Delaunay三角剖分
- 格式:pdf
- 大小:201.98 KB
- 文档页数:11
上下扫描线的delaunay三角剖分算法Delaunay三角剖分是一种广泛应用于计算几何和数值分析的算法,它主要用于生成二维平面上的三角形网格。
Delaunay三角剖分具有很多优良的性质,例如空外接圆性质和最小角最大性质等。
上下扫描线的Delaunay三角剖分算法是一种高效的Delaunay三角剖分算法,其基本思想是利用扫描线从上到下或从下到上扫描整个区域,并在扫描过程中对点进行插入和删除操作,从而生成Delaunay三角剖分。
具体步骤如下:
1. 将所有点按照y坐标从大到小排序。
2. 从上到下扫描整个区域,对于每个扫描到的点,将其插入到Delaunay三角剖分中。
具体做法是:找到该点的最近点,然后删除该点,并将该点和最近点之间的线段加入到Delaunay三角剖分中。
3. 重复步骤2,直到扫描完所有点。
该算法的时间复杂度为O(nlogn),其中n为点的数量。
这是因为需要将所有点排序,并且每次插入一个点都需要在已排序的点中进行二分查找。
需要注意的是,该算法只能处理凸多边形的边界,如果存在凹多边形或自相交的情况,需要使用其他算法进行处理。
三维空间 delaunay三角剖分的分治算法
三维空间的Delaunay三角剖分可以使用分治算法来实现。
分
治算法是一种将问题分解成更小的子问题来解决的算法思想。
以下是三维空间Delaunay三角剖分的分治算法的基本步骤:
1. 将输入的点集P按照x坐标进行排序,得到有序点集P_x。
2. 对P_x进行分割,将点集分成两部分,左边部分为P_l,右
边部分为P_r。
3. 递归调用Delaunay三角剖分算法,分别对P_l和P_r进行处理。
这两个子问题可以分别在不同的处理器或线程上进行处理,从而加快算法的执行速度。
4. 将子问题的结果合并,得到整体的Delaunay三角剖分结果。
在递归调用Delaunay三角剖分算法时,同样的分治策略可以
应用到三维空间中。
对于每一个子问题,可以按照y坐标对点集进行排序,然后再递归地将子问题分割成更小的子问题。
当子问题中的点个数达到一个阈值时,可以使用其他的三维空间Delaunay三角剖分算法进行解决,如增量法或基于四面体的
方法。
通过使用分治算法,可以将大问题划分成许多小问题,并行地解决这些小问题,从而提高算法的执行效率。
同时,在三维空间中使用分治算法可以减少问题的复杂性,使得算法更易于实现和理解。
Voronoi图和Delaunay三⾓剖分刷题的时候发现了这么⼀个新的东西:Voronoi图和Delaunay三⾓剖分发现这个东西可以O(nlogn)解决平⾯图最⼩⽣成树问题感觉⾮常棒然后就去学了..看的,感谢n+e的耐⼼教导..Voronoi图是个啥Delaunay三⾓剖分最优三⾓剖分就是使每⼀个三⾓形的外接圆都不包含其他的点的三⾓剖分这个算法就是求最优三⾓剖分的简单来说就是分治合并对于点数⼩于等于3的可以直接连边合并的时候1)先找到两边最下⾯的点,这个可以⽤凸包求,然后连边2)对于现在得到的两个点p1、p2,找到⼀个点连接着p1且由这三个点的外接圆不包含别的任何点,并删除这个外接圆经过的边,p2也是如此3)看现在找出来的两个点y1、y2,找其中⼀个点使得它与p1、p2的外接圆不包含另外⼀个点,使其与对应的点连边4)重复(2)(3)直到⽆边可连对n+e代码的修改⼀开始压根不知道怎么实现这个算法的时候去看了看n+e的代码..发现他的代码中每次都要遍历p1和p2的所有边,这样的做法在特殊的图⾥⾯是O(n2)的可以说他⾃⼰出的数据偏⽔??(雾然后看了上⾯那篇详细的⽂章,发现它的边是按照顺时针或者逆时针的⽅向进⾏取边的,这样遇到的边要不删掉要不就是最优的所以我开了⼀个双向链表来储存边,使得边是按照(−π2,3π2]顺时针排列然后就会发现细节⼀⼤堆..调了我3天的东西就直接放上来好了判断⼀个点是否在某三个点的外接圆内在⾥⾯有讲,但是貌似图都爆掉了??就是把点映射到z=x2+y2的抛物⾯上,这三个点就会形成⼀个新的平⾯,然后再判断剩下的那个点和这个平⾯的关系即可下⾯放⼏张n+e给我的图⽚⽅便理解?抛物⾯z=x2+y2其实第三张图应该很清晰了吧..在圆内的点都会在平⾯下⽅,⽽在圆外的都会在平⾯上⽅这个⽤三维叉积点积判⼀下就好了Code下⾯就贴⼀下我3天的成果吧..还有什么问题请指教..bzoj4219#include <cstdio>#include <cstring>#include <cstdlib>#include <algorithm>#include <cmath>#include <vector>#define eps 1e-10using namespace std;const int Maxn = 100010;double _max(double x, double y) { return x > y ? x : y; }double _min(double x, double y) { return x < y ? x : y; }struct node {int y, nxt, frt, opp;}a[Maxn<<3]; int first[Maxn], last[Maxn], num[Maxn<<3], now;int sta[Maxn], tp;int pb(int x, int k, int y) {int u = num[now++];a[u].y = y; a[u].frt = k;if(k){a[u].nxt = a[k].nxt;if(a[k].nxt) a[a[k].nxt].frt = u;else last[x] = u;a[k].nxt = u;} else {if(first[x]) a[first[x]].frt = u;else last[x] = u;a[u].nxt = first[x]; first[x] = u;}return u;}int pf(int x, int k, int y) {int u = num[now++];a[u].y = y; a[u].nxt = k;if(k){a[u].frt = a[k].frt;if(a[k].frt) a[a[k].frt].nxt = u;else first[x] = u;a[k].frt = u;} else {if(last[x]) a[last[x]].nxt = u;else first[x] = u;a[u].frt = last[x]; last[x] = u;}return u;}void del(int x, int k) {num[--now] = k;if(a[k].nxt) a[a[k].nxt].frt = a[k].frt;else last[x] = a[k].frt;if(a[k].frt) a[a[k].frt].nxt = a[k].nxt;else first[x] = a[k].nxt;}double _abs(double x) { return x < 0 ? -x : x; }int zero(double x) { return _abs(x) < eps ? 1 : 0; }struct Point {double x, y;Point(double x = 0, double y = 0) : x(x), y(y) {}bool operator<(const Point &A) const { return zero(x-A.x) ? y < A.y : x < A.x; } Point operator-(const Point &A) const { return Point(x-A.x, y-A.y); }}list[Maxn]; int n; double X, Y;double Cross(Point A, Point B) { return A.x*B.y-B.x*A.y; }double Dot(Point A, Point B) { return A.x*B.x+A.y*B.y; }double dis(Point A) { return sqrt(Dot(A, A)); }double dis(int x, int y) { return dis(list[y]-list[x]); }struct Point3 {double x, y, z;Point3(double x = 0, double y = 0, double z = 0) : x(x), y(y), z(z) {}Point3 operator-(const Point3 &A) const { return Point3(x-A.x, y-A.y, z-A.z); } };double Dot(Point3 A, Point3 B) { return A.x*B.x+A.y*B.y+A.z*B.z; }Point3 Cross(Point3 A, Point3 B) { return Point3(A.y*B.z-A.z*B.y, A.z*B.x-A.x*B.z, A.x*B.y-A.y*B.x); } Point3 t(Point A) { return Point3(A.x, A.y, A.x*A.x+A.y*A.y); }bool incir(Point D, Point A, Point B, Point C) {if(Cross(B-A, C-A) < -eps) swap(B, C);Point3 aa = t(A), bb = t(B), cc = t(C), dd = t(D);return Dot(Cross(bb-aa, cc-aa), dd-aa) < -eps;}bool incir(int D, int A, int B, int C) { return incir(list[D], list[A], list[B], list[C]); }void divi(int L, int R) {if(L == R) return;if(L+1 == R){int k1 = pb(L, 0, R); int k2 = pf(R, 0, L);a[k1].opp = k2; a[k2].opp = k1;return;}int mid = L+R>>1, i, j, k;divi(L, mid); divi(mid+1, R);int p1 = 0, p2 = 0; tp = 0;for(i = L; i <= R; i++){while(tp > 1 && Cross(list[i]-list[sta[tp-1]], list[sta[tp]]-list[sta[tp-1]]) > eps) tp--;sta[++tp] = i;}for(i = 1; i < tp; i++) if(sta[i] <= mid && sta[i+1] > mid){ p1 = sta[i]; p2 = sta[i+1]; break; }int kp1, kp2;for(kp1 = last[p1]; kp1; kp1 = a[kp1].frt){if(Cross(list[a[kp1].y]-list[p1], list[p2]-list[p1]) < eps || Cross(list[a[kp1].y]-list[p1], Point(0,1)) < -eps) break; }int k1 = pb(p1, kp1, p2);for(kp2 = first[p2]; kp2; kp2 = a[kp2].nxt){if(Cross(list[a[kp2].y]-list[p2], list[p1]-list[p2]) > -eps || Cross(list[a[kp2].y]-list[p2], Point(0,1)) > eps) break; }int k2 = pf(p2, kp2, p1);a[k1].opp = k2; a[k2].opp = k1;while(1){int np1 = 0, np2 = 0;for(; kp1; kp1 = a[kp1].frt){if(Cross(list[a[kp1].y]-list[p1], list[p2]-list[p1]) > -eps){if(Cross(list[a[kp1].y]-list[p1], Point(0,1)) > -eps) continue;else break;}if(a[kp1].frt && incir(a[a[kp1].frt].y, p1, p2, a[kp1].y)) del(a[kp1].y, a[kp1].opp), del(p1, kp1);else { np1 = kp1; break; }}for(; kp2; kp2 = a[kp2].nxt){if(Cross(list[a[kp2].y]-list[p2], list[p1]-list[p2]) < eps){if(Cross(list[a[kp2].y]-list[p2], Point(0,1)) < -eps) continue;else break;}if(a[kp2].nxt && incir(a[a[kp2].nxt].y, p1, p2, a[kp2].y)) del(a[kp2].y, a[kp2].opp), del(p2, kp2);else { np2 = kp2; break; }}if(!np1 && !np2) break;if(!np2 || (np1 && !incir(a[kp2].y, p1, p2, a[kp1].y))){p1 = a[kp1].y;k2 = pf(p2, kp2, p1);for(kp1 = last[p1]; kp1; kp1 = a[kp1].frt){if(Cross(list[a[kp1].y]-list[p1], list[p2]-list[p1]) < eps || Cross(list[a[kp1].y]-list[p1], Point(0,1)) < -eps) break; }k1 = pb(p1, kp1, p2);a[k1].opp = k2; a[k2].opp = k1;} else {p2 = a[kp2].y;k1 = pb(p1, kp1, p2);for(kp2 = first[p2]; kp2; kp2 = a[kp2].nxt){if(Cross(list[a[kp2].y]-list[p2], list[p1]-list[p2]) > -eps || Cross(list[a[kp2].y]-list[p2], Point(0,1)) > eps) break; }k2 = pf(p2, kp2, p1);a[k1].opp = k2; a[k2].opp = k1;}}}struct enode {int x, y; double d;enode(int x = 0, int y = 0, double d = 0) : x(x), y(y), d(d) {}bool operator<(const enode &A) const { return d < A.d; }}e[Maxn<<4]; int el;int fa[Maxn];int ff(int x) { return fa[x] == x ? x : fa[x] = ff(fa[x]); }int main() {int i, j, k;scanf("%d%lf%lf", &n, &X, &Y);for(i = 1; i <= n; i++) scanf("%lf%lf", &list[i].x, &list[i].y);now = 1;for(i = 1; i <= n<<3; i++) num[i] = i;sort(list+1, list+n+1);divi(1, n);for(i = 1; i <= n; i++){e[++el] = enode(i, n+1, _min(list[i].x, Y-list[i].y));e[++el] = enode(i, n+2, _min(list[i].y, X-list[i].x));for(k = first[i]; k; k = a[k].nxt) e[++el] = enode(i, a[k].y, dis(i, a[k].y)/2.0); }sort(e+1, e+el+1);for(i = 1; i <= n+2; i++) fa[i] = i;for(i = 1; i <= el; i++){int fx = ff(e[i].x), fy = ff(e[i].y);if(fx != fy){fa[fx] = fy;if(ff(n+1) == ff(n+2)){ printf("%lf\n", e[i].d); return 0; }}}return 0;}⼩总结??虽然这次搞这个东西⽤的时间很长.. 但是收获还是很⼤的..最后差那么⼏个点wa还是很想放弃的..但是还是坚持下了来了嘛..加油啊..Processing math: 100%。
delaunay方法
Delaunay方法,又称为Delaunay三角剖分,是前苏联数学家Delaunay在1934年提出的一种三角剖分方法。
该方法满足所谓的“最大-最小角”优化准则,即所有最小内角之和最大,从而使得划分的三角形不会出现某个内角过小的情况。
这种方法在二维情况下可以描述为:对于给定的平面点集,只存在着唯一的一种三角剖分方法,满足Delaunay三角剖分的条件,即任意一个三角形的外接圆内不包括其他结点。
Delaunay三角剖分方法在各种二维三角剖分中具有全局和局部最优性。
它可以应用于数值模拟的网格生成,尤其在复杂外形的非结构网格生成中有广泛应用。
此外,Delaunay 三角剖分方法还可以推广至多维问题,例如在三维情况下,四面体的外接球内不包含其他节点。
在具体实施过程中,三维情况下的Delaunay三角化可以包括以下步骤:在三维空间内定义一个大的凸壳区域以覆盖所有将要插入的点;根据网格步长分布要求在凸壳区域内引入一个新点;标记将被删除的四面体(其外接球包含新点的所有四面体);建立空洞边界(由被标记的四面体组成的凸壳的外边界);在剩余四面体中查找被标记四面体的邻居以
建立有效的空间连续性;利用空洞边界上每个三角形的三个顶点与新点组成新的四面体;建立空洞外原四面体和新生成的四面体的邻居关系。
delaunay 三角剖分步骤1. Delaunay三角剖分是用于将点集分割成不规则三角形的方法。
The Delaunay triangulation is a method for dividing a set of points into irregular triangles.2.首先选择一个点作为起始点。
First, select a point as the starting point.3.然后选择另外两个点与起始点构成一个三角形。
Then select two other points to form a triangle with the starting point.4.接着选择一个未被包含在任何三角形内的点。
Then select a point that is not included in any triangle.5.在所有的三角形中寻找能将这个新点包含进去的三角形。
Find a triangle among all the triangles that can include this new point.6.如果找到了这样的三角形,将这个三角形和新点围成的区域删除。
If such a triangle is found, remove the area enclosed by this triangle and the new point.7.在新的边缘上寻找新的三角形。
Find new triangles on the new edges.8.重复以上步骤,直到所有的点都被包含在三角形内。
Repeat the above steps until all points are included in triangles.9. Delaunay三角剖分具有无重叠、最小化夹角和最大化最小角的性质。
Delaunay triangulation has the properties of non-overlapping, minimizing angles, and maximizing minimum angles.10.可以使用Delaunay三角剖分来进行网格生成和空间分析。
三维空间Delaunay三角剖分算法的研究及应用一、本文概述随着计算几何和计算机图形学的发展,三维空间Delaunay三角剖分算法已成为一种重要的空间数据处理和分析技术。
本文旨在全面深入地研究三维空间Delaunay三角剖分算法的原理、实现方法以及应用领域。
本文将对三维空间Delaunay三角剖分算法的基本概念和性质进行详细的阐述,包括其定义、性质、特点以及与其他三角剖分算法的比较。
接着,本文将重点探讨三维空间Delaunay三角剖分算法的实现方法,包括增量法、分治法和扫描转换法等,并分析它们的优缺点和适用范围。
本文还将对三维空间Delaunay三角剖分算法在各个领域的应用进行详细的介绍和分析。
这些领域包括计算机科学、地理信息系统、地质学、气象学、生物医学等。
通过具体的应用案例,本文将展示三维空间Delaunay三角剖分算法在实际问题中的应用价值和效果。
本文还将对三维空间Delaunay三角剖分算法的未来发展方向进行展望,探讨其在新技术和新领域中的应用前景和挑战。
本文旨在全面系统地研究三维空间Delaunay三角剖分算法的理论和实践,为其在实际问题中的应用提供有力的支持和指导。
二、三维空间Delaunay三角剖分算法的基本原理Delaunay三角剖分算法是一种广泛应用于二维空间的数据处理算法,它的核心目标是将一组离散的二维点集剖分为一系列互不重叠的三角形,且这些三角形满足Delaunay性质。
简单来说,Delaunay 性质要求任何一个三角形的外接圆内部不包含该三角形之外的任何数据点。
初始化:为每个点分配一个初始的三角形。
这通常是通过连接每个点与它的两个最近邻点来完成的,形成一个初始的三角形网格。
合并三角形:接下来,算法会尝试合并相邻的三角形,以形成更大的三角形。
在合并过程中,算法会检查新形成的三角形是否满足Delaunay性质。
如果满足,则合并成功;如果不满足,则放弃合并,并标记这两个三角形为“已处理”。
一、概述Delaunay 三角剖分算法是计算机图形学领域中常用的一种算法,它可以将给定的点集进行高效的三角剖分,用于构建网格、进行地理信息系统分析、建立三维模型等应用。
本文将对该算法的原理、实现和应用进行介绍。
二、算法原理1. 待剖分点集在进行Delaunay三角剖分之前,需要准备一个点集,这个点集是待剖分的对象。
点集的数量取决于具体的应用,可以是二维平面上的点,也可以是三维空间中的点。
2. Delaunay 三角形在进行三角剖分时,Delaunay 三角形是一种特殊的三角形,满足以下性质:a. 任意一个点要么位于Delaunay 三角形的外接圆内部,要么位于外接圆的边上;b. 任意两个Delaunay 三角形之间的外接圆不相交。
3. Delaunay 三角剖分Delaunay 三角剖分是将给定点集进行三角剖分的过程,它的目标是构建满足Delaunay 三角形性质的三角形集合。
三、算法实现1. 基于增量法的实现增量法是Delaunay 三角剖分的一种经典算法,它的基本思想是逐步增加点,并根据Delaunay 三角形的性质进行调整。
具体步骤如下: a. 初始化:选择一个超级三角形包含所有点集,作为初始三角剖分;b. 顺序插入点:逐个将待剖分点插入到当前三角剖分中,并进行调整;c. 边界检测:检测新增的边界是否需要进行修正;d. 优化处理:对新增点周围的三角形进行优化调整。
2. 时间复杂度分析增量法的时间复杂度主要取决于点集的数量和点的分布情况,一般情况下,其时间复杂度可以达到O(nlogn)。
四、算法应用1. 图形渲染在计算机图形学中,Delaunay三角剖分常用于构建网格、进行三维渲染等。
它可以有效地分割空间,使得渲染效果更加真实。
2. 地理信息系统地理信息系统中常常需要对地理数据进行空间分析,Delaunay三角剖分可以帮助构建地理网格,进行地形分析、资源评估等。
3. 三维建模在三维建模领域,Delaunay三角剖分可以用于构建复杂的三维模型,并支持模型的分析、编辑等功能。
Delaunay三角剖分在实际中运用的最多的三角剖分是Delaunay三角剖分。
首先,我们来了解一下Delaunay边。
Delaunay边的定义为:假设E中的一条边e(其端点为a,b),若e满足条件:存在一个圆经过a,b两点,圆内不含点集中任何其他的点,这一特性又称空圆特性,则称之为Delaunay边:Delaunay三角剖分的定义为:如果点集的一个三角剖分只包含Delaunay边,那么该三角剖分称为Delaunay三角剖分。
要满足Delaunay三角剖分的定义,必须符合下面两个重要的准则:1)空圆特性:Delaunay三角网是唯一的,在Delaunay三角形网中任一三角形的外接圆范围内不会有其它点存在;2)最大化最小角特性:在散点集可能形成的三角剖分中,Delaunay三角剖分所形成的三角形的最小角最大。
从这个意义上讲,Delaunay 三角网是“最接近于规则化的”的三角网。
具体来说是指在两个相邻的三角形构成凸四边形的对角线,在相互交换后,六个内角的最小角不再增大。
经典的Delaunay剖分算法主要有两类[1]:1)增量算法:又称为Delaunay空洞算法或加点法,其思路为从一个三角形开始,每次增加一个点,保证每一步得到的当前三角形是局部优化的三角形。
2)局部变换法:又称为换边或换面法,其思路为构造非优化的三角网,然后对两个共边三角形形成的凸四边形迭代换边优化。
迄今为止关于Delaunay剖分已经出现了很多算法,主要有分治算法、逐步插入法、三角网生长法等。
其中三角网生长算法由于效率较低,目前较少采用; 分治算法最为高效,但算法相对比较复杂;逐点插入法实现简单,但它的时间复杂度差[2]。
特别是近些年,随着计算机水平的不断提升,又出现了各种各样的改进算法。
本节将主要根据逐步插入法的原理,通过对给予的数据高程点进行Delaunay三角剖分。
其基本步骤为:1)获取点集坐标数组;2)获取点集外围边界;3)根据边界及内部点生成三角网。
三角剖分法什么是三角剖分法?在计算几何学和计算机图形学中,三角剖分法是一种将给定的几何形状划分为一系列互不重叠的三角形的方法。
它可以用来处理不规则的几何形状,并被广泛应用于许多领域,如计算机辅助设计、计算流体力学和计算机图形学等。
三角剖分法通过连接给定几何形状的顶点来生成三角形。
这些连接线被称为三角形网格或剖分网格。
生成的三角形网格可以被用于计算形状的性质,比如表面积、体积和法向量等。
它也可以用于模拟物理过程,比如弹性形变和流体流动等。
为什么需要三角剖分法?在许多应用中,我们需要对复杂的几何形状进行计算或模拟。
例如,在计算机辅助设计中,我们需要对建筑物或机械零件进行分析和优化。
在计算流体力学中,我们需要模拟流体在复杂几何形状中的运动。
在计算机图形学中,我们需要渲染和变形复杂的三维模型。
然而,处理复杂的几何形状是一项困难的任务。
直接对不规则形状进行计算或模拟往往效率低下且难以实现。
这就引入了三角剖分法。
通过将复杂的几何形状划分为简单的三角形,我们可以更容易地进行计算和模拟。
三角剖分法具有以下优点:1.简化计算和模拟:通过将几何形状划分为三角形,我们可以将复杂的问题简化为简单的计算。
2.提高效率:对三角形进行计算比对复杂的几何形状进行计算更快更容易。
3.易于处理:三角形是计算机图形学中最基本的图元之一,因此我们可以使用现有的工具和算法来处理三角形网格。
4.适应不规则形状:三角剖分法可以处理各种不规则的几何形状,包括凸形状、凹形状和复杂的边界。
三角剖分法的应用三角剖分法在许多领域都有广泛的应用。
以下是一些常见的应用示例:计算流体力学三角剖分法在计算流体力学中扮演着重要的角色。
它被用来模拟流体在复杂几何形状中的运动。
通过将流体域划分为三角形网格,我们可以更好地描述流体的运动和物理性质。
这对于设计飞机、汽车和建筑物等应用非常重要。
计算机辅助设计在计算机辅助设计中,三角剖分法被广泛用于对建筑物和机械零件进行分析和优化。