A =30°(已知) ∴∠E =∠EFB -∠A=70°-30°=40°(等式的性质)13. 40° 14. 125° 15. C 16. 20°17.20°,70°18. 外角的定义三角形的一个外角等于和它不相邻的两个内角的和 已知 ∠BDC ,∠A 70°,40° 30°,等式性质 已知 2,30°60°,角平分线的定义 40°,60°80°,三角形的内角和等于180°第10题图FEDCBA19.解:如图,∵EF∥BC(已知)∴∠ECD=∠E(两直线平行,内错角相等)∵∠E=55°(已知)∴∠ECD=55°(等量代换)∵CE是△ABC的一个外角平分线(已知)∴∠ACD=2∠ECD=2×55°=110°(角平分线的定义)∵∠ACD是△ABC的一个外角(外角的定义)∴∠ACD=∠A+∠B(三角形的一个外角等于和它不相邻的两个内角的和)∵∠A=60°(已知)∴∠B=∠ACD-∠A=110°-60°=50°(等式性质)。
平行线与三角形一、单选题1.如图(1),在//AB CD 中,40AEC ∠=︒,CB 平分DCE ∠,则ABC ∠的度数为()A .10︒B .20︒C .30°D .40︒2.如图(2),将直角三角板放置在矩形纸片上,若148∠=︒,则2∠的度数为()A .42°B .48°C .52°D .60°3.七巧板起源于我国先秦时期,古算书《周髀算经》中有关于正方形的分割术,经历代演变而成七巧板,如图1所示.19世纪传到国外,被称为“唐图”(意为“来自中国的拼图”),图2是由边长为4的正方形分割制作的七巧板拼摆成的“叶问蹬”图.则图中抬起的“腿”(即阴影部分)的面积为()A .3B .72C .2D .524.下列命题是真命题的是()A .五边形的内角和是720︒B .三角形的任意两边之和大于第三边C .内错角相等D .三角形的重心是这个三角形的三条角平分线的交点5.两个直角三角板如图(5)摆放,其中90BAC EDF ∠=∠=︒,45E ∠=︒,30C ∠=︒,AB 与DF 交于点M .若//BC EF ,则BMD ∠的大小为()(1)A .60︒B .67.5︒C .75︒D .82.5︒6.某同学的作业如下框,其中※处填的依据是()如图,已知直线1234,,,l l l l .若12∠=∠,则34∠=∠.请完成下面的说理过程.解:已知12∠=∠,根据(内错角相等,两直线平行),得12//l l .再根据(※),得34∠=∠.A .两直线平行,内错角相等B .内错角相等,两直线平行C .两直线平行,同位角相等D .两直线平行,同旁内角互补7.如图(7),直线c 与直线a 、b 都相交.若//a b ,155∠=︒,则2∠=()A .60︒B .55︒C .50︒D .45︒8.如图(8),AB ∥CD ∥EF ,若∠ABC =130°,∠BCE =55°,则∠CEF 的度数为()A .95°B .105°C .110°D .115°9.如图(9),直线//m n ,三角尺的直角顶点在直线m 上,且三角尺的直角被直线m 平分,若160∠=︒,则下列结论错误的是()A .275∠=︒B .345∠=︒C .4105∠=︒D .5130∠=︒10.如图(10),已知直线//,140,230m n ∠=︒∠=︒,则3∠的度数为()A .80︒B .70︒C .60︒D .50︒11.如图(11),在ABC 中,90ACB ∠=︒,4AC BC ==,点D 是BC 边的中点,点P 是AC 边上一个动点,连接PD ,以PD 为边在PD 的下方作等边三角形PDQ ,连接CQ .则CQ 的最小值是()A .2B .1C D .3212.定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图(12),ACD ∠是ABC 的外角.求证:ACD A B ∠=∠+∠.下列说法正确的是()A .证法1还需证明其他形状的三角形,该定理的证明才完整B .证法1用严谨的推理证明了该定理C .证法2用特殊到一般法证明了该定理D .证法2只要测量够一百个三角形进行验证,就能证明该定理13.如图(13),ABC 中,90,8,6ACB AC BC ∠=︒==,将ADE 沿DE 翻折,使点A 与点B 重合,则CE 的长为()A .198B .2C .254D .7414.如图(14),点D 、E 分别在线段BC 、AC 上,连接AD 、BE .若35A ∠=︒,25B ∠=︒,50C ∠=︒,则1∠的大小为()A .60°B .70°C .75°D .85°15.在ABC 中,90ACB ∠=︒,分别过点B ,C 作BAC ∠平分线的垂线,垂足分别为点D ,E ,BC 的中点是M ,连接CD ,MD ,ME .则下列结论错误的是()A .2CD ME=B .//ME ABC .BD CD=D .ME MD=16.如图(16),在ABC 和DCB 中,ACB DBC ∠=∠,添加一个条件,不能..证明ABC 和DCB 全等的是()A .ABC DCB∠=∠B .AB DC=C .AC DB=D .A D∠=∠17.如图(17),在Rt ABC △纸片中,90,4,3ACB AC BC ∠=︒==,点,D E 分别在,AB AC 上,连结DE ,将ADE 沿DE 翻折,使点A 的对应点F 落在BC 的延长线上,若FD 平分EFB ∠,则AD 的长为()A .259B .258C .157D .20718.如图(18),()8,0A ,()2,0C -,以点A 为圆心,AC 长为半径画弧,交y 轴正半轴于点B ,则点B 的坐标为()A .()0,5B .()5,0C .()6,0D .()0,6(16)(17)19.如图(19),点B ,F ,C ,E 共线,∠B =∠E ,BF =EC,添加一个条件,不等判断△ABC ≌△DEF 的是()A .AB =DEB .∠A =∠DC .AC =DFD .AC ∥FD20.如图(20),在44⨯的正方形网格中有两个格点A 、B ,连接AB ,在网格中再找一个格点C ,使得ABC 是等腰直角....三角形,满足条件的格点C 的个数是()A .2B .3C .4D .521.如图(21),在ABC 中,45,60,B C AD BC ∠=︒∠=︒⊥于点D ,3BD =.若E ,F 分别为AB ,BC 的中点,则EF 的长为()A .33B .32C .1D .6222.如图(22),在四边形ABCD 中,∠A=90°,AD=3,BC=5,对角线BD 平分∠ABC ,则△BCD 的面积为()A .7.5B .8C .15D .无法确定23.如图(23)所示,直线EF //GH ,射线AC 分别交直线EF 、GH 于点B 和点C ,AD ⊥EF 于点D ,如果∠A =20°,则∠ACG =()A .160°B .110°C .100°D .70°(18)(19)(20)(21)(22)24.如图(24),直线a ,b 被直线c 所截,则∠1与∠2的位置关系是()A .同位角B .内错角C .同旁内角D .邻补角25.将一副三角尺如图(25)摆放,点E 在AC 上,点D 在BC 的延长线上,//,90,45,60EF BC B EDF A F ∠=∠=︒∠=︒∠=︒,则CED ∠的度数是()A .15°B .20°C .25°D .30°26.有两个直角三角形纸板,一个含45°角,另一个含30°角,如图①所示叠放,先将含30°角的纸板固定不动,再将含45°角的纸板绕顶点A 顺时针旋转,使BC ∥DE ,如图②所示,则旋转角∠BAD 的度数为()A .15°B .30°C .45°D .60°27.如图(27),在ABC 中,AB =AC ,分别以点A 、B 为圆心,以适当的长为半径作弧,两弧分别交于E ,F ,作直线EF ,D 为BC 的中点,M 为直线EF 上任意一点.若BC =4,ABC 面积为10,则BM +MD 长度的最小值为()A .52B .3C .4D .5(23)(24)(25)(27)28.如图(28),ABC 中,90,40ACB ABC ︒︒∠=∠=.将ABC 绕点B 逆时针旋转得到A BC ''△,使点C 的对应点C '恰好落在边AB 上,则CAA '∠的度数是()A .50︒B .70︒C .110︒D .120︒29.如图(29),在△ABC 中,AB =2,∠ABC =60°,∠ACB =45°,D 是BC 的中点,直线l 经过点D ,AE ⊥l ,BF ⊥l ,垂足分别为E ,F ,则AE +BF 的最大值为()A 6B .2C .3D .230.如图(30),在四边形ABCD 中,//AD BC ,90D ∠= ,8AD =,6BC =,分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O .若点O 是AC 的中点,则CD 的长为()A .42B .6C .210D .831.如图(31),在一个宽度为AB 长的小巷内,一个梯子的长为a ,梯子的底端位于AB 上的点P ,将该梯子的顶端放于巷子一侧墙上的点C 处,点C 到AB 的距离BC 为b ,梯子的倾斜角BPC ∠为45︒;将该梯子的顶端放于另一侧墙上的点D 处,点D 到AB 的距离AD 为c ,且此时梯子的倾斜角APD ∠为75︒,则AB 的长等于()(28)(29)(30)(31)(33)A .aB .bC .2bc +D .c32.等腰三角形的一个内角为70°,则另外两个内角的度数分别是()A .55°,55°B .70°,40°或70°,55°C .70°,40°D .55°,55°或70°,40°33.如图(33),已知ABC 和ADE 都是等腰三角形,90BAC DAE ∠=∠=︒,,BD CE 交于点F ,连接AF ,下列结论:①BD CE =;②BF CF ⊥;③AF 平分CAD ∠;④45AFE ∠=︒.其中正确结论的个数有()A .1个B .2个C .3个D .4个34.如图(34),,ABC ECD ∆∆都是等边三角形,且B ,C ,D 在一条直线上,连结,BE AD ,点M ,N 分别是线段BE ,AD 上的两点,且11,33BM BE AN AD ==,则CMN ∆的形状是()A .等腰三角形B .直角三角形C .等边三角形D .不等边三角形35.如图(35)所示的网格由边长相同的小正方形组成,点A 、B 、C 、D 、E 、F 、G 在小正方形的顶点上,则ABC ∆的重心是()A .点DB .点EC .点FD .点G36.如图(36),在CEF △中,80E ∠=︒,50F ∠=︒,AB CF ,AD CE ,连接BC ,CD ,则A ∠的度数是()A .45°B .50°C .55°D .80°二、填空题(34)(35)(36)37.由沈康身教授所著,数学家吴文俊作序的《数学的魅力》一书中记载了这样一个故事:如图(37),三姐妹为了平分一块边长为1的祖传正方形地毯,先将地毯分割成七块,再拼成三个小正方形(阴影部分).则图中AB的长应是______.38.下图(38)是可调躺椅示意图(数据如图),AE与BD的交点为C,且A∠,BÐ,E∠保持不变.为了舒适,需调整D∠的大小,使110EFD∠=︒,则图中D∠应___________(填“增加”或“减少”)___________度.39.如图(39),AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是_____.40.如图(40),在△ABC中,AD⊥BC,CE⊥AB,垂足分别为点D和点E,AD与CE交于点O,连接BO 并延长交AC于点F,若AB=5,BC=4,AC=6,则CE:AD:BF值为____________.41.如图(41),在四边形ABCD中,AB BC BD==.设ABCα∠=,则ADC∠=______(用含α的代数式表示).42.如图(42),BE是ABC的中线,点F在BE上,延长AF交BC于点D.若3BF FE=,则BDDC=______.(37)(38)(39)(40)(41)43.如图(43),在ABC 中,AB AC =,70B ∠=︒,以点C 为圆心,CA 长为半径作弧,交直线BC 于点P ,连结AP ,则BAP ∠的度数是_______.44.如图(44),将三角形纸片ABC 折叠,使点B 、C 都与点A 重合,折痕分别为DE 、FG .已知15ACB ∠=︒,AE EF =,DE =,则BC 的长为_______.45.如图(45),在△ABC 中,AB =5,AC =7,直线DE 垂直平分BC ,垂足为E ,交AC 于点D ,则△ABD 的周长是_____.46.《九章算术》中有一道“引葭赴岸”问题:“仅有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深,葭长各几何?”题意是:有一个池塘,其地面是边长为10尺的正方形,一棵芦苇AB 生长在它的中央,高出水面部分BC 为1尺.如果把芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B 恰好碰到岸边的B '(示意图如图(46),则水深为__尺.47.如图(47),四边形ABCD 中,AB ∥CD ,∠ABC =60°,AD =BC =CD =4,点M 是四边形ABCD 内的一个动点,满足∠AMD =90°,则点M 到直线BC 的距离的最小值为_____.48.如图(48),在ABC 中,5,8,9===AB AC BC ,以A 为圆心,以适当的长为半径作弧,交AB(42)(44)(45)(46)(47)(48)(43)于点M ,交AC 于点N ,分别以,M N 为圆心,以大于12MN 的长为半径作弧,两弧在BAC ∠的内部相交于点G ,作射线AG ,交BC 于点D ,点F 在AC 边上,AFAB =,连接DF ,则CDF 的周长为___________.49.如图(49),在ABC 中,9,4BC AC ==,分别以点A B 、为圆心,大于12AB 的长为半径画弧,两弧相交于点,M N 、作直线MN ,交BC 边于点D ,连接AD ,则ACD △的周长为________.50.如图(50),△ABC 为等边三角形,边长为6,AD ⊥BC ,垂足为点D ,点E 和点F 分别是线段AD 和AB 上的两个动点,连接CE ,EF ,则CE +EF 的最小值为_____.51.如图(51),在ABC 中,84C ∠=︒,分别以点A 、B 为圆心,以大于12AB 的长为半径画弧,两弧分别交于点M 、N ,作直线MN 交AC 点D ;以点B 为圆心,适当长为半径画弧,分别交BA 、BC 于点E 、F ,再分别以点E 、F 为圆心,大于12EF 的长为半径画弧,两弧交于点P ,作射线BP ,此时射线BP 恰好经过点D ,则A ∠=_____度.52.由4个直角边长分别为a ,b 的直角三角形围成的“赵爽弦图”如图(52)所示,根据大正方形的面积2c 等于小正方形的面积2()a b -与4个直角三角形的面积2ab 的和证明了勾股定理222+=a b c ,还可以用来证明结论:若0a >、0b >且22a b +为定值,则当a _______b 时,ab 取得最大值.53.如图(53),在ABC 中,90,ACB AC BC ∠=︒=,点P 在斜边AB 上,以PC 为直角边作等腰直角三角形PCQ ,90PCQ ∠=︒,则222,,PA PB PC 三者之间的数量关系是_____.54.如图(54),D 是等边三角形ABC 外一点.若8,6BD CD ==,连接AD ,则AD 的最大值与最小值(49)(50)(51)(53)的差为_____.55.勘测队按实际需要构建了平面直角坐标系,并标示了A ,B ,C 三地的坐标,数据如图(55)(单位:km ).笔直铁路经过A ,B 两地.(1)A ,B 间的距离为______km ;(2)计划修一条从C 到铁路AB 的最短公路l ,并在l 上建一个维修站D ,使D 到A ,C 的距离相等,则C ,D 间的距离为______km .三、解答题56.如图(56),//AB CD ,B D ∠=∠,直线EF 与AD ,BC 的延长线分别交于点E ,F .求证:DEF F ∠=∠.57.如图(57),BE 是ABC 的角平分线,在AB 上取点D ,使DB DE =.(1)求证://DE BC .(2)若65A ∠=︒,45AED ∠=︒,求EBC ∠的度数.58.如图(58),90BAC ∠=︒,AD 是BAC ∠内部一条射线,若AB AC =,BE AD ⊥于点E ,CF AD ⊥于点F .求证:AF BE =.(54)(55)(56)(57)59.如图(59),在ABC 中,40A ∠=︒,点D ,E 分別在边AB ,AC 上,BD BC CE ==,连结CD ,BE .(1)若80ABC ∠=︒,求BDC ∠,ABE ∠的度数.(2)写出BEC ∠与BDC ∠之间的关系,并说明理由.60.如图(60),//BD AC ,BD BC =,点E 在BC 上,且BE AC =.求证:D ABC ∠=∠.61.如图(61),点A 、B 、D 、E 在同一条直线上,,//,//AB DE AC DF BC EF =.求证:ABC DEF △≌△.(58)(59)(60)62.已知在ACD △中,Р是CD 的中点,B 是AD 延长线上的一点,连结,BC AP .(1)如图1,若90,60,,ACB CAD BD AC AP ︒∠=︒∠===BC 的长.(2)过点D 作//DE AC ,交AP 延长线于点E ,如图2所示.若60,CAD BD AC ∠︒==,求证:2BC AP =.(3)如图3,若45CAD ∠=︒,是否存在实数m ,当BD mAC =时,2BC AP =?若存在,请直接写出m的值;若不存在,请说明理由.63.如图(63),AC 是四边形ABCD 的对角线,∠1=∠B ,点E 、F 分别在AB 、BC 上,BE =CD ,BF =CA ,连接EF .(1)求证:∠D =∠2;(2)若EF ∥AC ,∠D =78°,求∠BAC的度数.64.阅读与思考(61)(63)下面是小宇同学的数学日记,请仔细阅读并完成相应的任务.×年×月×日星期日没有直角尺也能作出直角今天,我在书店一本书上看到下面材料:木工师傅有一块如图①所示的四边形木板,他已经在木板上画出一条裁割线AB ,现根据木板的情况,要过AB 上的一点C ,作出AB 的垂线,用锯子进行裁割,然而手头没有直角尺,怎么办呢?办法一:如图①,可利用一把有刻度的直尺在AB 上量出30CD cm =,然后分别以D ,C 为圆心,以50cm 与40cm 为半径画圆弧,两弧相交于点E ,作直线CE ,则DCE ∠必为90︒.办法二:如图②,可以取一根笔直的木棒,用铅笔在木棒上点出M ,N 两点,然后把木棒斜放在木板上,使点M 与点C 重合,用铅笔在木板上将点N 对应的位置标记为点Q ,保持点N 不动,将木棒绕点N 旋转,使点M 落在AB 上,在木板上将点M 对应的位置标记为点R .然后将RQ 延长,在延长线上截取线段QS MN =,得到点S ,作直线SC ,则90RCS ∠=︒.我有如下思考:以上两种办法依据的是什么数学原理呢?我还有什么办法不用直角尺也能作出垂线呢?……任务:(1)填空;“办法一”依据的一个数学定理是_____________________________________;(2)根据“办法二”的操作过程,证明90RCS ∠=︒;(3)①尺规作图:请在图③的木板上,过点C 作出AB 的垂线(在木板上保留作图痕迹,不写作法);②说明你的作法依据的数学定理或基本事实(写出一个即可)65.光线在不同介质中传播速度不同,从一种介质射向另一种介质时会发生折射,如图(65),水面AB与水杯下沿CD平行,光线EF从水中射向空气时发生折射,光线变成FH,点G在射线EF上,已知20,45HFB FED∠=︒∠=︒,求GFH∠的度数.66.已知D是Rt△ABC斜边AB的中点,∠ACB=90°,∠ABC=30°,过点D作Rt△DEF使∠DEF=90°,∠DFE=30°,连接CE并延长CE到P,使EP=CE,连接BE,FP,BP,设BC与DE交于M,PB与EF 交于N.(1)如图1,当D,B,F共线时,求证:①EB=EP;②∠EFP=30°;(2)如图2,当D,B,F不共线时,连接BF,求证:∠BFD+∠EFP=30°.(65)67.已知AOB 和MON △都是等腰直角三角形22OM ON ⎛⎫<< ⎪⎝⎭,90AOB MON ︒∠=∠=.(1)如图1:连,AM BN ,求证:AOM BON ≌;(2)若将MON △绕点O 顺时针旋转,①如图2,当点N 恰好在AB 边上时,求证:2222BN AN ON =+;②当点,,A M N 在同一条直线上时,若4,3OB ON ==,请直接写出线段BN 的长.68.如图1,在等边三角形ABC 中,点E 是边AC 上一定点,点D 是直线BC 上一动点,以DE 为一边作等边三角形DEF ,连接CF .(问题解决)(1)如图1,若点D 在边BC 上,求证:CE+CF =CD ;(类比探究)(2)如图2,若点D 在边BC 的延长线上,请探究线段CE ,CF 与CD 之间存在怎样的数量关系?并说明理由.69.(1)如图①,在四边形ABCD 中,AB CD ∥,点E 是BC 的中点,若AE 是BAD ∠的平分线,试判断AB ,AD ,DC 之间的等量关系.解决此问题可以用如下方法:延长AE 交DC 的延长线于点F ,易证AEB FEC ∆∆≌得到AB FC =,从而把AB ,AD ,DC 转化在一个三角形中即可判断.AB ,AD ,DC 之间的等量关系________;(2)问题探究:如图②,在四边形ABCD 中,AB CD ∥,AF 与DC 的延长线交于点F ,点E 是BC 的中点,若AE 是BAF ∠的平分线,试探究AB ,AF ,CF 之间的等量关系,并证明你的结论.70.小圆同学对图形旋转前后的线段之间、角之间的关系进行了拓展探究.(一)猜测探究:在ABC ∆中,AB AC =,M 是平面内任意一点,将线段AM 绕点A 按顺时针方向旋转与BAC ∠相等的角度,得到线段AN ,连接NB .(1)如图1,若M 是线段BC 上的任意一点,请直接写出NAB ∠与MAC ∠的数量关系是,NB 与MC 的数量关系是;(2)如图2,点E 是AB 延长线上点,若M 是CBE ∠内部射线BD 上任意一点,连接MC ,(1)中结论是否仍然成立?若成立,请给予证明,若不成立,请说明理由.(二)拓展应用:如图3,在111A B C ∆中,118A B =,11160A B C ∠= ,11175B A C ∠= ,P 是11B C 上的任意点,连接1A P ,将1A P 绕点1A按顺时针方向旋转75 ,得到线段1AQ ,连接1B Q .求线段1B Q 长度的最小值.答案1、【答案】B解:∵AB∥CD,∴∠ABC=∠BCD,∵CB平分∠DCE,∴∠BCE=∠BCD,∴∠BCE=∠ABC,∵∠AEC=∠BCE+∠ABC=40°,∴∠ABC=20°,故选B.2、【答案】A解:如图,延长该直角三角形一边,与该矩形纸片一边的交点记为点A,由矩形对边平行,可得∠1=∠BAC,因为BC⊥AB,∴∠BAC+∠2=90°,∴∠1+∠2=90°,因为∠1=48°,∴∠2=42°;故选:A.3、【答案】A解:如下图所示,由边长为4的正方形分割制作的七巧板,共有以下几种图形:○1腰长是的等腰直角三角形,②腰长是2的等腰直角三角形,的正方形,⑤边长分别是2,顶角分别是45 和135 的平行四边形,根据图2可知,图中抬起的“腿”的等腰直角三角形,和一个边长分别是2,顶角分别是45 和135 的平行四边形组成,如下图示,根据平行四边形的性质可知,顶角分别是45 和135 的平行四边形的高是DB ,且DB =,的等腰直角三角形的面积是:112=,顶角分别是45 和135 2=,∴阴影部分的面积为:123+=,故选:A.4、【答案】BA、五边形的内角和是540︒,故原命题为假命题,不符合题意;B、三角形的任意两边之和大于第三边,原命题是真命题,符合题意;C、两直线平行,内错角相等,故原命题为假命题,不符合题意;D、三角形的重心是这个三角形的三条中线的交点,故原命题为假命题,不符合题意;故选:B.5、【答案】C由图可得6045B F ∠=︒∠=︒,,∵//BC EF ,∴45FDB F ∠=∠=︒,∴180180456075BMD FDB B ∠=︒-∠-∠=︒-︒-︒=︒,故选:C.6、【答案】C解:∵12//l l ,∴34∠=∠(两直线平行,同位角相等).故选C .7、【答案】B解:如图,1=55∠︒ ,3=55,∴∠︒∵a ∥b ,∠3=55°,∴∠2=∠3=55°.故选B.8、【答案】B解://AB CD 130ABC DCB ∴∠=∠=︒1305575ECD DCB BCE ∴∠=∠-∠=︒-︒=︒//EF CD 180ECD CEF ∴∠+∠=︒18075105CEF ∴∠=︒-︒=︒故答案是:B.9、【答案】D首先根据三角尺的直角被直线m 平分,∴∠6=∠7=45°;A 、∵∠1=60°,∠6=45°,∴∠8=180°-∠1-∠6=180-60°-45°=75°,m∥n ,∴∠2=∠8=75°结论正确,选项不合题意;B 、∵∠7=45°,m ∥n ,∴∠3=∠7=45°,结论正确,选项不合题意;C 、∵∠8=75°,∴∠4=180-∠8=180-75°=105°,结论正确,选项不合题意;D 、∵∠7=45°,∴∠5=180-∠7=180-45°=135°,结论错误,选项符合题意.故选:D.10、【答案】B 解:如图,∵//,140m n ∠=︒,∴∠4=∠1=40°,∵230∠=︒,∴34270∠=∠+∠=︒;故选B.11.(2021·四川广元市·中考真题)如图,在ABC 中,90ACB ∠=︒,4AC BC ==,点D 是BC 边的中点,点P 是AC 边上一个动点,连接PD ,以PD 为边在PD 的下方作等边三角形PDQ ,连接CQ .则CQ 的最小值是()A.2B.1D.3211、【答案】B解:以CD 为边作等边三角形CDE ,连接EQ ,如图所示:∵PDQ 是等边三角形,∴60,,CED PDQ CDE PD QD CD ED ∠=∠=∠=︒==,∵∠CDQ 是公共角,∴∠PDC =∠QDE ,∴△PCD ≌△QED (SAS ),∵90ACB ∠=︒,4AC BC ==,点D 是BC 边的中点,∴∠PCD =∠QED =90°,122CD DE CE BC ====,∴点Q 是在QE 所在直线上运动,∴当CQ ⊥QE 时,CQ 取的最小值,∴9030QEC CED ∠=︒-∠=︒,∴112CQ CE ==;故选B.12、【答案】BA .证法1给出的证明过程是完整正确的,不需要分情况讨论,故A 不符合题意;B .证法1给出的证明过程是完整正确的,不需要分情况讨论,故选项B 符合题意;C .证法2用量角器度量两个内角和外角,只能验证该定理的正确性,用特殊到一般法证明了该定理缺少理论证明过程,故选项C 不符合题意;D .证法2只要测量够一百个三角形进行验证,验证的正确性更高,就能证明该定理还需用理论证明,故选项D 不符合题意.故选择:.B 13、【答案】D解:∵∠ACB =90°,AC =8,BC =6,∴AB∵△ADE 沿DE 翻折,使点A 与点B 重合,∴AE =BE ,AD =BD =12AB =5,设AE =x ,则CE =AC -AE =8-x ,BE =x ,在Rt △BCE 中∵BE 2=BC 2+CE 2,∴x 2=62+(8-x )2,解得x =254,∴CE =2584-=74,故选:D.14、【答案】B解:∵25B ∠=︒,50C ∠=︒,∴在Rt △BEC 中,由三角形内角和可得105BEC ∠=︒,∵35A ∠=︒,∴170BEC A ∠=∠-∠=︒;故选B.15、【答案】A如图,设AD 、BC 交于点H ,作HF AB ⊥于点F ,连接EF .延长AC 与BD 并交于点G.∵AD 是BAC ∠的平分线,HF AB ⊥,HC AC ⊥,∴HC =HF ,∴AF =AC .∴在CAE V 和FAE 中,AF AC CAE FAE AE AE =⎧⎪∠=∠⎨⎪=⎩,∴()CAE FAE SAS ≅ ,∴CE FE =,∠AEC =∠AEF =90°,∴C、E、F 三点共线,∴点E 为CF 中点.∵M 为BC 中点,∴ME 为CBF V 中位线,∴//ME AB ,故B 正确,不符合题意;∵在AGD △和ABD △中,90GAD BAD AD AD ADG ADB ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴()AGD ABD ASA ≅ ,∴12GD BD BG ==,即D 为BG 中点.∵在BCG 中,90BCG ∠=︒,∴12CD BG =,∴CD BD =,故C 正确,不符合题意;∵90HDM DHM ∠+∠=︒,90HCE CHE ∠+∠=︒,DHM CHE ∠=∠,∴HDM HCE ∠=∠.∵HF AB ⊥,//ME AB ,∴HF ME ⊥,∴90HEM EHF ∠+∠=︒.∵AD 是BAC ∠的平分线,∴EHC EHF ∠=∠.∵90EHC HCE ∠+∠=︒,∴HCE HEM ∠=∠,∴HDM HEM ∠=∠,∴MD ME =,故D 正确,不符合题意;∵假设2CD ME =,∴2CD MD =,∴在Rt CDM 中,30DCM ∠=︒.∵无法确定DCM ∠的大小,故原假设不一定成立,故A 错误,符合题意.故选A.16、【答案】B选项A,添加ABC DCB ∠=∠,在ABC 和DCB 中,ABC DCB BC CB ACB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴ABC ≌DCB (ASA),选项B,添加 AB DC =,在ABC 和DCB 中, AB DC =,BC CB =,ACB DBC ∠=∠,无法证明ABC ≌DCB ;选项C,添加AC DB =,在ABC 和DCB 中,BC CB ACB DBC AC DB =⎧⎪∠=∠⎨⎪=⎩,∴ABC ≌DCB (SAS);选项D,添加A D ∠=∠,在ABC 和DCB 中,A D ACB DBC BC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ABC ≌DCB (AAS);综上,只有选项B 符合题意.故选B.17、【答案】D解:∵90,4,3ACB AC BC ∠=︒==,∴AB ==由折叠性质得:∠DAE=∠DFE ,AD=DF ,则BD =5﹣AD ,∵FD 平分EFB ∠,∴∠BFD =∠DFE=∠DAE ,∵∠DAE +∠B =90°,∴∠BDF +∠B =90°,即∠BDF =90°,∴Rt△ABC ∽Rt△FBD ,∴BD BC DF AC =即534AD AD -=,解得:AD =205,故选:D.18、【答案】D解:由题意可知:AC =AB ∵()8,0A,()2,0C -∴OA =8,OC =2∴AC =AB =10在Rt △OAB 中,6OB ===∴B (0,6)故选:D19、【答案】C解: BF =EC ,BC EF∴=A.添加一个条件AB =DE ,又,BC EF B E =∠=∠ ()ABC DEF SAS ∴△≌△故A 不符合题意;B.添加一个条件∠A =∠D 又,BC EF B E =∠=∠ ()ABC DEF AAS ∴≌故B 不符合题意;C.添加一个条件AC =DF ,不能判断△ABC ≌△DEF ,故C 符合题意;D.添加一个条件AC ∥FD ACB EFD ∴∠=∠又,BC EF B E =∠=∠ ()ABC DEF ASA ∴≌故D 不符合题意,故选:C.20、【答案】B解:如图:分情况讨论:①AB 为等腰直角△ABC 底边时,符合条件的C 点有0个;②AB 为等腰直角△ABC 其中的一条腰时,符合条件的C 点有3个.故共有3个点,故选:B.21、【答案】C解:因为AD 垂直BC ,则△ABD 和△ACD 都是直角三角形,又因为45,60,B C ∠=︒∠=︒所以AD =BD =,因为sin∠C =32AD AC =,所以AC =2,因为EF 为△ABC 的中位线,所以EF =2AC =1,故选:C.22、【答案】A如图,过点D 作DE⊥BC 于点E.∵∠A=90°,∴AD⊥AB.∴AD=DE=3.又∵BC=5,∴S △BCD =12BC•DE=12×5×3=7.5.故选A.23、【答案】B 解:∵AD ⊥EF ,∠A =20°,∴∠ABD =180°﹣∠A ﹣∠ABD =180°﹣20°﹣90°=70°,∵EF ∥GH ,∴∠ACH =∠ABD =70°,∴∠ACG =180°﹣∠ACH =180°﹣70°=110°,故选:B .24、【答案】A解:如图所示,∠1和∠2两个角都在两被截直线直线b 和a 同侧,并且在第三条直线c(截线)的同旁,故∠1和∠2是直线b、a 被c 所截而成的同位角.故选:A.25、【答案】A解:由三角板的特点可知∠ACB=45°、∠DEF=30°∵//EF BC ∴∠CEF=∠ACB=45°,∴∠CED=∠CEF-∠DEF=45°-30°=15°.故答案为A.26、【答案】B解:如图,设AD 与BC 交于点F ,∵BC ∥DE ,∴∠CFA =∠D =90°,∵∠CFA =∠B +∠BAD =60°+∠BAD ,∴∠BAD =30°故选:B .27、【答案】D解:由作法得EF 垂直平分AB ,∴MB =MA ,∴BM +MD =MA +MD ,连接MA 、DA ,如图,∵MA +MD ≥AD (当且仅当M 点在AD 上时取等号),∴MA +MD 的最小值为AD ,∵AB =AC ,D 点为BC 的中点,∴AD ⊥BC ,∵110,2ABC S BC AD == ∴1025,4AD ⨯==∴BM +MD 长度的最小值为5.故选:D .28、【答案】D解:在ABC 中,90,40ACB ABC ︒︒∠=∠=,∴∠CAB=50°,由旋转的性质,则40ABA '∠=︒,AB A B '=,∴1(18040)702BAA '∠=⨯︒-︒=︒,∴''50+70=120CAA CAB BAA ∠=∠+∠=︒︒︒;故选:D.29、【答案】A解:如图,过点C 作CK⊥l 于点K,过点A 作AH⊥BC 于点H,在Rt△AHB在Rt△AHC==,∵点D 为BC 中点,∴BD=CD,在△BFD 与△CKD 中,90BFD CKD BDF CDK BD CD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△BFD≌△CKD(AAS),∴BF=CK,延长AE,过点C 作CN⊥AE 于点N,可得AE+BF=AE+CK=AE+EN=AN,在Rt△ACN 中,AN<AC,当直线l⊥AC,综上所述,AE+BF.故选:A.30、【答案】A解:如图,连接FC ,∵点O 是AC 的中点,由作法可知,OE 垂直平分AC ,∴AF =FC.∵AD ∥BC ,∴∠FAO =∠BCO .在△FOA 与△BOC 中,FAO BCO OA OC AOF COB ∠∠⎧⎪⎨⎪∠∠⎩===,∴△FOA ≌△BOC (ASA ),∴AF =BC =6,∴FC =AF =6,FD =AD -AF =8-6=2.在△FDC 中,∵∠D =90°,∴CD 2+DF 2=FC 2,∴CD 2+22=62,∴CD =42.故选:A .31、【答案】D过点C 作CE⊥AD 于点E,则CE//AB,45PCE BPC ∴∠=∠=︒180754560DPC ∠=︒-︒-︒=︒ ,且PD=PC,PCD ∴ 为等边三角形,CD PD a ∴==,60PCD CDP ∠=∠=︒,45PCE ∠=︒ ,604515DCE DCP PCE ∴∠=∠-∠=︒-︒=︒,75APD =︒∠ ,90DAP ∠=︒,∴907515PDA ∠=︒-︒=︒,∴15DCE PDA ∠=∠=︒,∴601575CDE PDC PDA ∠=∠+∠=︒+︒=︒,APD CDE ∴∠=∠,在Rt APD 和Rt CDE △中,DCE PDA CD PD CDE DPA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴Rt APD ≌Rt CDE △,CE DA c ==,故选:D.32、【答案】D(1)当70︒的内角为这个等腰三角形的顶角则另外两个内角均为底角,它们的度数为18070552︒-︒=︒(2)当70︒的内角为这个等腰三角形的底角,则另两个内角一个为底角,一个为顶角底角为70︒,顶角为180707040︒-︒-︒=︒综上,另外两个内角的度数分别是55,55︒︒或70,40︒︒故选:D.33、【答案】C解:∵∠BAC=∠EAD∴∠BAC+∠CAD=∠EAD+∠CAD,即∠BAD=∠CAE在△BAD 和△CAE 中AB=AC,∠BAD=∠CAE,AD=AE∴△BAD≌△CAE∴BD=CE 故①正确;∵△BAD≌△CAE∴∠ABF=∠ACF∵∠ABF+∠BGA=90°、∠BGA=∠CGF∴∠ACF+∠BGA=90°,∴∠BFC=90°故②正确;分别过A 作AM⊥BD、AN⊥CE 垂足分别为M、N∵△BAD≌△CAE∴S △BAD =S △CAE ,∴1122BD AM CE AN ⋅=⋅∵BD=CE∴AM=AN∴AF 平分∠BFE,无法证明AF平分∠CAD.故③错误;∵AF 平分∠BFE,BF CF ⊥∴45AFE ∠=︒故④正确.故答案为C.34、【答案】C∵,ABC ECD ∆∆都是等边三角形,∴BC AC =,CE CD =,60BCA DCE ∠=∠=︒,∴+BCA ACE DCE ACE ∠∠=∠+∠,∴BCE ACD ∠=∠,在BCE 和ACD △中,BC AC BCE ACD CE CD ⎧=⎪∠=∠⎨⎪=⎩,∴()△△BCE ACD SAS ≅,∴BE AD =,CBM ACN ∠=∠,又∵11,33BM BE AN AD ==,∴BM AN =,在BCM 和ACN △中,BM AN CBM ACN BC AC ⎧=⎪∠=∠⎨⎪=⎩,∴()△△BCM ACN SAS ≅,∴BCM ACN ∠=∠,MC NC =,∴+60BCM ACM ACN ACM ∠∠=∠+∠=︒,∴CMN ∆是等边三角形.故答案选C.35、【答案】A根据题意可知,直线CD 经过ABC ∆的AB 边上的中点,直线AD 经过ABC ∆的BC 边上的中点,∴点D 是ABC ∆重心.故选A.36、【答案】B解:连接AC 并延长交EF 于点M.AB CF ,31∴∠=∠,AD CE ,24∴∠=∠,3412BAD FCE ∴∠=∠+∠=∠+∠=∠,180180805050FCE E F ∠=︒-∠-∠=︒-︒-︒=︒ ,50BAD FCE ∴∠=∠=︒,故选B.37、1解:∵地毯平均分成了33=,∴CD =在Rt ACD △中,根据勾股定理可得AD ==,根据裁剪可知1BD CE ==,∴1AB AD BD =-=-1-.38、【答案】减少10解:∵∠A +∠B =50°+60°=110°,∴∠ACB =180°-110°=70°,∴∠DCE =70°,如图,连接CF 并延长,∴∠DFM =∠D +∠DCF =20°+∠DCF ,∠EFM =∠E +∠ECF =30°+∠ECF ,∴∠EFD =∠DFM +∠EFM =20°+∠DCF+30°+∠ECF=50°+∠DCE=50°+70°=120°,要使∠EFD =110°,则∠EFD 减少了10°,若只调整∠D 的大小,由∠EFD =∠DFM +∠EFM =∠D +∠DCF +∠E +∠ECF =∠D +∠E +∠ECD =∠D +30°+70°=∠D +100°,因此应将∠D 减少10度;故答案为:①减少;②10.39、【答案】40°解:在△DEF 中,∠1=50°,∠DEF=90°,∴∠D=180°-∠DEF-∠1=40°.∵AB∥CD,∴∠2=∠D=40°.故答案为40°.40、【答案】12:15:10解:∵在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别为点D 和点E ,AD 与CE 交于点O ,∴BF ⊥AC ,∵AB =5,BC =4,AC =6,∴111222ABC S BC AD AB CE AC BF =⋅=⋅=⋅ ,∴5432ABC S AD CE BF === ,∴CE :AD :BF =12:15:10,故答案是:12:15:10.41、【答案】11802α︒-解:在△ABD 中,AB =BD ∴∠A =∠ADB =11(180)9022ABD ABD ︒-∠=︒-∠在△BCD 中,BC =BD ∴∠C =∠BDC =11(180)9022CBD CBD ︒-∠=︒-∠∵ABC ABD CBD α∠=∠+∠=∴ADC ADB CBD ∠=∠+∠=11909022ABD CBD ︒-∠+︒-∠=1180()2ABD CBD ︒-∠+∠=11802ABC ︒-∠=11802α︒-故答案为:11802α︒-.42、【答案】32解:连接ED BE 是ABC 的中线,ABE BCE S S ∴= ,AED EDCS S = 3BF FE = 3,3ABF BFD AFE FEDS S S S ∴== 设=,AEF EFD S x S y = ,33ABF BFD S x S y ∴== ,4,4,4ABE BEC BED S x S x S y ∴=== 44EDC BEC BED S S S x y∴=-=- ADE EDC S S = 44x y x y ∴+=-53x y ∴= ABD 与ADC 是等高三角形,53+33333833=516445325333ABD ADC y y S BD x y x y y S DC x y x y x y y y y ⨯++∴=====++--⨯- ,故答案为:32.43、【答案】15︒或75︒解:①当点P 在BC 的延长线上时,如图∵AB AC =,70B ∠=︒,∴70B ACB ∠=∠=︒∴40CAB ∠=︒∵以点C 为圆心,CA 长为半径作弧,交直线BC 于点P ,∴AC =PC ∴∠=∠P CAP∵70∠=∠+∠=︒ACB B CAP ∴35∠=∠= P CAP ∴403575∠=∠+∠=+= BAP BAC CAP ②当点P 在CB 的延长线上时,如图由①得70C ∠=︒,40CAB ∠=︒∵AC =PC ∴=55∠=∠P CAP ∴-55-4015∠=∠∠== BAP CAP BAC 故答案为:15︒或75︒44、【答案】4+解:∵把三角形纸片折叠,使点B 、点C 都与点A 重合,折痕分别为DE ,FG ,∴BE =AE ,AF =FC ,∠FAC =∠C =15°,∴∠AFE =30°,又AE =EF ,∴∠EAF =∠AFE =30°,∴∠AEB =60°,∴△ABE 是等边三角形,∠AED =∠BED =30°,∴∠BAE =60°,∵DE ,∴AE =BE =AB =cos30DE ︒=2,∴BF =BE +EF =4,∠BAF =60°+30°=90°,∴FC =AF =BC =BF +FC =4+4+.45、【答案】12.解:∵直线DE 垂直平分BC ,∴DB DC =,∴△ABD 的周长5712AB AD BD AB AD DC AB AC =++=++=+=+=,故答案为:12.46、【答案】12解:依题意画出图形,设芦苇长AB =AB '=x 尺,则水深AC =(x ﹣1)尺,因为B 'E =10尺,所以B 'C =5尺,在Rt△AB 'C 中,52+(x ﹣1)2=x 2,解之得x =13,即水深12尺,芦苇长13尺.故答案为:12.47、【答案】2解:取AD 的中点O,连接OM,过点M 作ME⊥BC 交BC 的延长线于E,点点O 作OF⊥BC 于F,交CD 于G,则OM+ME≥OF.∵∠AMD=90°,AD=4,OA=OD,∴OM=12AD=2,∵AB∥CD,∴∠GCF=∠B=60°,∴∠DGO=∠CGE=30°,∵AD=BC,∴∠DAB=∠B=60°,∴∠ADC=∠BCD=120°,∴∠DOG=30°=∠DGO,∴DG=DO=2,∵CD=4,∴CG=2,﹣2,∴当O,M,E 共线时,ME 的值最小,最小值为﹣2.48、【答案】12解:根据题意可知,AD 是∠BAC 的角平分线,∴∠BAD=∠FAD,∵AB=AF=5,AD=AD,∴△ABD≌△AFD,∴BD=FD,∴FD+DC=BD+DC=BC=9,∵FC=AC -AF=8-5=3,∴CDF ∆的周长为:FD+DC+FC=9+3=12;故答案为:12.49、【答案】13∵在ABC 中,分别以A、B 为圆心,大于1AB 2的长为半径画弧,两弧交于M,N,作直线MN,交BC 边于D,连接AD;∴MN 为AB 的垂直平分线,∴AD=BD,∴ACD 的周长为:AD+DC+AC=BC+AC=13;故答案为13.50、【答案】解:过C 作CF ⊥AB 交AD 于E ,则此时,CE +EF 的值最小,且CE +EF 的最小值为CF ,∵△ABC 为等边三角形,边长为6,∴BF =12AB =12⨯6=3,∴CF ,∴CE +EF 的最小值为.51、【答案】32由作图可得,MN 是线段AB 的垂直平分线,BD 是∠ABC 的平分线,∴AD=BD,1=2ABD CBD ABC ∠=∠∠∴A ABD ∠=∠∴A ABD CBD ∠=∠=∠∵+180A ABC C ∠∠+∠=︒,且84C ∠=︒,∴+2180A ABD C ∠∠=︒-∠,即318084A ∠=︒-︒,∴32A ∠=︒.故答案为:32.52、【答案】=设22a b +为定值k ,则222kc a b +==由“张爽弦图”可知,2222()()ab c a b k a b =--=--即2()2k a b ab --=要使ab 的值最大,则2()a b -需最小又2()0a b -≥ ∴当a b =时,2()a b -取得最小值,最小值为0则当a b =时,ab 取得最大值,最大值为2k 故答案为:=.53、【答案】PA 2+PB 2=2PC 2解:过点C 作CD⊥AB,交AB 于点D ∵△ACB 为等腰直角三角形,CD⊥AB,∴CD=AD=DB,∵PA 2=(AD-PD)2=(CD-PD)2=CD 2-2CD•PD+PD 2,PB 2=(BD+PD)2=(CD+PD)2=CD 2-2CD•PD+PD 2,∴PA 2+PB 2=2CD 2+2PD 2=2(CD 2+PD 2),在Rt△PCD 中,由勾股定理可得PC 2=CD 2+PD 2,∴PA 2+PB 2=2PC 2,故答案为PA 2+PB 2=2PC 2.54、【答案】12解:如图1,以CD 为边向外作等边三角形CDE,连接BE,∵CE=CD,CB=CA,∠ECD=∠BCA=60°,∴∠ECB=∠DCA,∴△ECB≌△DCA(SAS),∴BE=AD,∵DE=CD=6,BD=8,∴8-6<BE<8+6,∴2<BE<14,∴2<AD<14.∴则AD 的最大值与最小值的差为12.故答案为:1255、【答案】2013(1)由A 、B 两点的纵坐标相同可知:AB ∥x 轴,∴AB =12﹣(﹣8)=20;(2)过点C 作l ⊥AB 于点E ,连接AC ,作AC 的垂直平分线交直线l 于点D ,由(1)可知:CE =1﹣(﹣17)=18,AE =12,设CD =x ,∴AD =CD =x ,由勾股定理可知:x 2=(18﹣x )2+122,∴解得:x =13,∴CD =13.故答案为(1)20;(2)13.56、【答案】见解析证明:∵//AB CD ,∴DCF B ∠=∠.∵B D ∠=∠,∴DCF D ∠=∠.∴//AD BC .∴DEF F ∠=∠.57、【答案】(1)见解析;(2)35°解:(1) BE 平分ABC ∠,∴ABE EBC ∠=∠.DB DE =,∴ABE BED ∠=∠,∴BED EBC ∠=∠,∴//DE BC .(2) 65A ∠=︒,45AED ∠=︒,∴18070ADE A AED ∠=︒-∠-∠=︒.//DE BC .∴70ABC ADE ∠=∠=︒.BE 平分ABC ∠,∴1352EBC ABC ∠=∠=︒,即35EBC ∠=︒.58、【答案】见详解证明:∵90BAC ∠=︒,∴∠BAE +∠CAF =90°,∵BE ⊥AD ,CF ⊥AD ,∴∠BEA =∠AFC =90°,∴∠BAE +∠EBA =90°,∴∠CAF =∠EBA ,∵AB =AC ,∴△BAE ≌△ACF ,∴AF BE =.59、【答案】(1)50BDC ∠=︒;20ABE ∠=︒;(2)110BEC BDC ∠+∠=︒,见解析(1)80ABC ∠=︒ ,BD BC =,50BDC BCD ∴∠=∠=︒.在ABC 中,180A ABC ACB ∠+∠+∠=︒,40A ∠=︒ ,60ACB ∠=︒∴,CE BC = ,60EBC ∴∠=︒.20ABE ABC EBC ∴∠=∠-∠=︒.(2)BEC ∠,BDC ∠的关系:110BEC BDC ∠+∠=︒.理由如下:设BEC α∠=,BDC β∠=.在ABE △中,40A ABE ABE α=∠+∠=︒+∠,CE BC = ,CBE BEC α∴∠=∠=.2402ABC ABE CBE A ABE ABE ∴∠=∠+∠=∠+∠=︒+∠, 在BDC 中,BD BC =,2402180BDC BCD DBC ABE β∴∠+∠+∠=+︒+∠=︒.70ABE β︒∴=-∠.4070110ABE ABE αβ∴+=︒+∠+︒-∠=︒.110BEC BDC ∴∠+∠=︒.60、【答案】见解析证明:∵//BD AC ,∴EBD C ∠=∠.∵BD BC =,BE AC =,∴()EDB ABC SAS ≌.∴D ABC ∠=∠.61、【答案】见解析证明:点A ,B ,C ,D ,E 在一条直线上∵//,//AC DF BC EF ∴,A FDE ABC DEF∠=∠∠=∠在ABC 与DEF 中CAB FDE AB DE ABC DEF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ABC DEF ASA △≌△62、【答案】(1);(2)见解析;(3)存在,m =(1)解90,60ACB CAD ∠=∠=︒︒ ,2cos60AC AB AC ︒==,BD AC = ,AD AC =∴,ADC ∴ 是等边三角形,60ACD ∴∠=︒Р 是CD 的中点,AP CD ∴⊥,在Rt APC 中,3AP =,2sin 60AP AC ∴==︒,tan 6023BC AC =︒=∴.(2)证明:连结BE ,//DE AC ,CAP DEP ∴∠=∠,,CP DP CPA DPE =∠=∠ ,()CPA DPE AAS ∴ ≌,1,2AP EP AE DE AC ∴===,BD AC = ,BD DE ∴=,又//DE AC ,60BDE CAD ∴∠=∠=︒,BDE ∴ 是等边三角形,,60BD BE EBD ∴=∠=︒BD AC = ,AC BE ∴=,又60,CAB EBA AB BA ∠=∠=︒= ,()CAB EBA SAS ∴≌,AE BC ∴=,2BC AP ∴=.(3)存在这样的,2m m =.过点D 作//DE AC ,交AP 延长线于点E ,连接BE ,过C 作CG ⊥AB 于G ,过E 作EN ⊥AB 于N ,则45∠=∠=︒BDE CAD ,sin 45∴=⨯ CG AC ,sin 45=⨯ EN DE 由(2)得AE =2AP ,DE =AC ,∴CG =EN ,∵2BC AP =,∴AE =BC ,∵∠ANE =∠BGC =90°,≌∴ AEN BCG ,∴∠EAN =∠CBG∵AE =BC ,AB =BA ,∴≌ CAB EBA ∴AC =BE ,∴DE =BE ,∴∠EDB =∠EBD =45°,∴∠DEB =90°,∴2=BD AC ,∵BD mAC =∴2m =63、【答案】(1)证明见解析;(2)78°.证明:(1)在△BEF 和△CDA 中,1BE CD B BF CA =⎧⎪∠=∠⎨⎪=⎩,∴△BEF ≌△CDA (SAS ),∴∠D =∠2;(2)∵∠D =∠2,∠D =78°,∴∠D =∠2=78°,。
专题11.平行线与三角形一、单选题1.(2021·山东临沂市)如图,在//AB CD 中,40AEC ∠=︒,CB 平分DCE ∠,则ABC ∠的度数为( )A .10︒B .20︒C .30D .40︒【答案】B 【分析】根据平行线的性质得到∠ABC =∠BCD ,再根据角平分线的定义得到∠ABC =∠BCD ,再利用三角形外角的性质计算即可.【详解】解:∵AB ∥CD ,∴∠ABC =∠BCD ,∵CB 平分∠DCE ,∴∠BCE =∠BCD ,∴∠BCE =∠ABC , ∵∠AEC =∠BCE +∠ABC =40°,∴∠ABC =20°,故选B .【点睛】本题考查了平行线的性质,角平分线的定义和外角的性质,掌握平行线的性质:两直线平行,内错角相等是解题的关键.2.(2021·四川眉山市)如图,将直角三角板放置在矩形纸片上,若148∠=︒,则2∠的度数为( )A .42°B .48°C .52°D .60°【答案】A 【分析】先通过作辅助线,将∠1转化到∠BAC ,再利用直角三角形两锐角互余即可求出∠2.【详解】解:如图,延长该直角三角形一边,与该矩形纸片一边的交点记为点A ,由矩形对边平行,可得∠1=∠BAC ,因为BC ⊥AB ,∴∠BAC +∠2=90°,∴∠1+∠2=90°,因为∠1=48°,∴∠2=42°;故选:A .【点睛】本题考查了矩形的性质、平行线的性质、直角三角形的性质等内容,要求学生能根据题意理解其中的隐含关系,解决本题的关键是对角进行的转化,因此需要牢记并能灵活应用相关性质等.3.(2021·四川乐山市)七巧板起源于我国先秦时期,古算书《周髀算经》中有关于正方形的分割术,经历代演变而成七巧板,如图1所示.19世纪传到国外,被称为“唐图”(意为“来自中国的拼图”),图2是由边长为4的正方形分割制作的七巧板拼摆成的“叶问蹬”图.则图中抬起的“腿”(即阴影部分)的面积为()A.3 B.72C.2 D.52【答案】A【分析】根据由边长为4的正方形分割制作的七巧板,可得共5种图形,然后根据阴影部分的构成图形,计算阴影部分面积即可.【详解】解:如下图所示,由边长为4的正方形分割制作的七巧板,共有以下几种图形:○1腰长是2的等腰直角三角形,2,顶角分别是45和135的平行四边形,根据图2可知,图中抬起的“腿”的等腰直角三角形,和一个边长分别是2,顶角分别是45和135的平行四边形组成,如下图示,根据平行四边形的性质可知,顶角分别是45和135的平行四边形的高是DB,且DB=的等腰直角三角形的面积是:112=,顶角分别是45和1352=,∴阴影部分的面积为:123+=,故选:A.【点睛】本题考查了七巧板中的图形的构成和面积计算,熟悉七巧板中图形的分类是解题的关键.4.(2021·湖南岳阳市)下列命题是真命题的是()A.五边形的内角和是720︒B.三角形的任意两边之和大于第三边C.内错角相等D.三角形的重心是这个三角形的三条角平分线的交点【答案】B【分析】根据相关概念逐项分析即可.【详解】A、五边形的内角和是540︒,故原命题为假命题,不符合题意;B、三角形的任意两边之和大于第三边,原命题是真命题,符合题意;C、两直线平行,内错角相等,故原命题为假命题,不符合题意;D、三角形的重心是这个三角形的三条中线的交点,故原命题为假命题,不符合题意;故选:B.【点睛】本题考查命题判断,涉及多边形的内角和,三角形的三边关系,平行线的性质,以及三角形的重心等,熟记基本性质和定理是解题关键.5.(2021·安徽)两个直角三角板如图摆放,其中90BAC EDF ∠=∠=︒,45E ∠=︒,30C ∠=︒,AB 与DF 交于点M .若//BC EF ,则BMD ∠的大小为( )A .60︒B .67.5︒C .75︒D .82.5︒【答案】C 【分析】根据//BC EF ,可得45FDB F ∠=∠=︒,再根据三角形内角和即可得出答案.【详解】由图可得6045B F ∠=︒∠=︒,,∵//BC EF ,∴45FDB F ∠=∠=︒, ∴180180456075BMD FDB B ∠=︒-∠-∠=︒-︒-︒=︒,故选:C .【点睛】本题考查了平行线的性质和三角形的内角和,掌握平行线的性质和三角形的内角和是解题的关键. 6.(2021·浙江金华市)某同学的作业如下框,其中※处填的依据是( )A .两直线平行,内错角相等B .内错角相等,两直线平行C .两直线平行,同位角相等D .两直线平行,同旁内角互补 【答案】C【分析】首先准确分析题目,已知12//l l ,结论是34∠=∠,所以应用的是平行线的性质定理,从图中得知∠3和∠4是同位角关系,即可选出答案.【详解】解:∵12//l l ,∴34∠=∠(两直线平行,同位角相等).故选C .【点睛】本题主要考查了平行线的性质的应用,解题的关键是理解平行线之间内错角的位置,从而准确地选择出平行线的性质定理.7.(2021·云南)如图,直线c 与直线a 、b 都相交.若//a b ,155∠=︒,则2∠=( )A .60︒B .55︒C .50︒D .45︒【答案】B 【分析】直接利用平行线的性质:两直线平行,同位角相等,即可得出答案.【详解】解:如图,1=55∠︒,3=55,∴∠︒ ∵a ∥b ,∠3=55°,∴∠2=∠3=55°.故选B .【点睛】此题主要考查了平行线的性质,正确掌握平行线的基本性质是解题关键.8.(2021·山东)如图,AB ∥CD ∥EF ,若∠ABC =130°,∠BCE =55°,则∠CEF 的度数为( )A .95°B .105°C .110°D .115°【答案】B 【分析】由//AB CD 平行的性质可知ABC DCB ∠=∠,再结合//EF CD 即可求解.【详解】解://AB CD 130ABC DCB ∴∠=∠=︒1305575ECD DCB BCE ∴∠=∠-∠=︒-︒=︒//EF CD 180ECD CEF ∴∠+∠=︒18075105CEF ∴∠=︒-︒=︒故答案是:B .【点睛】本题考查平行线的性质和角度求解,难度不大,属于基础题.解题的关键是掌握平行线的性质.9.(2021·山东泰安市)如图,直线//m n ,三角尺的直角顶点在直线m 上,且三角尺的直角被直线m 平分,若160∠=︒,则下列结论错误的是( )A .275∠=︒B .345∠=︒C .4105∠=︒D .5130∠=︒【答案】D 【分析】根据角平分线的定义求出∠6和∠7的度数,再利用平行线的性质以及三角形内角和求出∠3,∠8,∠2的度数,最后利用邻补角互补求出∠4和∠5的度数.【详解】首先根据三角尺的直角被直线m 平分,∴∠6=∠7=45°;A 、∵∠1=60°,∠6=45°,∴∠8=180°-∠1-∠6=180-60°-45°=75°,m ∥n ,∴∠2=∠8=75°结论正确,选项不合题意;B 、∵∠7=45°,m ∥n ,∴∠3=∠7=45°,结论正确,选项不合题意;C 、∵∠8=75°,∴∠4=180-∠8=180-75°=105°,结论正确,选项不合题意;D 、∵∠7=45°,∴∠5=180-∠7=180-45°=135°,结论错误,选项符合题意.故选:D .【点睛】本题考查了角平分线的定义,平行线的性质,三角形内角和,邻补角互补,解答本题的关键是掌握平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补.10.(2021·四川资阳市)如图,已知直线//,140,230m n ∠=︒∠=︒,则3∠的度数为( )A .80︒B .70︒C .60︒D .50︒【答案】B 【分析】如图,由题意易得∠4=∠1=40°,然后根据三角形外角的性质可进行求解.【详解】解:如图,∵//,140m n ∠=︒,∴∠4=∠1=40°,∵230∠=︒,∴34270∠=∠+∠=︒;故选B .【点睛】本题主要考查平行线的性质及三角形外角的性质,熟练掌握平行线的性质及三角形外角的性质是解题的关键.11.(2021·四川广元市)如图,在ABC 中,90ACB ∠=︒,4AC BC ==,点D 是BC 边的中点,点P 是AC 边上一个动点,连接PD ,以PD 为边在PD 的下方作等边三角形PDQ ,连接CQ .则CQ 的最小值是( )A B .1 C D .32【答案】B【分析】以CD 为边作等边三角形CDE ,连接EQ ,由题意易得∠PDC =∠QDE ,PD =QD ,进而可得△PCD ≌△QED ,则有∠PCD =∠QED =90°,然后可得点Q 是在QE 所在直线上运动,所以CQ 的最小值为CQ ⊥QE 时,最后问题可求解.【详解】解:以CD 为边作等边三角形CDE ,连接EQ ,如图所示:∵PDQ 是等边三角形,∴60,,CED PDQ CDE PD QD CD ED ∠=∠=∠=︒==,∵∠CDQ 是公共角,∴∠PDC =∠QDE ,∴△PCD ≌△QED (SAS ),∵90ACB ∠=︒,4AC BC ==,点D 是BC 边的中点,∴∠PCD =∠QED =90°,122CD DE CE BC ====,∴点Q 是在QE 所在直线上运动, ∴当CQ ⊥QE 时,CQ 取的最小值,∴9030QEC CED ∠=︒-∠=︒,∴112CQ CE ==;故选B . 【点睛】本题主要考查等边三角形的性质、含30°直角三角形的性质及最短路径问题,熟练掌握等边三角形的性质、含30°直角三角形的性质及最短路径问题是解题的关键.12.(2021·河北)定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,ACD ∠是ABC 的外角.求证:ACD A B ∠=∠+∠.下列说法正确的是( )A .证法1还需证明其他形状的三角形,该定理的证明才完整B .证法1用严谨的推理证明了该定理C .证法2用特殊到一般法证明了该定理D .证法2只要测量够一百个三角形进行验证,就能证明该定理【答案】B【分析】根据三角形的内角和定理与平角的定义可判断A 与B ,利用理论与实践相结合可判断C 与D .【详解】解:A . 证法1给出的证明过程是完整正确的,不需要分情况讨论,故A 不符合题意;B . 证法1给出的证明过程是完整正确的,不需要分情况讨论,故选项B 符合题意;C . 证法2用量角器度量两个内角和外角,只能验证该定理的正确性,用特殊到一般法证明了该定理缺少理论证明过程,故选项C 不符合题意;D . 证法2只要测量够一百个三角形进行验证,验证的正确性更高,就能证明该定理还需用理论证明,故选项D 不符合题意.故选择:.B【点睛】本题考查三角形外角的证明问题,命题的正确性需要严密推理证明,三角形外角分三种情形,锐角、直角、和钝角,证明中应分类才严谨.13.(2021·四川凉山州)如图,ABC 中,90,8,6ACB AC BC ∠=︒==,将ADE 沿DE 翻折,使点A 与点B 重合,则CE 的长为( )A .198B .2C .254D .74【答案】D【分析】先在RtABC 中利用勾股定理计算出AB =10,再利用折叠的性质得到AE =BE ,AD =BD =5,设AE =x ,则CE =AC -AE =8-x ,BE =x ,在Rt △BCE 中根据勾股定理可得到x 2=62+(8-x )2,解得x ,可得CE .【详解】解:∵∠ACB =90°,AC =8,BC =6,∴AB ,∵△ADE 沿DE 翻折,使点A 与点B 重合,∴AE =BE ,AD =BD =12AB =5, 设AE =x ,则CE =AC -AE =8-x ,BE =x ,在Rt △BCE 中∵BE 2=BC 2+CE 2,∴x 2=62+(8-x )2,解得x =254,∴CE =2584-=74,故选:D . 【点睛】本题考查了折叠的性质:折叠前后两图象全等,即对应角相等,对应边相等.也考查了勾股定理. 14.(2021·陕西)如图,点D 、E 分别在线段BC 、AC 上,连接AD 、BE .若35A ∠=︒,25B ∠=︒,50C ∠=︒,则1∠的大小为( )A .60°B .70°C .75°D .85°【答案】B 【分析】由题意易得105BEC ∠=︒,然后根据三角形外角的性质可进行求解.【详解】解:∵25B ∠=︒,50C ∠=︒,∴在Rt △BEC 中,由三角形内角和可得105BEC ∠=︒,∵35A ∠=︒,∴170BEC A ∠=∠-∠=︒;故选B .【点睛】本题主要考查三角形内角和及外角的性质,熟练掌握三角形内角和及外角的性质是解题的关键. 15.(2021·安徽)在△ABC 中,90ACB ∠=︒,分别过点B ,C 作BAC ∠平分线的垂线,垂足分别为点D ,E ,BC 的中点是M ,连接CD ,MD ,ME .则下列结论错误的是( )A .2CD ME =B .//ME ABC .BD CD = D .ME MD = 【答案】A【分析】设AD 、BC 交于点H ,作HF AB ⊥于点F ,连接EF .延长AC 与BD 并交于点G .由题意易证△CAE ≌△FAE ,从而证明ME 为△CBF 中位线,即//ME AB ,故判断B 正确;又易证△AGD ≌△ABD ,从而证明D 为BG 中点.即利用直角三角形斜边中线等于斜边一半即可求出CD BD =,故判断C 正确;由90HDM DHM ∠+∠=︒、90HCE CHE ∠+∠=︒和DHM CHE ∠=∠可证明HDM HCE ∠=∠.再由90HEM EHF ∠+∠=︒、EHC EHF ∠=∠和90EHC HCE ∠+∠=︒可推出 HCE HEM ∠=∠,即推出HDM HEM ∠=∠,即MD ME =,故判断D 正确;假设2CD ME =,可推出2CD MD =,即可推出30DCM ∠=︒.由于无法确定DCM ∠的大小,故2CD ME =不一定成立,故可判断A 错误.【详解】如图,设AD 、BC 交于点H ,作HF AB ⊥于点F ,连接EF .延长AC 与BD 并交于点G .∵AD 是BAC ∠的平分线,HF AB ⊥,HC AC ⊥,∴HC =HF ,∴AF =AC .∴在△CAE 和△FAE 中,AF AC CAE FAE AE AE =⎧⎪∠=∠⎨⎪=⎩,∴△CAE ≌△FAE ,∴CE FE =,∠AEC =∠AEF =90°,∴C 、E 、F 三点共线,∴点E 为CF 中点.∵M 为BC 中点,∴ME 为△CBF 中位线,∴//ME AB ,故B 正确,不符合题意;∵在AGD △和ABD △中,90GAD BAD AD AD ADG ADB ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴△AGD ≌△ABD , ∴12GD BD BG ==,即D 为BG 中点.∵在BCG 中,90BCG ∠=︒,∴12CD BG =, ∴CD BD =,故C 正确,不符合题意;∵90HDM DHM ∠+∠=︒,90HCE CHE ∠+∠=︒,DHM CHE ∠=∠,∴HDM HCE ∠=∠. ∵HF AB ⊥,//ME AB ,∴HF ME ⊥,∴90HEM EHF ∠+∠=︒.∵AD 是BAC ∠的平分线,∴EHC EHF ∠=∠.∵90EHC HCE ∠+∠=︒, ∴HCE HEM ∠=∠, ∴HDM HEM ∠=∠,∴MD ME =,故D 正确,不符合题意;∵假设2CD ME =,∴2CD MD =,∴在Rt △CDM 中,30DCM ∠=︒.∵无法确定DCM ∠的大小,故原假设不一定成立,故A 错误,符合题意.故选A .【点睛】本题考查角平分线的性质,三角形全等的判定和性质,直角三角形的性质,三角形中位线的判定和性质以及含30角的直角三角形的性质等知识,较难.正确的作出辅助线是解答本题的关键. 16.(2021·重庆)如图,在△ABC 和△DCB 中,ACB DBC ∠=∠ ,添加一个条件,不能..证明和△ABC 和△DCB 全等的是( )A .ABC DCB ∠=∠ B .AB DC = C .AC DB =D .A D ∠=∠【答案】B【分析】根据已知条件和添加条件,结合全等三角形的判断方法即可解答.【详解】选项A ,添加ABC DCB ∠=∠,在△ABC 和△DCB 中,ABC DCB BC CB ACB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△DCB (ASA ),选项B ,添加 AB DC =,在△ABC 和△DCB 中, AB DC =,BC CB =,ACB DBC ∠=∠,无法证明△ABC ≌△DCB ;选项C ,添加AC DB =,在ABC 和DCB 中,BC CB ACB DBC AC DB =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DCB (SAS );选项D ,添加A D ∠=∠,在ABC 和DCB 中,A D ACB DBC BC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DCB (AAS );综上,只有选项B 符合题意.故选B .【点睛】本题考查了全等三角形的判定方法,熟知全等三角形的判定方法是解决问题的关键. 17.(2021·浙江丽水市)如图,在Rt ABC △纸片中,90,4,3ACB AC BC ∠=︒==,点,D E 分别在,AB AC 上,连结DE ,将△ADE 沿DE 翻折,使点A 的对应点F 落在BC 的延长线上,若FD 平分EFB ∠,则AD 的长为( )A .259B .258C .157D .207【答案】D【分析】先根据勾股定理求出AB ,再根据折叠性质得出∠DAE=∠DFE ,AD=DF ,然后根据角平分线的定义证得∠BFD=∠DFE =∠DAE ,进而证得∠BDF=90°,证明Rt △ABC ∽Rt △FBD ,可求得AD 的长.【详解】解:∵90,4,3ACB AC BC ∠=︒==,∴AB ==,由折叠性质得:∠DAE=∠DFE ,AD=DF ,则BD =5﹣AD ,∵FD 平分EFB ∠,∴∠BFD =∠DFE=∠DAE ,∵∠DAE +∠B =90°,∴∠BDF +∠B =90°,即∠BDF =90°,∴Rt △ABC ∽Rt △FBD ,∴BD BC DF AC =即534AD AD -=,解得:AD =205,故选:D . 【点睛】本题考查折叠性质、角平分线的定义、勾股定理、相似三角形的判定与性质、三角形的内角和定理,熟练掌握折叠性质和相似三角形的判定与性质是解答的关键.18.(2021·四川自贡市)如图,()8,0A,()2,0C -,以点A 为圆心,AC 长为半径画弧,交y 轴正半轴于点B ,则点B 的坐标为( )A .()0,5B .()5,0C .()6,0D .()0,6【答案】D 【分析】先根据题意得出OA =8,OC =2,再根据勾股定理计算即可【详解】解:由题意可知:AC =AB ∵()8,0A,()2,0C -∴OA =8,OC =2∴AC =AB =10在Rt △OAB 中,6OB ==∴B (0,6)故选:D【点睛】本题考查勾股定理、正确写出点的坐标,圆的半径相等、熟练进行勾股定理的计算是关键 19.(2021·重庆)如图,点B ,F ,C ,E 共线,∠B =∠E ,BF =EC ,添加一个条件,不等判断△ABC ≌△DEF 的是( )A .AB =DEB .∠A =∠DC .AC =DFD .AC ∥FD【答案】C 【分析】根据全等三角形的判定与性质逐一分析即可解题. 【详解】解:BF =EC ,BC EF ∴=A. 添加一个条件AB =DE ,又,BC EF B E =∠=∠()ABC DEF SAS ∴△≌△ 故A 不符合题意;B. 添加一个条件∠A =∠D ,又,BC EF B E =∠=∠,∴△ABC ≌△DEF (AAS ),故B 不符合题意;C. 添加一个条件AC =DF ,不能判断△ABC ≌△DEF ,故C 符合题意;D. 添加一个条件AC ∥FD , ACB EFD ∴∠=∠,又,BC EF B E =∠=∠,△ABC ≌△DEF (ASA ),故D 不符合题意,故选:C .【点睛】本题考查添加条件使得三角形全等即全等三角形的判定,是重要考点,难度较易,掌握相关知识是解题关键.20.(2021·江苏扬州市)如图,在44⨯的正方形网格中有两个格点A 、B ,连接AB ,在网格中再找一个格点C ,使得ABC 是等腰直角....三角形,满足条件的格点C 的个数是( )A .2B .3C .4D .5【答案】B 【分析】根据题意,结合图形,分两种情况讨论:①AB 为等腰直角△ABC 底边;②AB 为等腰直角△ABC 其中的一条腰.【详解】解:如图:分情况讨论:①AB 为等腰直角△ABC 底边时,符合条件的C 点有0个;②AB 为等腰直角△ABC 其中的一条腰时,符合条件的C 点有3个.故共有3个点,故选:B .【点睛】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,数形结合的思想是数学解题中很重要的解题思想.21.(2021·浙江宁波市)如图,在△ABC 中,45,60,B C AD BC ∠=︒∠=︒⊥于点D ,BD =.若E ,F 分别为AB ,BC 的中点,则EF 的长为( )A B C .1 D 【答案】C【分析】根据条件可知△ABD 为等腰直角三角形,则BD =AD ,△ADC 是30°、60°的直角三角形,可求出AC 长,再根据中位线定理可知EF =2AC . 【详解】解:因为AD 垂直BC ,则△ABD 和△ACD 都是直角三角形,又因为45,60,B C ∠=︒∠=︒所以AD =BD =,因为sin ∠C =2AD AC =,所以AC =2, 因为EF 为△ABC 的中位线,所以EF =2AC =1,故选:C . 【点睛】本题主要考查了等腰直角三角形、锐角三角形函数值、中位线相关知识,根据条件分析利用定理推导,是解决问题的关键.22.(2021·青海)如图,在四边形ABCD 中,∠A=90°,AD=3,BC=5,对角线BD 平分∠ABC ,则△BCD 的面积为( )A .7.5B .8C .15D .无法确定【答案】A 【详解】如图,过点D 作DE ⊥BC 于点E .∵∠A=90°,∴AD ⊥AB .∴AD=DE=3.又∵BC=5,∴S △BCD =12BC•DE=12×5×3=7.5.故选A . 考点:角平分线的性质;全等三角形的判定与性质.二、填空题 1.(2021·浙江)由沈康身教授所著,数学家吴文俊作序的《数学的魅力》一书中记载了这样一个故事:如图,三姐妹为了平分一块边长为1的祖传正方形地毯,先将地毯分割成七块,再拼成三个小正方形(阴影部分).则图中AB 的长应是______.1【分析】据裁剪和拼接的线段关系可知CD =,1BD CE ==,在Rt ACD △中应用勾股定理即可求解.【详解】解:∵地毯平均分成了3=CD =在Rt ACD △中,根据勾股定理可得AD =,根据裁剪可知1BD CE ==,∴1AB AD BD =-=1.【点睛】本题考查勾股定理,根据裁剪找出对应面积和线段的关系是解题的关键.2.(2021·河北)下图是可调躺椅示意图(数据如图),AE 与BD 的交点为C ,且A ∠,B ,E ∠保持不变.为了舒适,需调整D ∠的大小,使110EFD ∠=︒,则图中D ∠应___________(填“增加”或“减少”)___________度.【答案】减少 10【分析】先通过作辅助线利用三角形外角的性质得到∠EDF 与∠D 、∠E 、∠DCE 之间的关系,进行计算即可判断.【详解】解:∵∠A +∠B =50°+60°=110°,∴∠ACB =180°-110°=70°,∴∠DCE =70°,如图,连接CF 并延长,∴∠DFM =∠D +∠DCF =20°+∠DCF ,∠EFM =∠E +∠ECF =30°+∠ECF , ∴∠EFD =∠DFM +∠EFM =20°+∠DCF+30°+∠ECF=50°+∠DCE=50°+70°=120°,要使∠EFD =110°,则∠EFD 减少了10°,若只调整∠D 的大小,由∠EFD =∠DFM +∠EFM =∠D +∠DCF +∠E +∠ECF =∠D +∠E +∠ECD =∠D +30°+70°=∠ D +100°,因此应将∠D 减少10度;故答案为:①减少;②10.【点睛】本题考查了三角形外角的性质,同时涉及到了三角形的内角和与对顶角相等的知识;解决本题的关键是理解题意,读懂图形,找出图形中各角之间的关系以及牢记公式建立等式求出所需的角,本题蕴含了数形结合的思想方法.3.(2021·青海)如图,AB ∥CD ,FE ⊥DB ,垂足为E ,∠1=50°,则∠2的度数是_____.【答案】40°【分析】由EF ⊥BD ,∠1=50°,结合三角形内角和为180°,即可求出∠D 的度数,再由“两直线平行,同位角相等”即可得出结论.【详解】解:在△DEF 中,∠1=50°,∠DEF=90°,∴∠D=180°-∠DEF-∠1=40°.∵AB ∥CD ,∴∠2=∠D=40°.故答案为40°.【点睛】本题考查平行线的性质以及三角形内角和为180°,解题关键是求出∠D=40°.解决该题型题目时,根据平行线的性质,找出相等或互补的角是解题技巧.4.(2021·山东聊城市)如图,在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别为点D 和点E ,AD 与CE 交于点O ,连接BO 并延长交AC 于点F ,若AB =5,BC =4,AC =6,则CE :AD :BF 值为____________.【答案】12:15:10【分析】由题意得:BF ⊥AC ,再根据三角形的面积公式,可得5432ABC SAD CE BF ===,进而即可得到答案.【详解】解:∵在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别为点D 和点E ,AD 与CE 交于点O ,∴BF ⊥AC ,∵AB =5,BC =4,AC =6,∴111222ABC SBC AD AB CE AC BF =⋅=⋅=⋅, ∴5432ABC S AD CE BF ===,∴CE :AD :BF =12:15:10,故答案是:12:15:10. 【点睛】本题主要考查三角形的高,掌握“三角形的三条高交于一点”是解题的关键.5.(2021·江苏南京市)如图,在四边形ABCD 中,AB BC BD ==.设ABC α∠=,则ADC ∠=______(用含α的代数式表示).【答案】11802α︒- 【分析】由等腰的性质可得:∠ADB =1902ABD ︒-∠,∠BDC =1902CBD ︒-∠,两角相加即可得到结论. 【详解】解:在△ABD 中,AB =BD ∴∠A =∠ADB =11(180)9022ABD ABD ︒-∠=︒-∠ 在△BCD 中,BC =BD ∴∠C =∠BDC =11(180)9022CBD CBD ︒-∠=︒-∠ ∵ABC ABD CBD α∠=∠+∠= ∴ADC ADB CBD ∠=∠+∠ =11909022ABD CBD ︒-∠+︒-∠ =1180()2ABD CBD ︒-∠+∠=11802ABC ︒-∠=11802α︒-故答案为:11802α︒-. 【点睛】此题主要考查了等腰三角形的性质和三角形内角和定理,分别求出∠ADB=1902ABD ︒-∠,∠BDC=1902CBD ︒-∠是解答本题的关键. 6.(2021·江苏连云港市)如图,BE 是ABC 的中线,点F 在BE 上,延长AF 交BC 于点D .若3BF FE =,则BD DC=______.【答案】32【分析】连接ED ,由BE 是ABC 的中线,得到BE BCE S S =△A △,AED EDC S S =,由3BF FE =,得到3,3ABF BFD AFEFEDS S SS ==,设=,AEF EFDSx Sy =,由面积的等量关系解得53x y =,最后根据等高三角形的性质解得ABD ADCS BDSDC=,据此解题即可. 【详解】解:连接EDBE 是ABC 的中线,ABEBCESS∴=,AEDEDCSS=3BF FE =3,3ABF BFD AFEFEDS S SS∴==设=,AEFEFDSx Sy =,33ABFBFDSx Sy ∴==,4,4,4ABE BECBEDSx Sx Sy ∴===44EDCBECBEDSSSx y ∴=-=-ADEEDCSS=44x y x y ∴+=-53x y∴=ABD 与ADC 是等高三角形,53+33333833=516445325333ABD ADCy yS BD x y x y y SDC x y x y x y y y y ⨯++∴=====++--⨯-,故答案为:32. 【点睛】本题考查三角形的中线、三角形面积等知识,是重要考点,难度一般,掌握相关知识是解题关键.7.(2021·浙江绍兴市)如图,在ABC 中,AB AC =,70B ∠=︒,以点C 为圆心,CA 长为半径作弧,交直线BC 于点P ,连结AP ,则BAP ∠的度数是_______.【答案】15︒或75︒【分析】分①点P 在BC 的延长线上,②点P 在CB 的延长线上两种情况,再利用等腰三角形的性质即可得出答案.【详解】解:①当点P 在BC 的延长线上时,如图∵AB AC =,70B ∠=︒,∴70B ACB ∠=∠=︒∴40CAB ∠=︒∵以点C 为圆心,CA 长为半径作弧,交直线BC 于点P ,∴AC =PC ∴∠=∠P CAP∵70∠=∠+∠=︒ACB B CAP ∴35∠=∠=P CAP ∴403575∠=∠+∠=+=BAP BAC CAP②当点P 在CB 的延长线上时,如图由①得70C ∠=︒,40CAB ∠=︒∵AC =PC ∴=55∠=∠P CAP ∴-55-4015∠=∠∠==BAP CAP BAC 故答案为:15︒或75︒【点睛】本题主要考查了等腰三角形的性质,分类讨论不重不漏是解题的关键.8.(2021·四川广安市)如图,将三角形纸片ABC 折叠,使点B 、C 都与点A 重合,折痕分别为DE 、FG .已知15ACB ∠=︒,AE EF =,DE =BC 的长为_______.【答案】4+【分析】由折叠的性质得出BE =AE ,AF =FC ,∠F AC =∠C =15°,得出∠AFE =30°,由等腰三角形的性质得出∠EAF =∠AFE =30°,证出△ABE 是等边三角形,得出∠BAE =60°,求出AE =BE =2,证出∠BAF =90°,利用勾股定理求出AF ,即CF ,可得BC .【详解】解:∵把三角形纸片折叠,使点B 、点C 都与点A 重合,折痕分别为DE ,FG , ∴BE =AE ,AF =FC ,∠F AC =∠C =15°,∴∠AFE =30°,又AE =EF ,∴∠EAF =∠AFE =30°,∴∠AEB =60°,∴△ABE 是等边三角形,∠AED =∠BED =30°,∴∠BAE =60°,∵DE AE =BE =AB =cos30DE︒=2,∴BF =BE +EF =4,∠BAF =60°+30°=90°,∴FC =AF =BC =BF +FC =4+,故答案为:4+.【点睛】此题考查了翻折变换的性质、等腰三角形的性质、等边三角形的判定与性质、直角三角形的性质;根据折叠的性质得出相等的边和角是解题关键.9.(2021·四川遂宁市)如图,在△ABC 中,AB =5,AC =7,直线DE 垂直平分BC ,垂足为E ,交AC 于点D ,则△ABD 的周长是 _____ .【答案】12.【分析】根据线段的垂直平分线的性质得到DB DC =,根据三角形的周长公式计算即可. 【详解】解:∵直线DE 垂直平分BC ,∴DB DC =,∴△ABD 的周长5712AB AD BD AB AD DC AB AC =++=++=+=+=,故答案为:12.【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.10.(2021·江苏宿迁市)《九章算术》中有一道“引葭赴岸”问题:“仅有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深,葭长各几何?”题意是:有一个池塘,其地面是边长为10尺的正方形,一棵芦苇AB 生长在它的中央,高出水面部分BC 为1尺.如果把芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B 恰好碰到岸边的B '(示意图如图,则水深为__尺.【答案】12【分析】依题意画出图形,设芦苇长AB =AB '=x 尺,则水深AC =(x ﹣1)尺,因为B 'E =10尺,所以B 'C =5尺,利用勾股定理求出x 的值即可得到答案..【详解】解:依题意画出图形,设芦苇长AB =AB '=x 尺,则水深AC =(x ﹣1)尺, 因为B 'E =10尺,所以B 'C =5尺,在Rt △AB 'C 中,52+(x ﹣1)2=x 2,解之得x =13,即水深12尺,芦苇长13尺.故答案为:12.【点睛】此题考查勾股定理的实际应用,正确理解题意,构建直角三角形利用勾股定理解决问题是解题的关键. 三、解答题1.(2021·湖北武汉市)如图,//AB CD ,B D ∠=∠,直线EF 与AD ,BC 的延长线分别交于点E ,F .求证:DEF F ∠=∠.【答案】见解析【分析】根据已知条件//AB CD ,B D ∠=∠,得到DCF D ∠=∠,从而得到//AD BC ,即可证明DEF F ∠=∠.【详解】证明:∵//AB CD ,∴DCF B ∠=∠.∵B D ∠=∠,∴DCF D ∠=∠.∴//AD BC .∴DEF F ∠=∠.【点睛】本题考查平行线的性质和判定.平行线的性质:两直线平行,内错角相等.平行线的判定:同位角相等,两直线平行.2.(2021·浙江温州市)如图,BE 是ABC 的角平分线,在AB 上取点D ,使DB DE =. (1)求证://DE BC .(2)若65A ∠=︒,45AED ∠=︒,求EBC ∠的度数.【答案】(1)见解析;(2)35°【分析】(1)直接利用角平分线的定义和等边对等角求出BED EBC ∠=∠,即可完成求证; (2)先求出∠ADE ,再利用平行线的性质求出∠ ABC ,最后利用角平分线的定义即可完成求解. 【详解】解:(1)BE 平分ABC ∠,∴ABE EBC ∠=∠.DB DE =,∴ABE BED ∠=∠,∴BED EBC ∠=∠,∴//DE BC .(2)65A ∠=︒,45AED ∠=︒,∴18070ADE A AED ∠=︒-∠-∠=︒.//DE BC .∴70ABC ADE ∠=∠=︒.BE 平分ABC ∠,∴1352EBC ABC ∠=∠=︒,即35EBC ∠=︒. 【点睛】本题综合考查了角平分线的定义、等腰三角形的性质、平行线的判定与性质等内容,解决本题的关键是牢记概念与性质,本题的解题思路较明显,属于几何中的基础题型,着重考查了学生对基本概念的理解与掌握.3.(2021·四川南充市)如图,90BAC ∠=︒,AD 是BAC ∠内部一条射线,若AB AC =,BE AD ⊥于点E ,CF AD ⊥于点F .求证:AF BE =.【答案】见详解【分析】根据AAS 证明△BAE ≌△ACF ,即可得AF BE =. 【详解】证明:∵90BAC ∠=︒,∴∠BAE +∠CAF =90°, ∵BE ⊥AD ,CF ⊥AD ,∴∠BEA =∠AFC =90°, ∴∠BAE +∠EBA =90°,∴∠CAF =∠EBA , ∵AB =AC ,∴△BAE ≌△ACF ,∴AF BE =.【点睛】本题主要考查全等三角形的判定和性质,熟练掌握全等三角形的判定定理是解题的关键. 4.(2021·浙江绍兴市)如图,在ABC 中,40A ∠=︒,点D ,E 分別在边AB ,AC 上,BD BC CE ==,连结CD ,BE .(1)若80ABC ∠=︒,求BDC ∠,ABE ∠的度数.(2)写出BEC ∠与BDC ∠之间的关系,并说明理由.【答案】(1)50BDC ∠=︒;20ABE ∠=︒;(2)110BEC BDC ∠+∠=︒,见解析【分析】(1)利用三角形的内角和定理求出ACB ∠的大小,再利用等腰三角形的性质分别求出BDC ∠,ABE ∠.(2)利用三角形的内角和定理、三角形外角的性质和等腰三角形的性质,求出用含ABE ∠分别表示BEC ∠,BDC ∠,即可得到两角的关系.【详解】(1)80ABC ∠=︒,BD BC =,50BDC BCD ∴∠=∠=︒. 在ABC 中,180A ABC ACB ∠+∠+∠=︒,40A ∠=︒,60ACB ∠=︒∴,CE BC =,60EBC ∴∠=︒.20ABE ABC EBC ∴∠=∠-∠=︒.(2)BEC ∠,BDC ∠的关系:110BEC BDC ∠+∠=︒.理由如下:设BEC α∠=,BDC β∠=.在ABE △中,40A ABE ABE α=∠+∠=︒+∠,CE BC =,CBE BEC α∴∠=∠=.2402ABC ABE CBE A ABE ABE ∴∠=∠+∠=∠+∠=︒+∠,在BDC 中,BD BC =,2402180BDC BCD DBC ABE β∴∠+∠+∠=+︒+∠=︒.70ABE β︒∴=-∠.4070110ABE ABE αβ∴+=︒+∠+︒-∠=︒.110BEC BDC ∴∠+∠=︒.【点睛】本题主要通过求解角和两角之间的关系,考查三角形的内角和定理、三角形外角的性质和等腰三角形的性质.三角形的内角和等于180︒ .三角形的外角等于与其不相邻的两个内角之和.等腰三角形等边对等角.5.(2021·陕西中考真题)如图,//BD AC ,BD BC =,点E 在BC 上,且BE AC =.求证:D ABC ∠=∠.【答案】见解析【分析】由题意易得EBD C ∠=∠,进而可证EDB ABC ≌△△,然后问题可求证. 【详解】证明:∵//BD AC ,∴EBD C ∠=∠.∵BD BC =,BE AC =,∴()EDB ABC SAS ≌.∴D ABC ∠=∠.【点睛】本题主要考查全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键. 6.(2021·湖南衡阳市)如图,点A 、B 、D 、E 在同一条直线上,,//,//AB DE AC DF BC EF =.求证:ABC DEF △≌△.【答案】见解析【分析】根据//,//AC DF BC EF ,可以得到,A FDE ABC DEF ∠=∠∠=∠,然后根据题目中的条件,利用ASA 证明△ABC ≌△DEF 即可.【详解】证明:点A ,B ,C ,D ,E 在一条直线上 ∵//,//AC DF BC EF ∴,A FDE ABC DEF ∠=∠∠=∠在△ABC 与△DEF 中CAB FDEAB DE ABC DEF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ABC DEF ASA △≌△【点睛】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS 、ASA 、SAS、SSS ,直角三角形可用HL 定理,但AAA 、SSA ,无法证明三角形全等,本题是一道较为简单的题目. 7.(2021·浙江)已知在ACD △中,Р是CD 的中点,B 是AD 延长线上的一点,连结,BC AP .(1)如图1,若90,60,,ACB CAD BD AC AP ︒∠=︒∠===,求BC 的长.(2)过点D 作//DE AC ,交AP 延长线于点E ,如图2所示.若60,CAD BD AC ∠︒==,求证:2BC AP =. (3)如图3,若45CAD ∠=︒,是否存在实数m ,当BD mAC =时,2BC AP =?若存在,请直接写出m 的值;若不存在,请说明理由.【答案】(1)(2)见解析;(3)存在,m =【分析】(1)先解直角三角形ABC 得出2AB AC =,从而得出△ADC 是等边三角形,再解直角三角形ACP 即可求出AC 的长,进而得出BC 的长;(2)连结BE ,先利用AAS 证出△CPA ≌△DPE ,得出AE =2PE ,AC =DE ,再得出△ADC 是等边三角形,然后由SAS 得出△CAB ≌△EBA ,得出AE =BC 即可得出结论; (3)过点D 作//DE AC ,交AP 延长线于点E ,连接BE ,过C 作CG ⊥AB 于G ,过E 作EN ⊥AB 于N ,由(2)得AE =2AP ,DE =AC ,再证明△AEN ≌△BCG ,从而得出△CAB ≌△EBA 得出DE =BE ,然后利用勾股定理即可得出m 的值. 【详解】(1)解90,60ACB CAD ∠=∠=︒︒,2cos60ACAB AC ︒==,BD AC =,AD AC =∴,∴△ADC 是等边三角形,60ACD ∴∠=︒Р是CD 的中点,AP CD ∴⊥,在Rt APC 中,AP =2sin 60APAC ∴==︒,tan 60BC AC =︒=∴(2)证明:连结BE ,//DE AC ,CAP DEP ∴∠=∠,,CP DP CPA DPE =∠=∠,∴△CPA ≌△DPE , 1,2AP EP AE DE AC ∴===, BD AC =,BD DE ∴=,又//DE AC ,60BDE CAD ∴∠=∠=︒,∴△BDE 是等边三角形,,60BD BE EBD ∴=∠=︒BD AC =,AC BE ∴=,又60,CAB EBA AB BA ∠=∠=︒=,∴△CAB ≌△EBA , AE BC ∴=,2BC AP ∴=.。
中考数学最新真题专项汇总—平行线与三角形(含解析)一.选择题1.(2022·内蒙古通辽)如图,一束光线AB 先后经平面镜OM ,ON 反射后,反射光线CD 与AB 平行,当35ABM ∠=︒时,DCN ∠的度数为( )A .55︒B .70︒C .60︒D .35︒【答案】A 【分析】根据题意得:∠ABM =∠OBC , ∠BCO =∠DCN ,然后平行线的性质可得∠BCD =70°,即可求解.【详解】解:根据题意得:∠ABM =∠OBC , ∠BCO =∠DCN ,∠∠ABM =35°,∠∠OBC =35°,∠∠ABC =180°-∠ABM -∠OBC =180°-35°-35°=110°, ∠CD ∠AB ,∠∠ABC +∠BCD =180°,∠∠BCD =180°-∠ABC =70°,∠∠BCO +∠BCD +∠DCN =180°, ∠BCO =∠DCN , ∠1(180)552DCN BCD ︒︒-∠=∠=.故选:A【点睛】本题主要考查了平行线的性质,熟练掌握两直线平行,同旁内角互补是解题的关键.2.(2022·河北)要得知作业纸上两相交直线AB ,CD 所夹锐角的大小,发现其交点不在作业纸内,无法直接测量.两同学提供了如下间接测量方案(如图1和图2):对于方案∠、∠,说法正确的是()A.∠可行、∠不可行B.∠不可行、∠可行C.∠、∠都可行D.∠、∠都不可行【答案】C【分析】用夹角可以划出来的两条线,证明方案∠和∠的结果是否等于夹角,即可判断正误【详解】方案∠:如下图,BPD∠即为所要测量的角∠HEN CFG∥∠AEM BPD∠=∠∠MN PD∠=∠故方案∠可行方案∠:如下图,BPD∠即为所要测量的角在EPF中:180∠+∠+∠=︒BPD PEF PFE则:180∠=︒-∠-∠故方案∠可行故选:CBPD AEH CFG【点睛】本题考查平行线的性质和判定,三角形的内角和;本题的突破点是用可画出夹角的情况进行证明3.(2022·河南)如图,直线AB,CD相交于点O,EO∠CD,垂足为O.若∠1=54°,则∠2的度数为()A.26°B.36°C.44°D.54°【答案】B【分析】根据垂直的定义可得90∠=︒,根据平角的定义即可求解.COE【详解】解:EO∠CD,90∴∠=︒,COE12180∠+∠+∠=︒,2180905436∴∠=︒-︒-︒=︒.故选:B .COE【点睛】本题考查了垂线的定义,平角的定义,数形结合是解题的关键.4.(2022·湖北鄂州)如图,直线l1∥l2,点C、A分别在l1、l2上,以点C为圆心,CA长为半径画弧,交l1于点B,连接AB.若∠BCA=150°,则∠1的度数为( )A .10°B .15°C .20°D .30°【答案】B 【分析】由作图得ABC ∆为等腰三角形,可求出15ABC ∠=︒,由l 1∥l 2得1ABC ∠=∠,从而可得结论.【详解】解:由作图得,CA CB =,∠ABC ∆为等腰三角形,∠ABC CAB ∠=∠ ∠∠BCA =150°,∠11(180)(180150)1522ABC ACB ∠=︒-∠=︒-︒=︒∠l 1∥l 2∠115ABC ∠=∠=︒故选B【点睛】本题主要考查了等腰三角形的判定与性质,平行线的性质等知识,求出15ABC ∠=︒是解答本题的关键. 5.(2022·湖南郴州)如图,直线a b ∥,且直线a ,b 被直线c ,d 所截,则下列条件不能..判定直线c d ∥的是( )A .34∠=∠B .15180∠+∠=︒C .12∠=∠D .14∠=∠【答案】C 【分析】利用平行线的判定条件进行分析即可得出结果.【详解】解:A 、当34∠=∠时,c d ∥;故A 不符合题意;B 、当15180∠+∠=︒时,c d ∥;故B 不符合题意;C 、当12∠=∠时,a b ∥;故C 符合题意;D 、∠a b ∥,则12∠=∠,∠14∠=∠,则24∠∠=,∠c d ∥;故D 不符合题意;故选:C【点睛】本题主要考查平行线的判定,解答的关键是熟记平行线的判定条件并灵活运用.6.(2022·山东潍坊)如图是小亮绘制的潜望镜原理示意图,两个平面镜的镜面AB 与CD 平行,入射光线l 与出射光线m 平行.若入射光线l 与镜面AB 的夹角14010'∠=︒,则6∠的度数为( )A .10040'︒B .9980'︒C .9940'︒D .9920'︒【答案】C 【分析】由入射光线与镜面的夹角等于反射光线与镜面的夹角,可得∠1=∠2,可求出∠5,由l //m 可得∠6=∠5【详解】解:由入射光线与镜面的夹角等于反射光线与镜面的夹角,可得∠1=∠2,∠14010'∠=︒∠24010'∠=︒∠518012180401040109940'''∠=︒-∠-∠=︒-︒-︒=︒ ∠l //m ∠659940'∠=∠=︒ 故选:C【点睛】本题主要考查了平行线的性质,熟记两直线平行,内错角相等是解答本题的关键.7.(2022·北京)如图,利用工具测量角,则1∠的大小为( )A .30°B .60°C .120°D .150°【答案】A 【分析】利用对顶角相等求解.【详解】解:量角器测量的度数为30°,由对顶角相等可得,130∠=︒.故选A .【点睛】本题考查量角器的使用和对顶角的性质,掌握对顶角相等是解题的关键.8.(2022·黑龙江)如图,ABC 中,AB AC =,AD 平分BAC ∠与BC 相交于点D ,点E 是AB 的中点,点F 是DC 的中点,连接EF 交AD 于点P .若ABC 的面积是24, 1.5PD =,则PE 的长是( )A.2.5B.2C.3.5D.3【答案】A【分析】连接DE,取AD的中点G,连接EG,先由等腰三角形“三线合一“性质,证得AD∠BC,BD=CD,再由E是AB的中点,G是AD的中点,求出S∠EGD=3,然后证∠EGP∠∠FDP(AAS),得GP=CP=1.5,从而得DG=3,即可由三角形面积公式求出EG长,由勾股定理即可求出PE长.【详解】解:如图,连接DE,取AD的中点G,连接EG,∠AB=AC,AD平分BAC∠与BC相交于点D,∠AD∠BC,BD=CD,∠S∠ABD=112422ABCS=⨯=12,∠E是AB的中点,∠S∠AED=111222ABDS=⨯=6,∠G是AD的中点,∠S△EGD=11622AEDS=⨯=3,∠E是AB的中点,G是AD的中点,∠EG∥BC,EG=12BD=12CD,∠∠EGP=∠FDP=90°,∠F是CD的中点,∠DF=12CD,∠EG=DF,∠∠EPG=∠FPD,∠∠EGP∠∠FDP(AAS),∠GP=PD=1.5,∠GD=3,∠S△EGD=12GD EG⋅=3,即1332EG⨯=,∠EG=2,在Rt∠EGP中,由勾股定理,得PE=,故选:A.【点睛】本题考查等腰三角形的性质,三角形面积,全等三角形判定与性质,勾股定理,熟练掌握三角形中线分三角形两部分的面积相等是解题的关键.9.(2022·贵州遵义)如图1是第七届国际数学教育大会(ICME)会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形OABC.若1AB BC==,30AOB∠=︒,则点B到OC的距离为()A B C .1 D .2【答案】B【分析】根据题意求得2OB =,进而求得OC【详解】解:在Rt ,Rt ABO BOC 中,30AOB ∠=︒,1AB BC ==,2OB ∴=,OC ∴设B 到OC 的距离为h ,1122OC h BC BO ∴⋅=⋅,h ∴==, 故选B .【点睛】本题考查了勾股定理,含30度角的直角三角形的性质,掌握以上知识是解题的关键.10.(2022·广西)活动探究:我们知道,已知两边和其中一边的对角对应相等的两个三角形不一定全等,如己知∠ABC 中,∠A =30°, AC =3,∠A 所对的边为满足已知条件的三角形有两个(我们发现其中如图的∠ABC 是一个直角三角形),则满足已知条件的三角形的第三边长为( )A.B .3C .D .3【答案】C 【分析】分情况讨论,当∠ABC 是一个直角三角形时,当∠AB 1C 是一个钝角三角形时,根据含30°的直角三角形的性质及勾股定理求解即可.【详解】如图,当∠ABC 是一个直角三角形时,即90C ∠=︒,30,A BC ∠=︒=2∴==AB BC如图,当∠AB 1C 是一个钝角三角形时,过点C 作CD ∠AB 1,90CDA CDB ∴∠=︒=∠,1CB CB =,1BD B D ∴=,30,3A AC ∠=︒=,1322CD AC ∴==, 3BC =1B D BD ∴===,1BB ∴11AB AB BB ∴=-综上,满足已知条件的三角形的第三边长为故选:C . 【点睛】本题考查了根据已知条件作三角形,涉及含30°的直角三角形的性质及勾股定理,熟练掌握知识点是解题的关键.11.(2022·山东烟台)如图,某海域中有A ,B ,C 三个小岛,其中A 在B 的南偏西40°方向,C 在B 的南偏东35°方向,且B ,C 到A 的距离相等,则小岛C 相对于小岛A 的方向是( )A .北偏东70°B .北偏东75°C .南偏西70°D .南偏西20°【答案】A 【分析】根据题意可得∠ABC =75°,AD ∠BE ,AB =AC ,再根据等腰三角形的性质可得∠ABC =∠C =75°,从而求出∠BAC 的度数,然后利用平行线的性质可得∠DAB =∠ABE =40°,从而求出∠DAC 的度数,即可解答.【详解】解:如图:由题意得:∠ABC=∠ABE+∠CBE=40°+35°=75°,AD∠BE,AB=AC,∠∠ABC=∠C=75°,∠∠BAC=180°﹣∠ABC﹣∠C=30°,∠AD∠BE,∠∠DAB=∠ABE=40°,∠∠DAC=∠DAB+∠BAC=40°+30°=70°,∠小岛C相对于小岛A的方向是北偏东70°,故选:A..【点睛】本题考查了方向角,等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.12.(2022·河北)如图,将∠ABC折叠,使AC边落在AB边上,展开后得到折痕l,则l是∠ABC的()A.中线B.中位线C.高线D.角平分线【答案】D【分析】根据折叠的性质可得CAD BAD∠=∠,作出选择即可.【详解】解:如图,∠由折叠的性质可知CAD BAD∠=∠,∠AD是BAC∠的角平分线,故选:D.【点睛】本题考查折叠的性质和角平分线的定义,理解角平分线的定义是解答本题的关键.13.(2022·广西贺州)如图,在Rt∠ABC中,∠C=90°,∠B=56°,则∠A的度数为()A.34︒B.44︒C.124︒D.134︒【答案】A【分析】根据直角三角形的两个锐角互余,即可得出∠A的度数.【详解】解:∠Rt∠ABC中,∠C=90°,∠B=56°,∠∠A=90°-∠B=90°-56°=34°;故选:A.【点睛】本题考查了直角三角形的性质:直角三角形的两个锐角互余;熟练掌握直角三角形的性质,并能进行推理计算是解决问题的关键.14.(2022·湖南永州)如图,在Rt ABC∠=°,点D为边AC∠=︒,60C△中,90ABC的中点,2BD=,则BC的长为()B.C.2D.4A【答案】C【分析】根据三角形内角和定理可得∠A=30°,由直角三角形斜边上的中线的性质得出AC=2BD=4,再利用含30度角的直角三角形的性质求解即可.【详解】解:∠∠ABC=90°,∠C=60°,∠∠A=30°,∠点D为边AC的中点,BD=2∠AC=2BD=4,∠BC=12AC=,2故选:C.【点睛】题目主要考查三角形内角和定理及直角三角形斜边上中线的性质,含30度角的直角三角形的性质等,理解题意,综合运用这些知识点是解题关键.15.(2022·湖南永州)下列多边形具有稳定性的是()A.B.C.D.【答案】D【分析】利用三角形具有稳定性直接得出答案.【详解】解:三角形具有稳定性,四边形、五边形、六边形都具有不稳定性,故选D.【点睛】本题考查三角形的特性,牢记三角形具有稳定性是解题的关键.16.(2022·广西玉林)请你量一量如图ABC中BC边上的高的长度,下列最接近的是()A.0.5cm B.0.7cm C.1.5cm D.2cm【答案】D【分析】作出三角形的高,然后利用刻度尺量取即可.【详解】解:如图所示,过点A作AO∠BC,用刻度尺直接量得AO更接近2cm,故选:D.【点睛】题目主要考查利用刻度尺量取三角形高的长度,作出三角形的高是解题关键.17.(2022·黑龙江大庆)下列说法不正确...的是()A.有两个角是锐角的三角形是直角或钝角三角形B.有两条边上的高相等的三角形是等腰三角形C.有两个角互余的三角形是直角三角形D.底和腰相等的等腰三角形是等边三角形【答案】A【分析】利用等腰三角形的性质与判定、等边三角形的性质与判定、直角三角形的判定,对各选项逐项分析可得出正确答案.【详解】解:A、设∠1、∠2为锐角,因为:∠1+∠2+∠3=180°,所以:∠3可以为锐角、直角、钝角,所以该三角形可以是锐角三角形,也可以是直角或钝角三角形,故A选项不正确,符合题意;B、如图,在∠ABC中,BE∠AC,CD∠AB,且BE=CD.∠BE ∠AC ,CD ∠AB ,∠∠CDB =∠BEC =90°,在Rt ∠BCD 与Rt ∠CBE 中,CD BE BC CB=⎧⎨=⎩, ∠Rt ∠BCD ∠Rt ∠CBE (HL ),∠∠ABC =∠ACB ,∠AB =AC ,即∠ABC 是等腰三角形.,故B 选项正确,不符合题意;C 、根据直角三角形的判定:有两个角互余的三角形是直角三角形,, 故C 选项正确,不符合题意;D 、底和腰相等的等腰三角形是等边三角形,故D 选项正确,不符合题意;故选:A .【点睛】本题综合考查了等腰三角形的性质与判定、等边三角形的性质与判定、直角三角形的判定,要求学生在学习过程中掌握三角形的各种性质及推论,不断提升数学学习的能力.18.(2022·广西梧州)如图,在ABC 中,,AB AC AD =是ABC 的角平分线,过点D 分别作,DE AB DF AC ,垂足分别是点E ,F ,则下列结论错误..的是( )A .90ADC ∠=B .DE DF =C .AD BC = D .BD CD =【答案】C【分析】根据等腰三角形底边上的高线、顶角的角平分线、底边上的中线这三线合一及角平分线的性质即可判断求解.【详解】解:∠,AB AC AD =是ABC 的角平分线,∠,AD BC BD CD , ∠90ADC ∠=,故选项A 、D 结论正确,不符合题意;又AD 是BAC ∠的角平分线,,DE AB DF AC ,∠DE DF =,故选项B 结论正确,不符合题意;由已知条件推不出AD BC =,故选项C 结论错误,符合题意;故选:C .【点睛】本题考察了等腰三角形的性质及角平分线的性质,属于基础题,熟练掌握其性质即可.19.(2022·四川乐山)如图,等腰∠ABC 的面积为AB =AC ,BC =2.作AE ∠BC 且AE =12BC .点P 是线段AB 上一动点,连接PE ,过点E 作PE 的垂线交BC 的延长线于点F ,M 是线段EF 的中点.那么,当点P 从A 点运动到B 点时,点M 的运动路径长为( )AB .3C .D .4【答案】D【分析】当P 与A 重合时,点F 与C 重合,此时点M 在N 处,当点P 与B 重合时,如图,点M 的运动轨迹是线段MN .求出CF 的长即可解决问题.【详解】解:过点A 作AD ∠BC 于点D ,连接CE ,∠AB =AC ,∠BD =DC =12BC =1,∠AE =12BC ,∠AE =DC =1,∠AE ∠BC ,∠四边形AECD 是矩形,∠S ∠ABC =12BC ×AD =12×2×AD∠ADCE =AD当P 与A 重合时,点F 与C 重合,此时点M 在CE 的中点N 处,当点P 与B 重合时,如图,点M 的运动轨迹是线段MN .∠BC =2,CE由勾股定理得BE =4,cos∠EBC =BC BE BE BF =,即244BF =, ∠BF =8,∠点N 是CE 的中点,点M 是EF 的中点,∠MN =12BF =4,∠点M 的运动路径长为4,故选:D .【点睛】本题考查点的轨迹、矩形的判定和性质、解直角三角形、勾股定理等知识,解题的关键是正确寻找点M 的运动轨迹,学会利用起始位置和终止位置寻找轨迹,属于中考填空题中的压轴题.20.(2022·四川凉山)下列长度的三条线段能组成三角形的是( ) A .3,4,8B .5,6,11C .5,6,10D .5,5,10 【答案】C【分析】根据三角形的三边关系定理(任意两边之和大于第三边)逐项判断即可得.【详解】解:A 、3478+=<,不能组成三角形,此项不符题意;B 、5611+=,不能组成三角形,此项不符题意;C 、561110+=>,能组成三角形,此项符合题意;D 、5510+=,不能组成三角形,此项不符题意;故选:C .【点睛】本题考查了三角形的三边关系定理,熟练掌握三角形的三边关系定理是解题关键.21.(2022·四川成都)如图,在ABC 和DEF 中,点A ,E ,B ,D 在同一直线上,AC DF ∥,AC DF =,只添加一个条件,能判定ABC DEF △≌△的是( )A .BC DE =B .AE DB =C .A DEF ∠=∠D .ABC D ∠=∠【答案】B 【分析】根据三角形全等的判定做出选择即可.【详解】A 、BC DE =,不能判断ABC DEF △≌△,选项不符合题意;B 、AE DB =,利用SAS 定理可以判断ABC DEF △≌△,选项符合题意; C 、A DEF ∠=∠,不能判断ABC DEF △≌△,选项不符合题意;D 、ABC D ∠=∠,不能判断ABC DEF △≌△,选项不符合题意;故选:B .【点睛】本题考查三角形全等的判定,根据SSS 、SAS 、ASA 、AAS 判断三角形全等,找出三角形全等的条件是解答本题的关键.22.(2022·山东聊城)如图,ABC 中,若80BAC ∠=︒,70ACB ∠=︒,根据图中尺规作图的痕迹推断,以下结论错误的是( )A .40BAQ ∠=︒B .12DE BD = C .AF AC = D .25EQF ∠=︒【答案】D【分析】根据线段的垂直平分线的性质,角平分线的定义,三角形外角的性质,直角三角形的性质判断即可.【详解】∠80BAC ∠=︒,70ACB ∠=︒,∠∠B =180°-∠BAC -∠ACB =30°,A .由作图可知,AQ 平分BAC ∠,∠1402BAP CAP BAC ∠=∠=∠=︒,故选项A 正确,不符合题意;B .由作图可知,MQ 是BC 的垂直平分线,∠90DEB ∠=︒,∠30B ∠=︒,∠12DE BD =,故选项B 正确,不符合题意;C .∠30B ∠=︒,40BAP ∠=︒,∠70AFC ∠=︒,∠70C ∠=︒,∠AF AC =,故选项C 正确,不符合题意;D .∠70EFQ AFC ∠=∠=︒,90QEF ∠=︒,∠20EQF ∠=︒;故选项D 错误,符合题意.故选:D .【点睛】本题考查了线段的垂直平分线的性质,角平分线的定义,三角形外角的性质,直角三角形的性质等知识,解题的关键是读懂图象信息.23.(2022·海南)如图,直线m n∥,ABC是等边三角形,顶点B在直线n上,直线m交AB于点E,交AC于点F,若1140∠=︒,则2∠的度数是()A.80︒B.100︒C.120︒D.140︒【答案】B【分析】根据等边三角形的性质可得∠A=60°,再由三角形外角的性质可得∠AEF=∠1-∠A=80°,从而得到∠BEF=100°,然后根据平行线的性质,即可求解.【详解】解:∠ABC是等边三角形,∠∠A=60°,∠∠1=140°,∠∠AEF=∠1-∠A=80°,∠∠BEF=180°-∠AEF=100°,∠m n∥,∠∠2=∠BEF=100°.故选:B【点睛】本题主要考查了等边三角形的性质,三角形外角的性质,平行线的性质,熟练掌握等边三角形的性质,三角形外角的性质,平行线的性质是解题的关键.24.(2022·黑龙江齐齐哈尔)如图所示,直线a∠b,点A在直线a上,点B在直线b上,AC=BC,∠C=120°,∠1=43°,则∠2的度数为()A .57°B .63°C .67°D .73°【答案】D【分析】根据等腰三角形的性质可求出30ABC ∠=︒,可得出+173ABC ∠∠=︒,再根据平行线的性质可得结论.【详解】解:∠AC =BC ,∠ABC ∆是等腰三角形,∠=120C ∠︒ ∠11(180)(180120)3022ABC C ∠=︒-∠=︒-︒=︒∠1304373ABC ∠+∠=︒+︒=︒∠a ∠b ,∠2173ABC ∠=∠+∠=︒ 故选:D【点睛】本题主要考查了等腰三角形的判定与性质,以及平行线的性质,求出173ABC ∠+∠=︒是解答本题的关键. 25.(2022·湖北恩施)已知直线12l l ∥,将含30°角的直角三角板按图所示摆放.若1120∠=︒,则2∠=( )A.120°B.130°C.140°D.150°【答案】D【分析】根据平行线的性质可得∠3=∠1=120°,再由对顶角相等可得∠4=∠3=120°,然后根据三角形外角的性质,即可求解.【详解】解:如图,根据题意得:∠5=30°,∥,∠∠3=∠1=120°,∠∠4=∠3=120°,∠12l l∠∠2=∠4+∠5,∠∠2=120°+30°=150°.故选:D【点睛】本题主要考查了平行线的性质,对顶角相等,三角形外角的性质,熟练掌握平行线的性质,对顶角相等,三角形外角的性质是解题的关键.二.填空题26.(2022·辽宁锦州)如图,在ABC中,,30=∠=︒,点D为BC的中AB AC ABC点,将ABC绕点D逆时针旋转得到A B C''',当点A的对应点A'落在边AB上时,点C'在BA的延长线上,连接BB',若1AA'=,则BB D'△的面积是____________.【分析】先证明A AD ' 是等边三角形,再证明AO BC '⊥,再利用直角三角形30角对应的边是斜边的一般分别求出A B ''和A O ',再利用勾股定理求出OD ,从而求得BB D '△的面积.【详解】解:如下图所示,设A B ''与BD 交于点O ,连接A D '和AD ,∠点D 为BC 的中点,,30AB AC ABC =∠=︒,∠AD BC ⊥,A D B C '''⊥,A D '是B A C '''∠的角平分线,AD 是BAC ∠,∠120B A C ︒'''∠=,120BAC ︒∠=∠60BAD B A D ︒'∠'=∠=∠A D AD '=,∠A AD ' 是等边三角形,∠1A A AD A D ''===,∠18060BA B B A C ︒︒'''''∠=-∠=,∠BA B A AD '''∠=∠,∠//A B AD '',∠AO BC '⊥, ∠1122A O A D ''==,∠OD ==∠22A B A D '''==∠30A BD A DO ︒''∠=∠=,∠BO OD = ∠13222OB '=-=,2BD OD ==∠113222BB D S BD B O ''=⨯⨯==. 【点睛】本题考查等腰三角形、等边三角形和直角三角形的性质,证明A AD ' 是等边三角形是解本题的关键.27.(2022·湖南郴州)如图.在ABC 中,90C ∠=︒,AC BC =.以点A 为圆心,以任意长为半径作弧交AB ,AC 于D ,E 两点;分别以点D ,E 为圆心,以大于12DE 长为半径作弧,在BAC ∠内两弧相交于点P ;作射线AP 交BC 于点F ,过点F 作FG AB ⊥,垂足用G .若8cm AB =,则BFG 的周长等于________cm .【答案】8【分析】由角平分线的性质,得到CF GF=,然后求出BFG的周长即可.【详解】解:根据题意,在ABC中,90=,C∠=︒,AC BC由角平分线的性质,得CF GF=,∠BFG的周长为:()8++=-+=-+==;BG BF FG AB AG BC AB AC BC AB故答案为:8【点睛】本题考查了角平分线的性质,解题的关键是掌握角平分线的性质.28.(2022·江苏常州)如图,在ABC中,E是中线AD的中点.若AEC△的面积是1,则ABD△的面积是______.【答案】2【分析】根据ACE∆的面积DCE=∆的面积计算出各部=∆的面积,ABD∆的面积ACD分三角形的面积.【详解】解:AD是BC边上的中线,E为AD的中点,根据等底同高可知,ACE ∆的面积DCE =∆的面积1=,ABD ∆的面积ACD =∆的面积2AEC =∆的面积2=,故答案为:2.【点睛】本题考查了三角形的面积,解题的关键是利用三角形的中线平分三角形面积进行计算.29.(2022·黑龙江哈尔滨)在ABC 中,AD 为边BC 上的高,30ABC ∠=︒,20CAD ∠=︒,则BAC ∠是___________度.【答案】40或80##80或40【分析】根据题意,由于ABC 类型不确定,需分三种情况:高在三角形内部、高在三角形边上和高在三角形外部讨论求解.【详解】解:根据题意,分三种情况讨论:∠高在三角形内部,如图所示:在ABD ∆中,AD 为边BC 上的高,30ABC ∠=︒,90903060BAD ABC ∴∠=︒-∠=︒-︒=︒,20CAD ∠=︒,602080BAC BAD CAD ∴∠=∠+∠=︒+︒=︒;∠高在三角形边上,如图所示:可知0CAD ∠=︒,20CAD ∠=︒,故此种情况不存在,舍弃;∠高在三角形外部,如图所示:在ABD ∆中,AD 为边BC 上的高,30ABC ∠=︒,90903060BAD ABC ∴∠=︒-∠=︒-︒=︒,20CAD ∠=︒,602040BAC BAD CAD ∴∠=∠-∠=︒-︒=︒;综上所述:80BAC ∠=︒或40︒,故答案为:40或80.【点睛】本题考查求角度问题,在没有图形的情况下,必须考虑清楚各种不同的情况,根据题意分情况讨论是解决问题的关键.30.(2022·四川成都)如图,在ABC 中,按以下步骤作图:∠分别以点B 和C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点M 和N ;∠作直线MN 交边AB 于点E .若5AC =,4BE =,45B ∠=︒,则AB 的长为_________.【答案】7【分析】连接EC,依据垂直平分线的性质得EB EC=.由已知易得∠∠=︒=,在Rt∠AEC中运用勾股定理求得AE,即可求得答案.BEC CEA90【详解】解:由已知作图方法可得,MN是线段BC的垂直平分线,连接EC,如图,所以BE CE=,所以45∠=∠=︒,ECB B所以∠BEC=∠CEA=90°,因为5AC=,4BE=,所以4CE=,在AEC△中,2222AE AC EC,543所以347AB AE BE=+=+=,因此AB的长为7.故答案为:7.【点睛】本题主要考查中垂线性质,等腰三角形的性质,勾股定理等知识,解题的关键是掌握中垂线上一点到线段两端点距离相等,由勾股定理求得AE 即可. 31.(2022·内蒙古通辽)在Rt ABC 中,90C ∠=︒,有一个锐角为60︒,6AB =,若点P 在直线..AB 上(不与点A ,B 重合),且30PCB ∠=︒,则AP 的长为_______. 【答案】92或9或3【分析】分∠ABC =60、∠ABC =30°两种情况,利用数形结合的方法,分别求解即可.【详解】解:当∠ABC =60°时,则∠BAC =30°, ∠132BC AB ==,∠AC =,当点P 在线段AB 上时,如图,∠30PCB ∠=︒,∠∠BPC =90°,即PC ∠AB ,∠9cos 2AP AC BAC =⋅∠==; 当点P 在AB 的延长线上时,∠30PCB ∠=︒,∠PBC =∠PCB +∠CPB ,∠∠CPB =30°,∠∠CPB =∠PCB ,∠PB =BC =3,∠AP =AB +PB =9;当∠ABC =30°时,则∠BAC =60°,如图,∠132AC AB ==,∠30PCB ∠=︒,∠∠APC =60°,∠∠ACP =60°,∠∠APC =∠P AC =∠ACP ,∠∠APC 为等边三角形,∠P A =AC =3.综上所述,AP 的长为92或9或3. 故答案为:92或9或3【点睛】本题是解直角三角形综合题,主要考查了含30度角的直角三角形、解直角三角形,等边三角形的判定和性质等,分类求解是本题解题的关键.32.(2022·湖南岳阳)如图,在ABC中,AB AC=,AD BCBC=,⊥于点D,若6则CD=______.【答案】3【分析】根据等腰三角形的性质可知D是BC的中点,即可求出CD的长.【详解】解:∠AB AC=,AD BC⊥,∠CD BD=,∠6BC=,∠3CD=,故答案为:3.【点睛】本题考查了等腰三角形的性质,熟练掌握等腰三角形三线合一是解题的关键.33.(2022·江苏无锡)∠ABC是边长为5的等边三角形,∠DCE是边长为3的等边三角形,直线BD与直线AE交于点F.如图,若点D在∠ABC内,∠DBC=20°,则∠BAF=________°;现将∠DCE绕点C旋转1周,在这个旋转过程中,线段AF长度的最小值是________.【答案】804##4【分析】利用SAS证明∠BDC∠∠AEC,得到∠DBC=∠EAC=20°,据此可求得∠BAF 的度数;利用全等三角形的性质可求得∠AFB=60°,推出A、B、C、F四个点在同一个圆上,当BF是圆C的切线时,即当CD∠BF时,∠FBC最大,则∠FBA 最小,此时线段AF长度有最小值,据此求解即可.【详解】解:∠∠ABC和∠DCE都是等边三角形,∠AC=BC,DC=EC,∠BAC=∠ACB=∠DCE=60°,∠∠DCB+∠ACD=∠ECA+∠ACD=60°,即∠DCB =∠ECA,在∠BCD和∠ACE中,CD CEBCD ACEBC AC=⎧⎪∠=∠⎨⎪=⎩,∠∠ACE∠∠BCD(SAS),∠∠EAC=∠DBC,∠∠DBC=20°,∠∠EAC=20°,∠∠BAF=∠BAC+∠EAC=80°;设BF与AC相交于点H,如图:∠∠ACE ∠∠BCD∠AE =BD ,∠EAC =∠DBC ,且∠AHF =∠BHC ,∠∠AFB =∠ACB =60°,∠A 、B 、C 、F 四个点在同一个圆上,∠点D 在以C 为圆心,3为半径的圆上,当BF 是圆C 的切线时,即当CD ∠BF 时,∠FBC 最大,则∠FBA 最小,∠此时线段AF 长度有最小值,在Rt ∠BCD 中,BC =5,CD =3,∠BD=4,即AE =4,∠∠FDE =180°-90°-60°=30°,∠∠AFB =60°,∠∠FDE =∠FED =30°,∠FD =FE ,过点F 作FG ∠DE 于点G ,∠DG =GE =32,∠FE =DF =cos30DG ︒∠AF=AE-FE=4故答案为:80;4【点睛】本题考查了旋转的性质,等边三角形的性质,圆周角定理,切线的性质,解直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件.34.(2022·湖南永州)我国古代数学家赵爽创制了一幅“赵爽弦图”,极富创新意识地给出了勾股定理的证明.如图所示,“赵爽弦图”是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形,若大正方形的面积是25,小正方形的面积是1,则AE=______.【答案】3【分析】根据题意得出AB=BC=CD=DA=5,EF=FG=GH=HE=1,设AF=DE=CH=BG=x,结合图形得出AE=x-1,利用勾股定理求解即可得出结果.【详解】解:∠大正方形的面积是25,小正方形的面积是1,∠AB=BC=CD=DA=5,EF=FG=GH=HE=1,根据题意,设AF=DE=CH=BG=x,则AE=x-1,在Rt∆AED中,222+=,AE ED AD即()222-+=,x x15解得:x =4(负值已经舍去),∠x -1=3,故答案为:3.【点睛】题目主要考查正方形的性质,勾股定理解三角形,一元二次方程的应用等,理解题意,综合运用这些知识点是解题关键.35.(2022·黑龙江齐齐哈尔)在∠ABC 中,AB =6AC =,45B ∠=,则BC =______________.【答案】3或3【分析】画出图形,分∠ABC 为锐角三角形和钝角三角形两种情况讨论即可.【详解】解:情况一:当∠ABC 为锐角三角形时,如图1所示:过A 点作AH ∠BC 于H ,∠∠B =45°,∠∠ABH 为等腰直角三角形, ∠363322ABAH BH ,在Rt∠ACH 中,由勾股定理可知:2236273CHAC AH , ∠333BC BH CH . 情况二:当∠ABC 为钝角三角形时,如图2所示:由情况一知:363322ABAH BH ,2236273CH AC AH , ∠333BC BH CH .故答案为:3或3.【点睛】本题考察了等腰直角三角形的性质及勾股定理的应用,本题的关键是能将∠ABC 分成锐角三角形或钝角三角形分类讨论.36.(2022·贵州遵义)如图,在等腰直角三角形ABC 中,90BAC ∠=︒,点M ,N分别为BC ,AC 上的动点,且AN CM =,AB 当AM BN +的值最小时,CM 的长为__________.【答案】2【分析】过点A 作AD BC ∥,且AD AC =,证明AND CMA ≌△△,可得AM DN =,当,,B N D 三点共线时,BN AM +取得最小值,证明AB BM =,即可求解.【详解】如图,过点A 作AD BC ∥,且AD AC =,连接DN ,如图1所示, DAN ACM ∴∠=∠,又AN CM =,AND CMA ∴≌,AM DN ∴=,BN AM BN DN BD ∴+=+≥,当,,B N D 三点共线时,BN AM +取得最小值,此时如图2所示,在等腰直角三角形ABC 中,90BAC ∠=︒,AB =2BC ∴==,AND CMA ≌△△,ADN CAM ∴∠=∠,AD AC AB ==,ADN ABN ∴∠=∠,AD BC ∥,ADN MBN ∴∠=∠,ABN MBN ∴∠=∠,设MAC α∠=,90BAM BAC αα∴∠=∠-=︒-,245ABM ABN NBM α∴∠=∠+∠==︒,22.5α∴=︒,180180904567.5AMB BAM ABM α∴∠=︒-∠-∠=︒-︒+-︒=︒,9022.567.5BAM ∠=︒-︒=︒,AB BM ∴==2CM BC BM ∴=-=即BN AM +取得最小值为2 故答案为:2图1 图2【点睛】本题考查了等腰直角三角的性质,勾股定理,两点之间线段最短,转化线段是解题的关键.37.(2022·广西)如图摆放一副三角板,直角顶点重合,直角边所在直线分别重合,那么∠BAC 的大小为______【答案】135°##135度【分析】根据三角板及其摆放位置可得180,45BAO BAC OAC OAC ∠=︒=∠+∠∠=︒,求解即可.【详解】180,45BAO BAC OAC OAC ∠=︒=∠+∠∠=︒,18045135BAC ∴∠=︒-︒=︒,故答案为:135°.【点睛】本题考查了求一个角的补角,即两个角的和为180度时,这两个角互为补角,熟练掌握知识点是解题的关键.38.(2022·广西桂林)如图,点C是线段AB的中点,若AC=2cm,则AB=_____cm.【答案】4【分析】根据中点的定义可得AB=2AC=4cm.【详解】解:根据中点的定义可得:AB=2AC=2×2=4cm,故答案为:4.【点睛】本题主要考查中点的定义,熟知中点的定义是解题关键.39.(2022·贵州遵义)数学小组研究如下问题:遵义市某地的纬度约为北纬28°,求北纬28纬线的长度.小组成员查阅相关资料,得到如下信息:信息一:如图1,在地球仪上,与赤道平行的圆圈叫做纬线;信息二:如图2,赤道半径OA约为6400千米,弦BC OA∥,以BC为直径的圆的周长就是北纬28°纬线的长度;(参考数据:π3≈,sin280.47︒≈,︒≈,cos280.88︒≈)tan280.53根据以上信息,北纬28°纬线的长度约为__________千米.【答案】33792【分析】根据平行线的性质可知28∠=∠=︒,在Rt BOD中,利用锐角三角B BOA函数求出BD ,即为以BC 为直径的圆的半径,求出周长即可.【详解】解:如图,过点O 作OD BC ,垂足为D ,根据题意6400OB OA ==,∠BC OA ∥,∠28B BOA ∠=∠=︒,∠在Rt BOD 中, 28B ∠=︒,∠cos28BD OB =︒,∠OD BC ,∠由垂径定理可知:12BD DC BC ==,∠以BC 为直径的圆的周长为22364000.8833792BD π⨯≈⨯⨯⨯=,故答案为:33792.【点睛】本题考查解直角三角形,平行线的性质,解题的关键是熟练三角函数的含义与解直角三角形的方法.三.解答题40.(2022·广东)如图,已知AOC BOC ∠=∠,点P 在OC 上,PD OA ⊥,PE OB ⊥,垂足分别为D ,E .求证:OPD OPE ≌.【答案】见解析【分析】根据角平分线的性质得PD PE =,再用HL 证明OPD OPE ≌.【详解】证明:∠AOC BOC ∠=∠,∠OC 为AOB ∠的角平分线,又∠点P 在OC 上,PD OA ⊥,PE OB ⊥,∠PD PE =,90PDO PEO ∠=∠=︒,又∠PO PO =(公共边),∠()HL OPD OPE ≌.【点睛】本题考查角平分线的性质,全等三角形的判定,利用合适的条件证明三角形全等是本题的关键.41.(2022·广西)校园内有一块四边形的草坪造型,课外活动小组实地测量,并记录数据,根据造型画如图的四边形ABCD ,其中 AB =CD =2米,AD =BC =3米,∠B =30(1)求证:∠ABC ∠∠CDA ;(2)求草坪造型的面积.【答案】(1)见解析(2)草坪造型的面积为23m【分析】(1)根据“SSS ”直接证明三角形全等即可;(2)过点A 作AE ∠BC 于点E ,利用含30°的直角三角形的性质求出AE 的长度,继而求出ABC 的面积,再由全等三角形面积相等得出32ABC CDASS ==,即可求出草坪造型的面积.(1)在ABC 和CDA 中,AB CD AC CA BC AD =⎧⎪=⎨⎪=⎩, ()ABC CDA SSS ∴≅;(2)过点A 作AE ∠BC 于点E ,90AEB ∴∠=︒,30,2m B AB ∠=︒=,11m 2AE AB ∴==, 3m BC =,211331m 222ABCS BC AE ∴=⋅=⨯⨯=, ABC CDA ≅,23m 2ABC CDA S S ∴==, ∴草坪造型的面积23m ABC CDA S S =+=,所以,草坪造型的面积为23m .【点睛】本题考查了全等三角形的判定和性质,含30°的直角三角形的性质,熟。
专题11 平行线与三角形一.选择题1.(2022·湖北宜昌·中考真题)如图,在ABC 中,分别以点B 和点C 为圆心,大于12BC 长为半径画弧,两弧相交于点M ,N .作直线MN ,交AC 于点D ,交BC 于点E ,连接BD .若7AB =,12AC =,6BC =,则ABD △的周长为( )A .25B .22C .19D .182.(2022·浙江台州·中考真题)如图,点D 在ABC 的边BC 上,点P 在射线AD 上(不与点A ,D 重合),连接PB ,PC .下列命题中,假命题是( )A .若AB AC =,AD BC ⊥,则PB PC = B .若PB PC =,AD BC ⊥,则AB AC = C .若AB AC =,12∠=∠,则PB PC =D .若PB PC =,12∠=∠,则AB AC =3.(2022·江苏宿迁·中考真题)若等腰三角形的两边长分别是3cm 和5cm ,则这个等腰三角形的周长是( ) A .8cmB .13cmC .8cm 或13cmD .11cm 或13cm4.(2022·浙江杭州·中考真题)如图,CD ⊥AB 于点D ,已知⊥ABC 是钝角,则( )A .线段CD 是ABC 的AC 边上的高线B .线段CD 是ABC 的AB 边上的高线 C .线段AD 是ABC 的BC 边上的高线D .线段AD 是ABC 的AC 边上的高线5.(2022·湖南邵阳·中考真题)下列长度的三条线段能首尾相接构成三角形的是( ) A .1cm ,2cm ,3cm B .3cm ,4cm ,5cm C .4cm ,5cm ,10cmD .6cm ,9cm ,2cm6.(2022·云南·中考真题)如图,OB 平分⊥AOC ,D 、E 、F 分别是射线OA 、射线OB 、射线OC 上的点,D 、E 、F 与O 点都不重合,连接ED 、EF 若添加下列条件中的某一个.就能使DOE ≅FOE ,你认为要添加的那个条件是( )A .OD =OEB .OE =OFC .⊥ODE =⊥OED D .⊥ODE =⊥OFE7.(2022·浙江湖州·中考真题)如图,已知在锐角⊥ABC 中,AB =AC ,AD 是⊥ABC 的角平分线,E 是AD 上一点,连结EB ,E C .若⊥EBC =45°,BC =6,则⊥EBC 的面积是( )A .12B .9C .6D .8.(2022·江苏扬州·中考真题)如图,小明家仿古家具的一块三角形形状的玻璃坏了,需要重新配一块.小明通过电话给玻璃店老板提供相关数据,为了方便表述,将该三角形记为ABC ∆,提供了下列各组元素的数据,配出来的玻璃不一定符合要求的是( )A .,,AB BC CA B .,,AB BC B ∠ C .,,AB AC B ∠D .,,∠∠A B BC9.(2022·山东泰安·中考真题)如图,30AOB ∠=︒,点M 、N 分别在边OA OB 、上,且3,5OM ON ==,点P 、Q 分别在边OB OA 、上,则MP PQ QN ++的最小值是( )A B C 2 D 210.(2022·浙江金华·中考真题)如图,AC 与BD 相交于点O ,,OA OD OB OC ==,不添加辅助线,判定ABO DCO △≌△的依据是( )A .SSSB .SASC .AASD .HL11.(2022·浙江金华·中考真题)已知三角形的两边长分别为5cm 和8cm ,则第三边的长可以是( ) A .2cmB .3cmC .6cmD .13cm12.(2022·安徽·中考真题)已知点O 是边长为6的等边⊥ABC 的中心,点P 在⊥ABC 外,⊥ABC ,⊥P AB ,⊥PBC ,⊥PCA 的面积分别记为0S ,1S ,2S ,3S .若12302S S S S ++=,则线段OP 长的最小值是( )A B C .D13.(2022·四川南充·中考真题)如图,在Rt ABC 中,90,C BAC ∠=︒∠的平分线交BC 于点D ,DE //AB ,交AC 于点E ,DF AB ⊥于点F ,5,3DE DF ==,则下列结论错误的是( )A .1BF =B .3DC = C .5AE =D .9AC =14.(2022·四川德阳·中考真题)八一中学校九年级2班学生杨冲家和李锐家到学校的直线距离分别是5km 和3km .那么杨冲,李锐两家的直线距离不可能...是( ) A .1kmB .2kmC .3kmD .8km15.(2022·山东泰安·中考真题)如图,⊥ABC 的外角⊥ACD 的平分线CP 与内角⊥ABC 的平分线BP 交于点P ,若⊥BPC =40°,则⊥CAP =( )A .40°B .45°C .50°D .60°16.(2022·浙江绍兴·中考真题)如图,把一块三角板ABC 的直角顶点B 放在直线EF 上,30C ∠=︒,AC ∥EF ,则1∠=( )A .30°B .45°C .60°D .75°17.(2022·安徽·中考真题)两个矩形的位置如图所示,若1∠=α,则2∠=( )A .90α-︒B .45α-︒C .180α︒-D .270α︒-18.(2022·浙江杭州·中考真题)如图,已知AB CD ∥,点E 在线段AD 上(不与点A ,点D 重合),连接CE .若⊥C =20°,⊥AEC =50°,则⊥A =( )A .10°B .20°C .30°D .40°19.(2022·湖南娄底·中考真题)一条古称在称物时的状态如图所示,已知180∠=︒,则2∠=( )A .20︒B .80︒C .100︒D .120︒20.(2022·江苏苏州·中考真题)如图,直线AB 与CD 相交于点O ,75AOC ∠=︒,125∠=︒,则2∠的度数是( )A .25°B .30°C .40°D .50°二.填空题21.(2022·湖南株洲·中考真题)如图所示,点O 在一块直角三角板ABC 上(其中30ABC ∠=︒),OM AB ⊥于点M ,ON BC ⊥于点N ,若OM ON =,则ABO ∠=_________度.22.(2022·浙江嘉兴·中考真题)小曹同学复习时将几种三角形的关系整理如图,请帮他在横线上____填上一个适当的条件.23.(2022·浙江绍兴·中考真题)如图,在ABC 中,40ABC ∠=︒,80BAC ∠=︒,以点A 为圆心,AC 长为半径作弧,交射线BA 于点D ,连接CD ,则BCD ∠的度数是______.24.(2022·云南·中考真题)已知⊥ABC 是等腰三角形.若⊥A =40°,则⊥ABC 的顶角度数是____. 25.(2022·山东滨州·中考真题)如图,屋顶钢架外框是等腰三角形,其中AB AC =,立柱AD BC ⊥,且顶角120BAC ∠=︒,则C ∠的大小为_______.26.(2022·山东泰安·中考真题)如图,⊥ ABC 中,⊥BAC =90°,AB =3,AC =4,点 D 是 BC 的中点,将⊥ ABD 沿 AD 翻折得到⊥ AED ,连 CE ,则线段 CE 的长等于_____27.(2022·湖北武汉·中考真题)如图,沿AB 方向架桥修路,为加快施工进度,在直线AB 上湖的另一边的D 处同时施工.取150ABC ∠=︒,1600m BC =,105BCD ∠=︒,则C ,D 两点的距离是_________m .28.(2022·湖北黄冈·中考真题)勾股定理最早出现在商高的《周髀算经》:“勾广三,股修四,经隅五”.观察下列勾股数:3,4,5;5,12,13;7,24,25;…,这类勾股数的特点是:勾为奇数,弦与股相差为1,柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17;…,若此类勾股数的勾为2m (m ≥3,m 为正整数),则其弦是________(结果用含m 的式子表示).29.(2022·江苏苏州·中考真题)定义:一个三角形的一边长是另一边长的2倍,这样的三角形叫做“倍长三角形”.若等腰⊥ABC 是“倍长三角形”,底边BC 的长为3,则腰AB 的长为______.30.(2022·江苏扬州·中考真题)将一副直角三角板如图放置,已知60E ∠=︒,45C ∠=︒,EF BC ∥,则BND ∠=________°.31.(2022·湖北黄冈·中考真题)如图,直线a ⊥b ,直线c 与直线a ,b 相交,若⊥1=54°,则⊥3=_____度.32.(2022·四川达州·中考真题)如图,在Rt ABC 中,90C ∠=︒,20B ∠=︒,分别以点A ,B 为圆心,大于12AB 的长为半径作弧,两弧分别相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD ,则CAD ∠的度数为_____.33.(2022·湖北黄冈·中考真题)如图,已知AB DE ∥,AB DE =,请你添加一个条件________,使ABC DEF △≌△.三.解答题34.(2022·浙江温州·中考真题)如图,BD 是ABC 的角平分线,DE BC ∥,交AB 于点E . (1)求证:EBD EDB ∠=∠.(2)当AB AC =时,请判断CD 与ED 的大小关系,并说明理由.35.(2022·四川乐山·中考真题)如图,B 是线段AC 的中点,,AD BE BD CE ∥∥,求证:ABD BCE △≌△.36.(2022·浙江杭州·中考真题)如图,在Rt ⊥ACB 中,⊥ACB =90°,点M 为边AB 的中点,点E 在线段AM上,EF ⊥AC 于点F ,连接CM ,CE .已知⊥A =50°,⊥ACE =30°.(1)求证:CE =CM .(2)若AB =4,求线段FC 的长.37.(2022·陕西·中考真题)如图,在⊥ABC 中,点D 在边BC 上,CD =AB ,DE ⊥AB ,⊥DCE =⊥A .求证:DE =BC .38.(2022·湖南衡阳·中考真题)如图,在ABC 中,AB AC =,D 、E 是BC 边上的点,且BD CE =,求证:AD AE =.39.(2022·湖南怀化·中考真题)如图,在等边三角形ABC 中,点M 为AB 边上任意一点,延长BC 至点N ,使CN =AM ,连接MN 交AC 于点P ,MH ⊥AC 于点H .(1)求证:MP =NP ;(2)若AB =a ,求线段PH 的长(结果用含a 的代数式表示).40.(2022·浙江丽水·中考真题)如图,将矩形纸片ABCD 折叠,使点B 与点D 重合,点A 落在点P 处,折痕为EF .(1)求证:PDE CDF △≌△;(2)若4cm,5cm CD EF ==,求BC 的长.41.(2022·四川自贡·中考真题)如图,⊥ABC 是等边三角形,,D E 在直线BC 上,DB EC =.求证:D E ∠=∠ .42.(2022·重庆·中考真题)我们知道,矩形的面积等于这个矩形的长乘宽,小明想用其验证一个底为a ,高为h 的三角形的面积公式为12S ah =.想法是:以BC 为边作矩形BCFE ,点A 在边FE 上,再过点A 作BC 的垂线,将其转化为证三角形全等,由全等图形面积相等来得到验证.按以上思路完成下面的作图与填空:证明:用直尺和圆规过点A 作BC 的垂线AD 交BC 于点D .(只保留作图痕迹)在ADC 和CFA △中, ⊥AD BC ⊥, ⊥90ADC ∠=︒. ⊥90F ∠=︒, ⊥______⊥____. ⊥EF BC ∥, ⊥______⊥_____. 又⊥____⊥______. ⊥ADC CFA △≌△(AAS ).同理可得:_____⊥______. 11112222ABCADCABDADCF AEBD BCFE SSSS S S ah =+=+==矩形矩形矩形.43.(2022·江西·中考真题)如图是44⨯的正方形网格,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹).(1)在图1中作ABC ∠的角平分线;(2)在图2中过点C 作一条直线l ,使点A ,B 到直线l 的距离相等.44.(2022·新疆·中考真题)如图,在ABC ∆巾,30ABC AB AC ∠=︒=,,点O 为BC 的中点,点D 是线段OC 上的动点(点D 不与点O ,C 重合),将ACD △沿AD 折叠得到AED ∆,连接BE .(1)当AE BC ⊥时,AEB ∠=___________︒;(2)探究AEB ∠与CAD ∠之问的数量关系,并给出证明;(3)设4AC =,ACD △的面积为x ,以AD 为边长的正方形的面积为y ,求y 关于x 的函数解析式.45.(2022·重庆·中考真题)如图,在锐角ABC 中,60A ∠=︒,点D ,E 分别是边AB ,AC 上一动点,连接BE 交直线CD 于点F .(1)如图1,若AB AC >,且BD CE =,BCD CBE ∠=∠,求CFE ∠的度数;(2)如图2,若AB AC =,且BD AE =,在平面内将线段AC 绕点C 顺时针方向旋转60︒得到线段CM ,连接MF ,点N 是MF 的中点,连接CN .在点D ,E 运动过程中,猜想线段BF ,CF ,CN 之间存在的数量关系,并证明你的猜想;(3)若AB AC =,且BD AE =,将ABC 沿直线AB 翻折至ABC 所在平面内得到ABP △,点H 是AP 的中点,点K 是线段PF 上一点,将PHK △沿直线HK 翻折至PHK △所在平面内得到QHK △,连接PQ .在点D ,E 运动过程中,当线段PF 取得最小值,且QK PF ⊥时,请直接写出PQ BC的值.46.(2022·重庆·中考真题)在ABC 中,90BAC ∠=︒,AB AC ==D 为BC 的中点,E ,F 分别为AC ,AD 上任意一点,连接EF ,将线段EF 绕点E 顺时针旋转90°得到线段EG ,连接FG ,AG .(1)如图1,点E 与点C 重合,且GF 的延长线过点B ,若点P 为FG 的中点,连接PD ,求PD 的长;(2)如图2,EF 的延长线交AB 于点M ,点N 在AC 上,AGN AEG ∠=∠且GN MF =,求证:AM AF +=;(3)如图3,F 为线段AD 上一动点,E 为AC 的中点,连接BE ,H 为直线BC 上一动点,连接EH ,将BEH △沿EH 翻折至ABC 所在平面内,得到B EH '△,连接B G ',直接写出线段B G '的长度的最小值.47.(2022·山东泰安·中考真题)正方形ABCD 中,P 为AB 边上任一点,AE DP ⊥于E ,点F 在DP 的延长线上,且DE EF =,连接AF BF 、,BAF ∠的平分线交DF 于G ,连接GC .(1)求证:AEG △是等腰直角三角形;(2)求证:AG CG +=;(3)若2AB =,P 为AB 的中点,求BF 的长.专题11 平行线与三角形一.选择题1.(2022·湖北宜昌·中考真题)如图,在ABC 中,分别以点B 和点C 为圆心,大于12BC 长为半径画弧,两弧相交于点M ,N .作直线MN ,交AC 于点D ,交BC 于点E ,连接BD .若7AB =,12AC =,6BC =,则ABD △的周长为( )A .25B .22C .19D .18【答案】C 【分析】由垂直平分线的性质可得BD =CD ,由⊥ABD 的周长=AB +AD +BD =AB +AD +CD =AB +AC 得到答案.【详解】解:由作图的过程可知,DE 是BC 的垂直平分线,⊥BD =CD ,⊥7AB =,12AC =,⊥ ⊥ABD 的周长=AB +AD +BD =AB +AD +CD =AB +AC =19.故选:C【点睛】此题考查了线段垂直平分线的作图、线段垂直平分线的性质、三角形的周长等知识,熟练掌握线段垂直平分线的性质是解题的关键.2.(2022·浙江台州·中考真题)如图,点D 在ABC 的边BC 上,点P 在射线AD 上(不与点A ,D 重合),连接PB ,PC .下列命题中,假命题是( )A .若AB AC =,AD BC ⊥,则PB PC =B .若PB PC =,AD BC ⊥,则AB AC = C .若AB AC =,12∠=∠,则PB PC =D .若PB PC =,12∠=∠,则AB AC =【答案】D 【分析】根据等腰三角形三线合一的性质证明PD 是否是BC 的垂直平分线,判断即可.【详解】因为AB=AC ,且AD ⊥BC ,得AP 是BC 的垂直平分线,所以PB=PC ,则A 是真命题; 因为PB=PC ,且AD ⊥BC ,得AP 是BC 的垂直平分线,所以AB=AC ,则B 是真命题;因为AB=AC ,且⊥1=⊥2,得AP 是BC 的垂直平分线,所以PB=PC ,则C 是真命题;因为PB=PC ,⊥BCP 是等腰三角形,⊥1=⊥2,不能判断AP 是BC 的垂直平分线,所以AB 和AC 不一定相等,则D 是假命题.故选:D .【点睛】本题主要考查了等腰三角形的性质和判定,掌握性质定理是解题的关键.3.(2022·江苏宿迁·中考真题)若等腰三角形的两边长分别是3cm 和5cm ,则这个等腰三角形的周长是( ) A .8cmB .13cmC .8cm 或13cmD .11cm 或13cm【答案】D【分析】题目给出等腰三角形有两条边长为3和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:当3是腰时,⊥3+3>5,⊥3,3,5能组成三角形,此时等腰三角形的周长为3+3+5=11(cm ),当5是腰时,⊥3+5>5,5,5,3能够组成三角形,此时等腰三角形的周长为5+5+3=13(cm ),则三角形的周长为11cm 或13cm .故选:D【点睛】本题考查等腰三角形的性质及三角形三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.4.(2022·浙江杭州·中考真题)如图,CD ⊥AB 于点D ,已知⊥ABC 是钝角,则( )A.线段CD是ABC的AC边上的高线B.线段CD是ABC的AB边上的高线C.线段AD是ABC的BC边上的高线D.线段AD是ABC的AC边上的高线【答案】B【分析】根据高线的定义注意判断即可.【详解】⊥ 线段CD是ABC的AB边上的高线,⊥A错误,不符合题意;⊥ 线段CD是ABC的AB边上的高线,⊥B正确,符合题意;⊥ 线段AD是ACD的CD边上的高线,⊥C错误,不符合题意;⊥线段AD是ACD的CD边上的高线,⊥D错误,不符合题意;故选B.【点睛】本题考查了三角形高线的理解,熟练掌握三角形高线的相关知识是解题的关键.5.(2022·湖南邵阳·中考真题)下列长度的三条线段能首尾相接构成三角形的是()A.1cm,2cm,3cm B.3cm,4cm,5cmC.4cm,5cm,10cm D.6cm,9cm,2cm【答案】B【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:根据三角形的三边关系,知A、1+2=3,不能组成三角形,故选项错误,不符合题意;B、3+4>5,能够组成三角形,故选项正确,符合题意;C、5+4<10,不能组成三角形,故选项错误,不符合题意;D、2+6<9,不能组成三角形,故选项错误,不符合题意;故选:B.【点睛】此题考查了三角形的三边关系.解题的关键是看较小的两个数的和是否大于第三个数.6.(2022·云南·中考真题)如图,OB平分⊥AOC,D、E、F分别是射线OA、射线OB、射线OC上的点,D、E、F与O点都不重合,连接ED、EF若添加下列条件中的某一个.就能使DOE FOE,你认为要添加的那个条件是()A .OD =OEB .OE =OFC .⊥ODE =⊥OED D .⊥ODE =⊥OFE【答案】D【分析】根据OB 平分⊥AOC 得⊥AOB =⊥BOC ,又因为OE 是公共边,根据全等三角形的判断即可得出结果.【详解】解:⊥OB 平分⊥AOC ⊥⊥AOB =⊥BOC当⊥DOE ⊥⊥FOE 时,可得以下结论:OD =OF ,DE =EF ,⊥ODE =⊥OFE ,⊥OED =⊥OEF .A 答案中OD 与OE 不是⊥DOE ⊥⊥FOE 的对应边,A 不正确;B 答案中OE 与OF 不是⊥DOE ⊥⊥FOE 的对应边,B 不正确;C 答案中,⊥ODE 与⊥OED 不是⊥DOE ⊥⊥FOE 的对应角,C 不正确;D 答案中,若⊥ODE =⊥OFE , 在⊥DOE 和⊥FOE 中,DOE FOE OE OEODE OFE =⎧⎪=⎨⎪=⎩∠∠∠∠ ⊥⊥DOE ⊥⊥FOE (AAS )⊥D 答案正确.故选:D . 【点睛】本题考查三角形全等的判断,理解全等图形中边和角的对应关系是解题的关键.7.(2022·浙江湖州·中考真题)如图,已知在锐角⊥ABC 中,AB =AC ,AD 是⊥ABC 的角平分线,E 是AD 上一点,连结EB ,E C .若⊥EBC =45°,BC =6,则⊥EBC 的面积是( )A .12B .9C .6 D.【答案】B【分析】根据三线合一可得ED BC ⊥,根据垂直平分线的性质可得EB EC =,进而根据⊥EBC =45°,可得BEC △为等腰直角三角形,根据斜边上的中线等于斜边的一半可得132DE BC ==,然后根据三角形面积公式即可求解. 【详解】解: AB =AC ,AD 是⊥ABC 的角平分线,,AD BD BD DC ∴⊥=,EB EC ∴=,⊥EBC =45°,45ECB EBC ∠=∠=︒,∴BEC △为等腰直角三角形,6BC =,∴132DE BC ==,则⊥EBC 的面积是13692⨯⨯=.故选B .【点睛】本题考查了等腰三角形的性质与判定,垂直平分线的性质,直角三角形中斜边上的中线等于斜边的一半,掌握等腰三角形的性质与判定是解题的关键.8.(2022·江苏扬州·中考真题)如图,小明家仿古家具的一块三角形形状的玻璃坏了,需要重新配一块.小明通过电话给玻璃店老板提供相关数据,为了方便表述,将该三角形记为ABC ∆,提供了下列各组元素的数据,配出来的玻璃不一定符合要求的是( )A .,,AB BC CAB .,,AB BC B ∠ C .,,AB AC B ∠D .,,∠∠A B BC【答案】C 【分析】根据SSS ,SAS ,ASA 逐一判定,其中SSA 不一定符合要求.【详解】A. ,,AB BC CA .根据SSS 一定符合要求;B. ,,AB BC B ∠.根据SAS 一定符合要求;C. ,,AB AC B ∠.不一定符合要求;D. ,,∠∠A B BC .根据ASA 一定符合要求.故选:C .【点睛】本题考查了三角形全等的判定,解决问题的关键是熟练掌握判定三角形全等的SSS ,SAS ,ASA 三个判定定理.9.(2022·山东泰安·中考真题)如图,30AOB ∠=︒,点M 、N 分别在边OA OB 、上,且3,5OM ON ==,点P 、Q 分别在边OB OA 、上,则MP PQ QN ++的最小值是( )A B C 2 D 2【答案】A 【分析】作M 关于OB 的对称点M ′,作N 关于OA 的对称点N ′,连接M ′N ′,即为MP +PQ +QN 的最小值;证出⊥ONN ′为等边三角形,⊥OMM ′为等边三角形,得出⊥N ′OM ′=90°,由勾股定理求出M ′N ′即可.【详解】解:作M 关于OB 的对称点M ′,作N 关于OA 的对称点N ′,如图所示:连接M ′N ′,即为MP +PQ +QN 的最小值.根据轴对称的定义可知:5ON ON '==,3OM OM '==,⊥N ′OQ =⊥M ′OB =30°,⊥⊥NON ′=60°,'60MOM ∠=︒,⊥⊥ONN ′为等边三角形,⊥OMM ′为等边三角形,⊥⊥N ′OM ′=90°,⊥在Rt⊥M ′ON ′中,M ′NA .【点睛】本题考查了轴对称--最短路径问题,根据轴对称的定义,找到相等的线段,得到等边三角形是解题的关键.10.(2022·浙江金华·中考真题)如图,AC 与BD 相交于点O ,,OA OD OB OC ==,不添加辅助线,判定ABO DCO △≌△的依据是( )A .SSSB .SASC .AASD .HL【答案】B【分析】根据OA OD =,OB OC =,AOB COD ∠=∠正好是两边一夹角,即可得出答案. 【详解】解:⊥在⊥ABO 和⊥DCO 中,OA OD AOB COD OB OC =⎧⎪∠=∠⎨⎪=⎩,⊥()SAS ABO DCO ≌△△,故B 正确.故选:B . 【点睛】本题主要考查了全等三角形的判定,熟练掌握两边对应相等,且其夹角也对应相等的两个三角形全等,是解题的关键.11.(2022·浙江金华·中考真题)已知三角形的两边长分别为5cm 和8cm ,则第三边的长可以是( ) A .2cmB .3cmC .6cmD .13cm【答案】C【分析】先确定第三边的取值范围,后根据选项计算选择.【详解】设第三边的长为x ,⊥ 角形的两边长分别为5cm 和8cm ,⊥3cm <x <13cm ,故选C .【点睛】本题考查了三角形三边关系定理,熟练确定第三边的范围是解题的关键.12.(2022·安徽·中考真题)已知点O 是边长为6的等边⊥ABC 的中心,点P 在⊥ABC 外,⊥ABC ,⊥P AB ,⊥PBC ,⊥PCA 的面积分别记为0S ,1S ,2S ,3S .若12302S S S S ++=,则线段OP 长的最小值是( )A B C .D 【答案】B【分析】根据12302S S S S ++=,可得1012S S =,根据等边三角形的性质可求得⊥ABC 中AB 边上的高1h 和⊥P AB 中AB 边上的高2h 的值,当P 在CO 的延长线时,OP 取得最小值,OP =CP -OC ,过O 作OE ⊥BC ,求得OC =【详解】解:如图,2PDB BDC S S S ,3PDA ADC S S S , ⊥1231()()PDB BDC PDA ADC S S S S S S S S ++=++++=1()()PDB PDA BDC ADC S S S S S ++++ =1PAB ABC S S S ++=110S S S ++ =102S S +=02S ,⊥1012S S =, 设⊥ABC 中AB 边上的高为1h ,⊥P AB 中AB 边上的高为2h , 则0111116322S AB h h h ,1222116322S AB h h h ,⊥211332h h ,⊥122h h =, ⊥⊥ABC 是等边三角形,⊥22166()332h ,2113322h h ,⊥点P 在平行于AB ,且到AB ⊥当点P 在CO 的延长线上时,OP 取得最小值,过O 作OE ⊥BC 于E ,⊥12932CP h h , ⊥O 是等边⊥ABC 的中心,OE ⊥BC ⊥⊥OCE =30°,CE =132BC = ⊥OC =2OE⊥222OE CE OC +=,⊥2223(2)OE OE ,解得OE ⊥OC =⊥OP =CP -OC 52332.故选B . 【点睛】本题考查了等边三角形的性质,勾股定理,三角形的面积等知识,弄清题意,找到P 点的位置是解题的关键.13.(2022·四川南充·中考真题)如图,在Rt ABC 中,90,C BAC ∠=︒∠的平分线交BC 于点D ,DE //AB ,交AC 于点E ,DF AB ⊥于点F ,5,3DE DF ==,则下列结论错误的是( )A .1BF =B .3DC = C .5AE =D .9AC =【答案】A 【分析】根据角平分线的性质得到CD =DF =3,故B 正确;根据平行线的性质及角平分线得到AE =DE =5,故C 正确;由此判断D 正确;再证明⊥BDF ⊥⊥DEC ,求出BF =CD =3,故A 错误.【详解】解:在Rt ABC 中,90,C BAC ∠=︒∠的平分线交BC 于点D ,DF AB ⊥,⊥CD =DF =3,故B 正确;⊥DE =5,⊥CE =4,⊥DE //AB ,⊥⊥ADE =⊥DAF ,⊥⊥CAD =⊥BAD ,⊥⊥CAD =⊥ADE ,⊥AE =DE =5,故C 正确;⊥AC =AE +CE =9,故D 正确;⊥⊥B =⊥CDE ,⊥BFD =⊥C =90°,CD =DF ,⊥⊥BDF ⊥⊥DEC ,⊥BF =CD =3,故A 错误;故选:A .【点睛】此题考查了角平分线的性质定理,平行线的性质,等边对等角证明角相等,全等三角形的判定及性质,熟记各知识点并综合应用是解题的关键.14.(2022·四川德阳·中考真题)八一中学校九年级2班学生杨冲家和李锐家到学校的直线距离分别是5km 和3km .那么杨冲,李锐两家的直线距离不可能...是( ) A .1kmB .2kmC .3kmD .8km【答案】A【分析】利用构成三角形的条件即可进行解答.【详解】以杨冲家、李锐家以及学校这三点来构造三角形,设杨冲家与李锐家的直线距离为a , 则根据题意有:5-353a +<<,即28a <<,当杨冲家、李锐家以及学校这三点共线时,538a =+=或者532a =-=,综上a 的取值范围为:28a ≤≤,据此可知杨冲家、李锐家的距离不可能是1km ,故选:A .【点睛】本题考查了构成三角形的条件的知识,构成三角的条件:三角形中任意的两边之和大于第三边,任意的两边之差小于第三边.15.(2022·山东泰安·中考真题)如图,⊥ABC 的外角⊥ACD 的平分线CP 与内角⊥ABC 的平分线BP 交于点P ,若⊥BPC =40°,则⊥CAP =( )A .40°B .45°C .50°D .60°【答案】C 【分析】根据外角与内角性质得出⊥BAC 的度数,再利用角平分线的性质以及直角三角形全等的判定,得出⊥CAP =⊥F AP ,即可得出答案.【详解】解:延长BA ,作PN ⊥BD ,PF ⊥BA ,PM ⊥AC ,设⊥PCD =x °,⊥CP 平分⊥ACD ,⊥⊥ACP =⊥PCD =x °,PM =PN ,⊥BP 平分⊥ABC ,⊥⊥ABP =⊥PBC ,PF =PN ,⊥PF =PM ,⊥⊥BPC =40°,⊥⊥ABP =⊥PBC =⊥PCD ﹣⊥BPC =(x ﹣40)°,⊥⊥BAC =⊥ACD ﹣⊥ABC =2x °﹣(x °﹣40°)﹣(x °﹣40°)=80°,⊥⊥CAF =100°,在Rt⊥PF A 和Rt⊥PMA 中,{PA PAPM PF ==,⊥Rt⊥PF A ⊥Rt⊥PMA (HL ),⊥⊥F AP =⊥P AC =50°.故选C .【点睛】本题考查了角平分线的性质以及三角形外角的性质和直角三角全等的判定等知识,根据角平分线的性质得出PM =PN =PF 是解题的关键.16.(2022·浙江绍兴·中考真题)如图,把一块三角板ABC 的直角顶点B 放在直线EF 上,30C ∠=︒,AC ∥EF ,则1∠=( )A .30°B .45°C .60°D .75°【答案】C【分析】根据三角板的角度,可得60A ∠=︒,根据平行线的性质即可求解. 【详解】解:30C ∠=︒,9060A C ∴∠=︒-∠=︒AC ∥EF ,160A ∴∠=∠=︒故选C【点睛】本题考查了平行线的性质,掌握平行线的性质是解题的关键.17.(2022·安徽·中考真题)两个矩形的位置如图所示,若1∠=α,则2∠=( )A .90α-︒B .45α-︒C .180α︒-D .270α︒-【答案】C 【分析】用三角形外角性质得到⊥3=⊥1-90°=α-90°,用余角的定义得到⊥2=90°-⊥3=180°-α.【详解】解:如图,⊥3=⊥1-90°=α-90°,⊥2=90°-⊥3=180°-α.故选:C .【点睛】 本题主要考查了矩形,三角形外角,余角,解决问题的关键是熟练掌握矩形的角的性质,三角形的外角性质,互为余角的定义.18.(2022·浙江杭州·中考真题)如图,已知AB CD ∥,点E 在线段AD 上(不与点A ,点D 重合),连接CE .若⊥C =20°,⊥AEC =50°,则⊥A =( )A .10°B .20°C .30°D .40°【答案】C 【分析】根据三角形外角的性质、平行线的性质进行求解即可;【详解】解:⊥⊥C +⊥D =⊥AEC ,⊥⊥D =⊥AEC -⊥C =50°-20°=30°,⊥AB CD ∥,⊥⊥A =⊥D=30°,故选:C .【点睛】本题主要考查三角形外角的性质、平行线的性质,掌握相关性质并灵活应用是解题的关键. 19.(2022·湖南娄底·中考真题)一条古称在称物时的状态如图所示,已知180∠=︒,则2∠=( )A .20︒B .80︒C .100︒D .120︒【答案】C 【分析】如图,由平行线的性质可得80,BCD ∠=︒ 从而可得答案.【详解】解:如图,由题意可得:,AB CD ∥ 180∠=︒,180,BCD 218080100, 故选C【点睛】本题考查的是平行线的性质,邻补角的含义,掌握“两直线平行,内错角相等”是解本题的关键. 20.(2022·江苏苏州·中考真题)如图,直线AB 与CD 相交于点O ,75AOC ∠=︒,125∠=︒,则2∠的度数是( )A .25°B .30°C .40°D .50°【答案】D【分析】根据对顶角相等可得75BOD ∠=︒,之后根据125∠=︒,即可求出2∠.【详解】解:由题可知75BOD AOC ∠=∠=︒,125∠=︒∵, 217525BOD ∴∠=∠-∠=︒-︒=50︒.故选:D .【点睛】本题主要考查对顶角和角的和与差,掌握对顶角相等是解决问题的关键.二.填空题21.(2022·湖南株洲·中考真题)如图所示,点O 在一块直角三角板ABC 上(其中30ABC ∠=︒),OM AB ⊥于点M ,ON BC ⊥于点N ,若OM ON =,则ABO ∠=_________度.【答案】15【分析】根据ON BC ⊥,OM AB ⊥,OM ON =判断OB 是ABC ∠的角平分线,即可求解.【详解】解:由题意,ON BC ⊥,OM AB ⊥,OM ON =,即点O 到BC 、AB 的距离相等,⊥ OB 是ABC ∠的角平分线,⊥ 30ABC ∠=︒, ⊥1152ABO ABC ∠=∠=︒.故答案为:15.【点睛】本题考查角平分线的定义及判定,熟练掌握“到一个角的两边距离相等的点在这个角的平分线上”是解题的关键.22.(2022·浙江嘉兴·中考真题)小曹同学复习时将几种三角形的关系整理如图,请帮他在横线上____填上一个适当的条件.【答案】60A ∠=︒(答案不唯一)【分析】利用等边三角形的判定定理即可求解.【详解】解:添加60A ∠=︒,理由如下: ABC 为等腰三角形,180602A B C ︒-∠∴∠=∠==︒, ABC ∴为等边三角形,故答案为:60A ∠=︒(答案不唯一).【点睛】本题考查了等边三角形的判断,解题的关键是掌握三角形的判断定理.23.(2022·浙江绍兴·中考真题)如图,在ABC 中,40ABC ∠=︒,80BAC ∠=︒,以点A 为圆心,AC 长为半径作弧,交射线BA 于点D ,连接CD ,则BCD ∠的度数是______.【答案】10°或100°【分析】分两种情况画图,由作图可知得AC AD =,根据等腰三角形的性质和三角形内角和定理解答即可.【详解】解:如图,点D 即为所求;在ABC ∆中,40ABC ∠=︒,80BAC ∠=︒,180408060ACB ∴∠=︒-︒-︒=︒,由作图可知:AC AD =,1(18080)502ACD ADC ∴∠=∠=︒-︒=︒, 605010BCD ACB ACD ∴∠=∠-∠=︒-︒=︒;由作图可知:AC AD =',ACD AD C ∴∠'=∠',80ACD AD C BAC ∠'+∠'=∠=︒,40AD C ∴∠'=︒,1801804040100BCD ABC AD C ∴∠'=︒-∠-∠'=︒-︒-︒=︒.综上所述:BCD ∠的度数是10︒或100︒.故答案为:10︒或100︒.【点睛】本题考查了作图-复杂作图,三角形内角和定理,等腰三角形的判定与性质,解题的关键是掌握基本作图方法.24.(2022·云南·中考真题)已知⊥ABC 是等腰三角形.若⊥A =40°,则⊥ABC 的顶角度数是____.【答案】40°或100°【分析】分⊥A 为三角形顶角或底角两种情况讨论,即可求解.【详解】解:当⊥A 为三角形顶角时,则⊥ABC 的顶角度数是40°;当⊥A 为三角形底角时,则⊥ABC 的顶角度数是180°-40°-40°=100°;故答案为:40°或100°.【点睛】本题考查了等腰三角形的性质,此类题目,难点在于要分情况讨论.25.(2022·山东滨州·中考真题)如图,屋顶钢架外框是等腰三角形,其中AB AC =,立柱AD BC ⊥,且顶角120BAC ∠=︒,则C ∠的大小为_______.【答案】30°##30度【分析】先由等边对等角得到B C ∠=∠,再根据三角形的内角和进行求解即可.【详解】AB AC =,B C ∴∠=∠,120BAC ∠=︒,180BAC B C ∠+∠+∠=︒,180120302C ︒-︒∴∠==︒, 故答案为:30°.【点睛】本题考查了等腰三角形的性质及三角形的内角和定理,熟练掌握知识点是解题的关键. 26.(2022·山东泰安·中考真题)如图,⊥ ABC 中,⊥BAC =90°,AB =3,AC =4,点 D 是 BC 的中点,将⊥ ABD 沿 AD 翻折得到⊥ AED ,连 CE ,则线段 CE 的长等于_____【答案】75【详解】如图,过点A 作AH ⊥BC 于点H ,连接BE 交AD 于点O ,⊥⊥ABC 中,⊥BAC =90°,AB =3,AC =4,点D 是BC 的中点,⊥BC 5,AD =BD =2.5, ⊥12BC ·AH =12AC ·AB ,即2.5AH =6,⊥AH =2.4,由折叠的性质可知,AE =AB ,DE =DB =DC ,⊥AD 是BE 的垂直平分线,⊥BCE 是直角三角形,⊥S ⊥ADB =12AD ·OB =12BD ·AH ,⊥OB =AH =2.4,⊥BE =4.8,⊥CE 75=.故答案为:75. 【点睛】本题的解题要点有:(1)读懂题意,画出符合要求的图形;(2)作AH ⊥BC 于点H ,连接BE 交AD 于点O ,利用面积法求出AH 和OB 的长;(3)一个三角形中,若一边上的中线等于这边的一半,则这边所对的角是直角.27.(2022·湖北武汉·中考真题)如图,沿AB 方向架桥修路,为加快施工进度,在直线AB 上湖的另一边的D 处同时施工.取150ABC ∠=︒,1600m BC =,105BCD ∠=︒,则C ,D 两点的距离是_________m .【答案】【分析】如图所示:过点C 作CE BD ⊥于点E ,先求出800m CE =,再根据勾股定理即可求出CD 的长.【详解】如图所示:过点C 作CE BD ⊥于点E ,则⊥BEC =⊥DEC =90°,150ABC ∠=︒,30CBD ∴∠=︒,⊥⊥BCE =90°-30°=60°,又105BCD ∠=︒,45CDB ∴∠=︒,⊥⊥ECD =45°=⊥D ,⊥CE DE =,1600m BC =,111600800m 22CE BC ∴==⨯=,22222CD CE DE CE ∴=+=,即CD ==.故答案为:【点睛】本题考查三角形内角和定理、等腰三角形的判定与性质、直角三角形的性质及勾股定理,解题的关键是熟练掌握相关内容并能灵活运用.28.(2022·湖北黄冈·中考真题)勾股定理最早出现在商高的《周髀算经》:“勾广三,股修四,经隅五”.观察下列勾股数:3,4,5;5,12,13;7,24,25;…,这类勾股数的特点是:勾为奇数,弦与股相差为1,柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17;…,若此类勾股数的勾为2m (m ≥3,m 为正整数),则其弦是________(结果用含m 的式子表示).【答案】m 2-1【分析】2m 为偶数,设其股是a ,则弦为a +2,根据勾股定理列方程即可得到结论.【详解】⊥2m 为偶数,⊥设其股是a ,则弦为a +2,根据勾股定理得,(2m )2+a 2=(a +2)2,解得a =m 2-1,故答案为:m 2-1.【点睛】本题考查了勾股数,勾股定理,熟练掌握勾股定理是解题的关键.。
平行线与三角形(含答案)直线与三角形一、相关知识点复习:(一)平行线1.定义:在同一平面内,不相交的两条直线叫做平行线。
2.判定:(1)同位角相等,两直线平行。
(2)内错角相等,两直线平行。
(3)同旁内角相等,两直线平行。
(4)垂直于同一直线的两直线平行。
3.性质:(1)经过直线外一点,有且只有一条直线与这条直线平行。
(2)如果两条直线都与第三条直线平行,那么这两条直线平行。
(3)两直线平行,同位角相等。
(4)两直线平行,内错角相等。
(5)两直线平行,同旁内角互补。
(二)三角形4.一般三角形的性质(1)角与角的关系:三个内角的和等于180°;一个外角等于和它不相邻的两个内角之和,并且大于任何—个和它不相邻的内角。
(2)边与边的关系:三角形中任两边之和大于第三边,任两边之差小于第三边。
(3)边与角的大小对应关系:在一个三角形中,等边对等角;等角对等边。
(4)三角形的主要线段的性质(见下表):5.几种特殊三角形的特殊性质(1)等腰三角形的特殊性质:①等腰三角形的两个底角相等;②等腰三角形顶角的平分线、底边上的中线和底边上的高是同一条线段,这条线段所在的直线是等腰三角形的对称轴。
(2)等边三角形的特殊性质:①等边三角形每个内角都等于60°;②等边三角形外心、内心合一。
(3)直角三角形的特殊性质:①直角三角形的两个锐角互为余角;②直角三角形斜边上的中线等于斜边的一半;③勾股定理:直角三角形斜边的平方等于两直角边的平方和仅供学习与交流,如有侵权请联系网站删除谢谢2(其逆命题也成立);④直角三角形中,30°的角所对的直角边等于斜边的一半;⑤直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。
6.三角形的面积(1)一般三角形:S△ =21a h(h是a边上的高)(2)直角三角形:S△ =21a b =21c h(a、b是直角边,c是斜边,h是斜边上的高)(3)等边三角形: S△ =43a2(a是边长)(4)等底等高的三角形面积相等;等底的三角形面积的比等于它们的相应的高的比;等高的三角形的面积的比等于它们的相应的底的比。
7.相似三角形(1)相似三角形的判别方法:①如果一个三角形的两角分别与另一个三角形的两角对应相等,那么这两个三角形相似;②如果一个三角形的两边与另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似;③如果一个三角形的三边和另一个三角形的三边对应成比例,那么这两个三角形相似。
(2)相似三角形的性质:①相似三角形对应高的比,对应中线的比,对应角平分线的比都等于相似比;②相似三角形的周长比等于相似比;③相似三角形的面积比等于相似比的平方。
8.全等三角形两个能够完全重合的三角形叫全等三角形,全等三角形的对应角相等,对应边相等,其他的对应线段也相等。
判定两个三角形全等的公理或定理:①一般三角形有SAS、ASA、AAS、SSS;②直角三角形还有HL二、巩固练习:一、选择题:1.如图,若AB∥CD,∠C= 60º,则∠A+∠E=()A.20º B.30º C.40º D.60º2.如图,∠1=∠2,则下列结论一定成立的是()A.AB∥CD B.AD∥BC C.∠B=∠D D.∠3=∠43.如图,AD⊥BC,DE∥AB,则∠B和∠1的关系是()A. 相等B. 互补C. 互余D. 不能确定4.如图,下列判断正确的是()A.∠1和∠5是同位角; B.∠2和∠6是同位角;C.∠3和∠5是内错角; D.∠3和∠6是内错角.5.下列命题正确的是()A.两直线与第三条直线相交,同位角相等;B.两直线与第三条直线相交,内错角相等;C.两直线平行,内错角相等; D.两直线平行,同旁内角相等。
6.如图,若AB∥CD,则()A.∠1 = ∠4 B.∠3 = ∠5C.∠4 = ∠5 D.∠3 = ∠47.如图,l1∥l2,则α= ()A.50° B.80°第6题第7题仅供学习与交流,如有侵权请联系网站删除谢谢3仅供学习与交流,如有侵权请联系网站删除 谢谢 4DAB CEC .85°D .95°8.下列长度的三条线段能组成三角形的是( ) A.3cm ,4cm ,8cm B.5cm ,6cm ,11cm C.5cm ,6cm ,10cm D.3cm ,8cm ,12cm9.等腰三角形中,一个角为50°,则这个等腰三角形的顶角的度数为( ) A.150° B.80° C.50°或80° D.70°10.如图,点D 、E 、F 是线段BC 的四等分点,点A 在BC 外,连接AB 、AD 、AE 、 AF 、AC ,若AB = AC ,则图中的全等三角形共有( )对。
A. 2 B. 3 C. 4 D. 511.三角形的三边分别为 a 、b 、c ,下列哪个三角形是直角三角形?( ) A. a = 3,b = 2,c = 4 B. a = 15,b = 12,c = 9 C. a = 9,b = 8,c = 11 D. a = 7,b = 7,c = 412.如图,△AED ∽ △ABC ,AD = 4cm ,AE = 3cm ,AC = 8cm ,那么这两个三角形的相似比是( )A .43B .21C .83D .213.下列结论中,不正确的是( )A .有一个锐角相等的两个直角三角形相似;B .有一个锐角相等的两个等腰三角形相似;C .各有一个角等于120°的两个等腰三角形相似;D .各有一个角等于60°的两个等腰三角形相似。
二、填空题:1.如图,直线a ∥b ,若∠1 = 50°,则∠2 = 。
2.如图,AB∥CD ,∠1 = 40°,则∠2 = 。
3.如图,DE∥BC ,BE 平分∠ABC ,若∠ADE = 80°,则∠1 = . 4.如图, l 1∥l 2,∠1 = 105°,∠2 = 140°,则∠α = .5.△ABC 中,BC = 12cm ,BC 边上的高AD = 6cm ,则△ABC 的面积为 。
6.如果一个三角形的三边长分别为x ,2,3,那么x 的取值范围是 。
7.在△ABC 中,AB = AC ,∠A = 80°,则∠B = ,∠C = 。
8.在△ABC 中,∠C = 90°,∠A = 30°,BC = 4cm ,则AB = 。
9.已知直角三角形两直角边分别为6和8,则斜边上的中线长是 。
10.等腰直角三角形的斜边为2,则它的面积是 。
11.在Rt△ABC 中,其中两条边的长分别是3和4,则这个三角形的面积等于 。
12.已知等腰三角形的一边长为6,另一边长为10,则它的周长为 。
13.等腰三角形底边上的高等于腰长的一半,则它的顶角度数为 。
14.如图,A 、B 两点位于一个池塘的两端,冬冬想用绳子测量A 、B 两点 间的距离,但绳子不够长,一位同学帮他想了一个办法:先在地上取 一个可以直接到达A 、B 的点C ,找到AC ,BC 的中点D 、E ,并且测得DE 的长为15m ,则A 、B 两点间的距离为__________. 15.如图,在△ABC 和△DEF 中,AB=DE ,∠B=∠E .要使△ABC≌△DEF ,需要补充的是一个..条件: 。
16.太阳光下,某建筑物在地面上的影长为36m ,同时量得高为1.2m 的测杆影长为2m ,那么该建筑物的高为 。
三、解答题:仅供学习与交流,如有侵权请联系网站删除 谢谢51.如图,已知△ABC 中,AB = AC ,AE = AF ,D 是BC 的中点. 求证: ∠1 = ∠22.如图,已知D 是BC 的中点,BE⊥AE 于E ,CF⊥AE 于F. 求证:BE = CF3.如图,CE 平分∠ACB 且CE⊥BD ,∠DAB =∠DBA ,AC = 18,△CDB 的周长是28。
求BD 的长。
4.已知:如图,点D 、E 在△ABC 的边BC 上,AD =AE ,BD =EC , 求证:AB =AC练习答案: 一、选择题1、D2、B3、C4、A5、C6、C7、C8、C9、C 10、C 11、B 12、B 13、B 二、填空题14、130° 15、140° 16、40° 17、65° 18、36cm 2 19、1<x<5 20、50°、50° 21、8cm 22、5 23、124、6或 25、22或26 26、120° 27、30m 28、BC=EF 或∠A=∠D 或∠C=∠F 29、21.6m 三、证明题30、BE=CF 、∠B=∠C 、BD=DC →△BED ≌△CFD →∠1=∠2 31、△BED ≌△CFD →BE=CF32、∠A=∠DBA →AD=BD →CD+BD=AC=18、△CDB 的周长是28→BC=10 33、AD=AE →∠ADE=∠AED →∠ADB=∠AEC →△ABD ≌△AEC →AB=AC34、解:如图,根据题意,有AB ∥CD ,PM ⊥CD 于N 点,交AB 于M 点,且AB=20m ,CD=50m , PM=25m ,AB ∥CD →△PAB ∽△PCD →→→PN=62.5→MN=37.5AEDCB 372NM DCBAPPM PN =ABCD25PN =2050。