常用淬火介质分析
- 格式:docx
- 大小:16.94 KB
- 文档页数:2
淬火冷却介质的种类及其优缺点[发布人]恒鑫化工[时间]2011-3-14 20:09:11 浏览:136 次淬火冷却介质的类型及其优缺点烟台恒鑫化工专业生产PAG淬火液自来水、盐水、碱水以及普通机油通常被称为传统的淬火介质;而把专门为热处理淬火冷却的需要才开发的各种专用淬火油,加上新型水性淬火剂合称为新型淬火介质。
1、自来水作为淬火介质的主要优缺点:优点:水是应用最早、最广泛、最经济的淬火介质,它价廉易得、无毒、不燃烧、物理化学性能稳定、冷却能力强。
通过控制水的温度、提高压力、增大流速、采用循环水、利用磁场作用等,均可以改善水的冷却特性,减少变形和开裂,获得比较理想的淬火效果缺点:①、冷却能力对水温的变化极其敏感,水温升高,使最大冷速对应的温度移向低温;②、在碳素钢过冷奥氏体的最不稳定区(500~600℃左右),水处在蒸汽膜阶段,冷速较低,奥氏体易发生高温转变。
而在马氏体转变区的冷速太大,易使工件严重变形甚至开裂;③、水处在蒸汽膜阶段不易破泡,使工件表面淬火硬度不均匀或产生软点;④、参入不容物或微溶杂质时,会影响其冷却能力,也会使工件产生软点。
2、盐水作为淬火介质的主要优缺点:优点:盐水在冷却过程中不发生物态变化,工件淬火主要靠对流冷却,通常在高温区域冷却速度快,在低温区域冷却速度慢,淬火性能优良,淬透力强,淬火边形小,基本无裂纹产生缺点:水中加入适量的盐,在500~600℃区间的冷却能力明显高于水,但在100~300℃区间冷速仍然很大,且对工件、设备有一定的腐蚀作用。
3、碱水作为淬火介质的主要缺点:优点:盐水在冷却过程中不发生物态变化,工件淬火主要靠对流冷却,通常在高温区域冷却速度快,在低温区域冷却速度慢,淬火性能优良,淬透力强,淬火边形小,基本无裂纹产生缺点:水中加入适量的盐,在500~600℃区间的冷却能力明显高于水,但在100~300℃区间冷速仍然很大,且对工件、设备有一定的腐蚀作用。
缺点:碱水在高温区的冷却速比盐水高,而在低温区的冷速比盐水低。
淬火方法大全,用过3个就是大师!十种常用淬火方法汇总热处理工艺中淬火的常用方法有十种,分别是单介质(水、油、空气)淬火;双介质淬火;马氏体分级淬火;低于Ms点的马氏体分级淬火法;贝氏体等温淬火法;复合淬火法;预冷等温淬火法;延迟冷却淬火法;淬火自回火法;喷射淬火法等。
一、单介质(水、油、空气)淬火单介质(水、油、空气)淬火:把已加热到淬火温度的工件淬人一种淬火介质,使其完全冷却。
这种是最简单的淬火方法,常用于形状简单的碳钢和合金钢工件。
淬火介质根据零件传热系数大小、淬透性、尺寸、形状等进行选择。
二、双介质淬火双介质淬火:把加热到淬火温度的工件,先在冷却能力强的淬火介质中冷却至接近Ms点,然后转入慢冷的淬火介质中冷却至室温,以达到不同淬火冷却温度区间,并有比较理想的淬火冷却速度。
用于形状复杂件或高碳钢、合金钢制作的大型工件,碳素工具钢也多采用此法。
常用冷却介质有水-油、水-硝盐、水-空气、油-空气,一般用水作快冷淬火介质,用油或空气作慢冷淬火介质,较少采用空气。
三、马氏体分级淬火马氏体分级淬火:钢材奥氏体化,随之浸入温度稍高或稍低于钢的上马氏点的液态介质(盐浴或碱浴)中,保持适当时间,待钢件的内、外层都达到介质温度后取出空冷,过冷奥氏体缓慢转变成马氏体的淬火工艺。
一般用于形状复杂和变形要求严的小型工件,高速钢和高合金钢工模具也常用此法淬火。
四、低于Ms点的马氏体分级淬火法低于Ms点的马氏体分级淬火法:浴槽温度低于工件用钢的Ms而高于Mf时,工件在该浴槽中冷却较快,尺寸较大时仍可获得和分级淬火相同的结果。
常用于尺寸较大的低淬透性钢工件。
五、贝氏体等温淬火法贝氏体等温淬火法:将工件淬入该钢下贝氏体温度的浴槽中等温,使其发生下贝氏体转变,一般在浴槽中保温30~60min。
贝氏体等温淬火工艺主要三个步骤:①奥氏体化处理;②奥氏体化后冷却处理;③贝氏体等温处理;常用于合金钢、高碳钢小尺寸零件及球墨铸铁件。
六、复合淬火法复合淬火法:先将工件急冷至Ms以下得体积分数为10%~30%的马氏体,然后在下贝氏体区等温,使较大截面工件得到马氏体和贝氏体组织,常用于合金工具钢工件。
淬火介质相关知识汇总一、主要技术参数1、冷却特性1.1、冷却速度曲线当前,国内外多以国际标准方法(ISO9950)测定,并用冷却速度曲线来表征淬火介质的冷却特性。
但是,对特定工件(即在钢种、形状大小和热处理要求一定)的情况下,如何从冷却特性上去选择合适的淬火介质?在生产现场,一个淬火槽中往往要淬多种不同钢种、形状、大小和热处理要求的工件。
在这种情况下,如何选定它们共同适用的一种淬火液?从普通机油和自来水的冷却速度分布(如图1)可以看出,普通机油的冷却速度慢,因而不少工件在其中淬不硬;而自来水的冷却速度又太快,以致于多数钢种不能在其中淬火。
如果将机油的冷却速度提高,该工件淬火硬度也会相应提高,当机油的冷却速度提高到图2中带齿线水平时,该工件刚好可以得到要求的淬火硬度,我们把它叫做允许的最低冷速分布线。
同时,研究表明,自来水引起淬裂和变形,是自来水冷却太快,尤其是钢件冷到其过冷奥氏体发生马氏体转变的温度范围时受到的冷却太快的缘故。
于是又可以推知,如果能降低自来水的冷却速度,尤其是在工件冷到较低的温度以后的淬火冷却速度,就可以减小工件淬裂的危险。
假定自来水冷却速度降到图3中带齿线所示的水平时,该类工件便不会再淬裂了,我们把这条线叫做此工件已确定条件下允许的最高冷速分布线。
把图2和图3合在一起,可以得到该工件能同时获得前述三项淬火效果的淬火介质的冷却速度分布范围,如图4所示。
图中,只要所选的淬火介质的冷却速度分布曲线能全部落入这两条曲线之间的区域内,不管是快速淬火油还是水溶性淬火液,也不管这些淬火介质的冷却速度分布有何不同,上述工件在其中淬火都可以同时获得所希望的淬硬而又不裂的效果。
1.2淬火介质的冷却过程分三个阶段:蒸汽膜阶段、沸腾冷却阶段、对流冷却阶段(见下图所示)用符合ISO9950标准的ivf冷却特性测试仪测出的冷却特性曲线(如下图)有几个特征值对淬火油的淬硬能力有重要影响。
第一个是油蒸汽膜冷却阶段向沸腾冷却阶段转变的温度,即图中A点对应的温度,叫做(上)特征温度;第二个是出现最高冷却速度的温度,即图中B点对应的温度;第三个是最高冷却速度值,即B点对应的冷却速度值;第四个是对流开始温度,即C点对应的温度。
常用的淬火介质水优点:冷却能力较强、来源广、价格低、成分稳定不易变质。
缺点:是在C曲线的“鼻子”区(500~600℃左右),水处于蒸汽膜阶段,冷却不够快,会形成“软点”;而在马氏体转变温度区(300~100℃),水处于沸腾阶段,冷却太快,易使马氏体转变速度过快而产生很大的内应力,致使工件变形甚至开裂。
当水温升高,水中含有较多气体或水中混入不溶杂质(如油、肥皂、泥浆等),均会显著降低其冷却能力。
适用:截面尺寸不大、形状简单的碳素钢工件的淬火冷却。
盐水和碱水优点:在水中加入适量的食盐和碱,使高温工件浸入该冷却介质后,在蒸汽膜阶段析出盐和碱的晶体并立即爆裂,将蒸汽膜破坏,工件表面的氧化皮也被炸碎,这样可以提高介质在高温区的冷却能力。
缺点:介质的腐蚀性大。
一般情况下,盐水的浓度为10%,苛性钠水溶液的浓度为10%~15%。
适用:可用作碳钢及低合金结构钢工件的淬火介质,使用温度不应超过60℃,淬火后应及时清洗并进行防锈处理。
油冷却介质一般采用矿物质油(矿物油)。
如机油、变压器油和柴油等。
机油一般采用10号、20号、30号机油,油的号越大,黏度越大,闪点越高,冷却能力越低,使用温度相应提高。
目前使用的新型淬火油主要有高速淬火油、光亮淬火油和真空淬火油三种。
高速淬火油是在高温区冷却速度得到提高的淬火油。
获得高速淬火油的基本途径有两种,一种是选取不同类型和不同黏度的矿物油,以适当的配比相互混合,通过提高特性温度来提高高温区冷却能力;另一种是在普通淬火油中加入添加剂,在油中形成粉灰状浮游物。
添加剂游磺酸的钡盐、钠盐、钙盐以及磷酸盐、硬脂酸盐等。
生产实践表明,高速淬火油在过冷奥氏体不稳定区冷却速度明显高于普通淬火油,而在低温马氏体转变区冷速与普通淬火油相接近。
这样既可得到较高的淬透性和淬硬性,又大大减少了变形,适用于形状复杂的合金钢工件的淬火。
光亮淬火油能使工件在淬火后保持光亮表面。
在矿物油中加入不质的高分子添加物,可获得不同冷却速度的光亮淬火油。
淬火加热过程中,需要使用确定的内容有很多,例如淬火时间、淬火介质、冷却方法等等都需要根据加工工件的特性来进行选择与确定的。
本文就来从这三个方面具体介绍一下,淬火时间、介质以及冷却方式的选择方法。
一、淬火时间的确定淬火加热的时间应该包括工件整个截面加热到预定淬火温度,并使之在该温度下完成组织转变、碳化物溶解和奥氏体成分均匀化所需的时间,因此,淬火加热时间包括升温和保温两段时间。
在实际生产中,只有大型工件或装炉量很多情况下,才把升温时间和保温时间分别进行考虑。
一般情况下把升温和保温两段时间通称为淬火加热时间。
当把升温时间和保温时间分别考虑时,由于淬火温度高于相变温度,所以升温时间包括相变重结晶时间。
保温时间实际上只要考虑无溶解和奥氏体成分均匀化所需时间即可。
在具体生产条件下,淬火加热时间常用经验公式计算,通过试验最终确定。
常用公式为:加热时间=加热系数*装炉量修正系数*工件有效厚度二、淬火介质的确定淬火介质的选择,首先应该按照工件所采用的材料及其淬透层深度的要求,根据该种材料的端淬曲线,通过一定的图表来进行选择。
若仅从淬透层深度角度考虑,凡是淬火烈度大于按淬透层深度所要求的淬火烈度的淬火介质都可采用;但是从淬火应力变形开裂的角度考虑,淬火介质的淬火烈度越低越好。
所以,选择淬火介质的第一个原则应是在满足工件淬透层深度要求的前提下,选择淬火烈度最低的淬火介质。
结合过冷奥氏体连续冷却转变曲线及淬火本质选择淬火介质时,还应考虑其冷却特性,即淬火介质应作如下选择:在相当于被淬火钢的过冷奥氏体最不稳定区有足够的冷却能力,而在马氏体转变区其冷却速度却很缓慢。
此外,淬火介质的冷却特性在使用过程中应该稳定,长期使用和存放不易变质,价格低廉,来源丰富,且无毒及无环境污染。
在实践中,往往把淬火介质的选择与冷却方式的确定结合起来考虑。
例如,根据钢材不同温度区域对冷却速度的不同要求,在不同温度区域采用不同淬火烈度的淬火介质的冷却方式;又如为了破坏蒸气膜,以提高高温区的冷却速度,采用强烈搅拌或喷射冷却的方式等等。
常用淬火介质一般技术要求
日期: 2010-4-12 2:11:59 浏览: 91 来源: 学海网收集整理作者: 未知
淬火介质一般技术要求应用范围
水及水溶液水清洁、流动(或循环、搅拌)
水温20-40℃ 碳素结构钢
碳素工具钢
合金结构钢
铝合金
钛合金
无机物水溶液按要求选择浓度
常用浓度(质量分数)(5%-15%)
高浓度(质量分散)(≥20%,饱合浓度)
液温20-45℃
循环或搅拌
pH值6.5-8.5 碳素结构钢
合金结构
碳素工具钢
有机物水溶液按专用产品技术条件及要求选择浓度
低浓度、中等浓度、高浓度(因介质而异)
液温20-50℃
搅拌或热循环
pH值6.5-8.5(或按专门规定)碳素结构钢
合金结构钢
轴承钢
弹簧钢
碳素工具钢
合金工具钢
铝合金
淬火油全损耗系统用油按GB443技术条件
常规油温20-80℃
热油油温>100℃
循环或搅拌碳素工具钢(横截面≤6mm)
合金结构钢
合金工具钢
轴承钢
弹簧钢
高速钢
专用淬火油按工艺要求选择不同淬火油(快速、光亮、等温、真空等淬火油)技术条件按专用油品规定
油温应低于闪点80-100℃
搅拌或热循环
热浴盐浴使用温度允许波动范围±20℃
按要求浴温选择配方
硝盐浴氯离子≤0.3%(质量分散)
硫酸根≤0.5%
pH值6.5-8.5(质量分散)ω(C)≥0.45%碳素结构钢碳素工具钢
合金结构钢
合金工具钢
高速钢
碱浴使用温度允许波动范围±10℃
按要求选择配方
碳酸根≤4%。
10种常用淬火方法汇总热处理工艺中淬火的常用方法有十种,分别是单介质(水、油、空气)淬火;双介质淬火;马氏体分级淬火;低于Ms点的马氏体分级淬火法;贝氏体等温淬火法;复合淬火法;预冷等温淬火法;延迟冷却淬火法;淬火自回火法;喷射淬火法等。
一、单介质(水、油、空气)淬火单介质(水、油、空气)淬火:把已加热到淬火温度的工件淬人一种淬火介质,使其完全冷却。
这种是最简单的淬火方法,常用于形状简单的碳钢和合金钢工件。
淬火介质根据零件传热系数大小、淬透性、尺寸、形状等进行选择。
二、双介质淬火双介质淬火:把加热到淬火温度的工件,先在冷却能力强的淬火介质中冷却至接近Ms点,然后转入慢冷的淬火介质中冷却至室温,以达到不同淬火冷却温度区间,并有比较理想的淬火冷却速度。
用于形状复杂件或高碳钢、合金钢制作的大型工件,碳素工具钢也多采用此法。
常用冷却介质有水-油、水-硝盐、水-空气、油-空气,一般用水作快冷淬火介质,用油或空气作慢冷淬火介质,较少采用空气。
三、马氏体分级淬火马氏体分级淬火:钢材奥氏体化,随之浸入温度稍高或稍低于钢的上马氏点的液态介质(盐浴或碱浴)中,保持适当时间,待钢件的内、外层都达到介质温度后取出空冷,过冷奥氏体缓慢转变成马氏体的淬火工艺。
一般用于形状复杂和变形要求严的小型工件,高速钢和高合金钢工模具也常用此法淬火。
四、低于Ms点的马氏体分级淬火法低于Ms点的马氏体分级淬火法:浴槽温度低于工件用钢的Ms而高于Mf时,工件在该浴槽中冷却较快,尺寸较大时仍可获得和分级淬火相同的结果。
常用于尺寸较大的低淬透性钢工件。
五、贝氏体等温淬火法贝氏体等温淬火法:将工件淬入该钢下贝氏体温度的浴槽中等温,使其发生下贝氏体转变,一般在浴槽中保温30~60min。
贝氏体等温淬火工艺主要三个步骤:①奥氏体化处理;②奥氏体化后冷却处理;③贝氏体等温处理;常用于合金钢、高碳钢小尺寸零件及球墨铸铁件。
六、复合淬火法复合淬火法:先将工件急冷至Ms以下得体积分数为10%~30%的马氏体,然后在下贝氏体区等温,使较大截面工件得到马氏体和贝氏体组织,常用于合金工具钢工件。
常用淬火介质关键字:淬火介质1.水水是应用最早、最广泛、最经济的淬火介质,它价廉易得、无毒、不燃烧、物理化学性能稳定、冷却能力强。
通过控制水的温度、提高压力、增大流速、采用循环水、利用磁场作用等,均可以改善水的冷却特性,减少变形和开裂,获得比较理想的淬火效果。
但由于这些方法需增加专门设备,且工件淬火后性能不是很稳定,所以没有能得到广泛推广应用。
所以说。
纯水只适合于少数含碳量不高、淬透性低且形状简单的钢件淬火之用。
2.淬火油用于淬火的矿物油通常以精制程度较高的中性石蜡基油为基础油,它具有闪点高、粘度低、油烟少,抗氧化性与热稳定性较好,使用寿命长等优点,适合于作淬火油使用。
淬火油只使用于淬透性好、工件壁厚不大、形状复杂、要求淬火变形小的工件。
淬火油对周围环境的污染大,淬火时容易引起火灾。
影响淬火油冷却能力的主要因素是其粘度值,在常温下低粘度油比高粘度油冷却能力大,温度升高,油的流动性增加,冷却能力有所提高。
适当提高淬火油的使用温度,也能使油的冷却能力提高。
3.熔盐,熔碱这类淬火介质的特点是在冷却过程中不发生物态变化,工件淬火主要靠对流冷却,通常在高温区域冷却速度快,在低温区域冷却速度慢,淬火性能优良,淬透力强,淬火边形小,基本无裂纹产生,但是对环境污染大,劳动条件差,耗能多,成本高,常用于形状复杂,截面尺寸变化悬殊的工件和工模具的淬火。
熔盐有氯化钠,硝酸盐,亚硝酸盐等,工件在盐浴中淬火可以获得较高的硬度,而变形极小,不易开裂,通常用作等温淬火或分级淬火。
其缺点是熔盐易老化,对工件有氧化及腐蚀的作用。
熔碱有氢氧化钠,氢氧化钾等,它具有较大的冷却能力,工件加热时若未氧化,淬火后可获得银灰色的洁净表面,也有一定的应用。
但熔碱蒸气具有腐蚀性,对皮肤有刺激作用,使用时要注意通风和采取防护措施。
4.新型淬火介质及其应用有机聚合物淬火剂近年来,新型淬火介质最引人注目的进展是有机聚合物淬火剂的研究和应用。
这类淬火介质是将有机聚合物溶解于水中,并根据需要调整溶液的浓度和温度,配制成冷却性能能满足要求的水溶液,它在高温阶段冷却速度接近于水,在低温阶段冷却速度接近于油。
刀口淬火的技巧
刀口淬火是一种提高刀具硬度和耐磨性的常用方法。
以下是刀口淬火的技巧:
1. 选择适当的淬火介质:常用的淬火介质有水、油和空气。
水淬火具有快速冷却的优点,但易产生过度脆性;油淬火则具有缓慢冷却的优点,但其淬透性较差,易产生软化和变形;空气淬火则介于两者之间,但也存在较大的变形和软化风险。
因此,在选择淬火介质时应根据材料和刀具的特点进行综合评估。
2. 控制淬火温度:不同材料的淬火温度不同,过高或过低的淬火温度都会影响刀具的硬度和耐磨性。
一般来说,低合金钢淬火温度为820左右,高速钢淬火温度为1170左右。
3. 保持刀具整洁:在淬火过程中,刀具表面的油污和氧化物会影响淬火效果,因此应在淬火前彻底清洗和抛光刀具表面。
4. 控制淬火时间:过长或过短的淬火时间都会影响刀具的硬度和耐磨性。
一般来说,淬火时间要根据具体材料和刀具的尺寸进行计算,并在淬火过程中严格控制时间。
5. 进行回火处理:淬火后的刀具易产生过度脆性,因此需要进行适度的回火处理来消除内部应力和提高韧性。
回火温度一般为200-600,时间根据具体情况决定。
6. 根据实际情况进行调整:淬火过程中可能会出现局部变形或开裂等情况,此时需要根据具体情况进行调整,以确保刀具的质量和性能。
十种常用淬火方法,学会成淬火大师!热处理工艺中淬火的常用方法有十种,分别是单介质(水、油、空气)淬火;双介质淬火;马氏体分级淬火;低于Ms点的马氏体分级淬火法;贝氏体等温淬火法;复合淬火法;预冷等温淬火法;延迟冷却淬火法;淬火自回火法;喷射淬火法等。
一、单介质(水、油、空气)淬火单介质(水、油、空气)淬火:把已加热到淬火温度的工件淬人一种淬火介质,使其完全冷却。
这种是最简单的淬火方法,常用于形状简单的碳钢和合金钢工件。
淬火介质根据零件传热系数大小、淬透性、尺寸、形状等进行选择。
二、双介质淬火双介质淬火:把加热到淬火温度的工件,先在冷却能力强的淬火介质中冷却至接近Ms点,然后转入慢冷的淬火介质中冷却至室温,以达到不同淬火冷却温度区间,并有比较理想的淬火冷却速度。
用于形状复杂件或高碳钢、合金钢制作的大型工件,碳素工具钢也多采用此法。
常用冷却介质有水-油、水-硝盐、水-空气、油-空气,一般用水作快冷淬火介质,用油或空气作慢冷淬火介质,较少采用空气。
三、马氏体分级淬火马氏体分级淬火:钢材奥氏体化,随之浸入温度稍高或稍低于钢的上马氏点的液态介质(盐浴或碱浴)中,保持适当时间,待钢件的内、外层都达到介质温度后取出空冷,过冷奥氏体缓慢转变成马氏体的淬火工艺。
一般用于形状复杂和变形要求严的小型工件,高速钢和高合金钢工模具也常用此法淬火。
四、低于Ms点的马氏体分级淬火法低于Ms点的马氏体分级淬火法:浴槽温度低于工件用钢的Ms而高于Mf 时,工件在该浴槽中冷却较快,尺寸较大时仍可获得和分级淬火相同的结果。
常用于尺寸较大的低淬透性钢工件。
五、贝氏体等温淬火法贝氏体等温淬火法:将工件淬入该钢下贝氏体温度的浴槽中等温,使其发生下贝氏体转变,一般在浴槽中保温30~60min。
贝氏体等温淬火工艺主要三个步骤:①奥氏体化处理;②奥氏体化后冷却处理;③贝氏体等温处理;常用于合金钢、高碳钢小尺寸零件及球墨铸铁件。
六、复合淬火法复合淬火法:先将工件急冷至Ms以下得体积分数为10%~30%的马氏体,然后在下贝氏体区等温,使较大截面工件得到马氏体和贝氏体组织,常用于合金工具钢工件。
在进行热处理的过程中,常用的淬火介质有水及其溶液、油、水油混合液以及低熔点熔盐等等。
这篇文章我们主要介绍一下油作为淬火介质的冷却特性,它虽然比水的冷却性能差,但是由于其在一般钢的马氏体转变区冷却速度较慢,因此仍较为理想。
现在在工业生产的热处理中,已经不采用动、植物油,而改用矿物油。
因为动、植物油来源较少,价格较贵,并在淬火时容易发生变质,会发生树脂化、浓缩等情况。
而矿物油是从天然石油中提炼的油,用作淬火介质的一般为润滑油,如锭子油、机油灯。
这种油的沸点一般为250—400摄氏度,具有物态变化的淬火介质;但由于它的沸点较高,与水比较其特性温度较高。
油在500—350摄氏度处于沸腾阶段,其下就处于对流阶段,这种冷却特性比较理想。
对于一般钢来说,正好在其过冷奥氏体最不稳定区有最快的冷却速度,如此可以或得最大的淬硬层深度,而在马氏体转变区有最小的冷却速度,可以使组织应力减至最小,防止淬火裂缝的发生。
水虽然在高温区仍有比油高的冷却速度,但其最大冷却速度正好在一般钢的马氏体转变温度范围,因此很不理想。
油的冷却能力以及使用温度范围主要取决于油的黏度和闪点。
黏度较低的油,一般使用温度在80℃以下。
这种油在20—80℃的温度范围内变化,工件表面的冷却速度实际不变,即油温对冷却速度没有影响。
黏度较高的油,闪点也较高,可以在较高温度下使用,例如160—250℃之间。
这种油黏度对冷却速度起主导作用,因此随着油温的升高冷却能力提高。
淬火油经过长期使用后,其黏度和闪点升高,产生油渣,油的冷却能力下降,这种现象称为油的老化。
这是因为矿物油在灼热的工件作用下,与空气中的氧或工件带入的氧化物发生作用,以及通过聚合、凝聚和异构化作用产生油不能溶解的产物所致。
此外,在操作中油内水分增加也会促进油的老化。
为了防止油的老化,应控制油温,并防止油温局部过热,避免水分带入油中,经常清除油渣等。
随着可控气氛热处理的广泛应用,要求使用工件淬火后能达到不氧化的光亮淬火油。
淬火(cuì huǒ)“蘸火”是淬火工艺的行业术语,起源于工艺处理的方法,因为淬火就是把加热到一定程度的热工件蘸一下介质,以达到要求,过去工匠们形象的称谓淬火为蘸火,淬火工艺应用很广,读法也随之流传开来。
规范的定义是将钢件加热到Ac3(亚)或Ac1(过)以上30-50℃,经过保温,然后在冷却介质中迅速冷却,以获得高硬度组织的一种热处理工艺。
常用淬火法:1)单介质淬火:工件在一种介质中冷却,如水淬、油淬。
优点是操作简单,易于实现机械化,应用广泛。
缺点是水冷,易变形,开裂. 油冷:易硬度不足,或不均2)双介质淬火:工件先在较强冷却能力介质中冷却到300℃左右,再在一种冷却能力较弱的介质中冷却,先水淬后油淬,可有效减少马氏体转变的内应力,减小工件变形开裂的倾向,可用于形状复杂、截面不均匀的工件淬火。
优点是防低温时M相变开裂。
缺点是难以掌握双液转换的时刻,转换过早容易淬不硬,转换过迟又容易淬裂。
3) 分级淬火:工工件在低温盐浴或碱浴炉中淬火,盐浴或碱浴的温度在Ms点附近,工件在这一温度停留2min~5min,然后取出空冷,这种冷却方式叫分级淬火。
优点是工艺理想,操作容易缺点在盐浴中冷却,速度不够大,只适合小件4)工件在等温盐浴中淬火,盐浴温度在贝氏体区的下部(稍高于Ms),工件等温停留较长时间,直到贝氏体转变结束,取出空冷。
优点是形状复杂的小零件,硬度较高,韧性好,防变形,开裂.缺点是时间长要根据工件的功能、使用要求来选择最合适的淬火方法。
青岛丰东热处理专业提供热处理服务,可为客户提供化学热处理(渗碳、渗氮、碳氮共渗)、真空热处理、等离子热处理(离子渗氮)、常规热处理(含深冷处理)等四大领域的热处理加工服务。
欢迎新老客户来电咨询,电话:4006577217。
“青岛丰东热处理”微信公众号提供热“新鲜”的处理行业动态及资讯,如果您对热处理相关知识感兴趣,欢迎关注我们,青岛丰东期待与您共同进步!。
盐浴淬火介质盐浴淬火介质是一种常用的金属淬火工艺,它在金属加工中发挥着重要的作用。
下面我将从原理、优点和应用三个方面来介绍盐浴淬火介质。
一、原理盐浴淬火介质是通过将金属工件浸入加热至高温的盐浴中,使其迅速冷却,从而达到改变金属结构和性能的目的。
盐浴淬火介质具有较高的热传导性和热容量,能够快速吸收金属工件的热量,使其迅速冷却,从而有效地控制金属的晶体结构和硬度。
二、优点1. 快速淬火:盐浴淬火介质的热传导性能好,能够快速吸收金属工件的热量,使其迅速冷却,从而有效地控制金属的晶体结构和硬度。
2. 均匀淬火:盐浴淬火介质的热容量大,能够提供均匀的冷却效果,避免金属工件表面的过度淬火和内部的过度回火。
3. 良好的表面质量:盐浴淬火介质能够有效地控制金属工件的冷却速度和冷却温度,避免表面出现裂纹和变形,从而保证金属工件的表面质量。
4. 适用性广:盐浴淬火介质适用于各种金属材料的淬火,包括钢、铸铁、铝合金等。
三、应用盐浴淬火介质广泛应用于各个行业的金属加工中,特别是对于一些对金属性能要求较高的工件,盐浴淬火介质具有独特的优势。
例如,在汽车零部件制造中,盐浴淬火介质可以提高零部件的强度和硬度,提高其使用寿命和性能。
在航空航天领域,盐浴淬火介质可以提高航空发动机的工作温度和耐热性。
在电子设备制造中,盐浴淬火介质可以提高电子元件的导电性和耐腐蚀性。
盐浴淬火介质是一种重要的金属淬火工艺,具有快速淬火、均匀淬火、良好的表面质量和广泛的应用等优点。
它在金属加工中发挥着重要的作用,提高了金属工件的性能和质量。
随着科学技术的不断发展,盐浴淬火介质将会在更多领域得到应用,并为各个行业的发展做出更大贡献。
常用淬火介质分析
2006-12-30
关键字:淬火介质
1.水
水是应用最早、最广泛、最经济的淬火介质,它价廉易得、无毒、不燃烧、物理化学性能稳定、冷却能力强。
通过控制水的温度、提高压力、增大流速、采用循环水、利用磁场作用等,均可以改善水的冷却特性,减少变形和开裂,获得比较理想的淬火效果。
但由于这些方法需增加专门设备,且工件淬火后性能不是很稳定,所以没有能得到广泛推广应用。
所以说。
纯水只适合于少数含碳量不高、淬透性低且形状简单的钢件淬火之用。
2.淬火油
用于淬火的矿物油通常以精制程度较高的中性石蜡基油为基础油,它具有闪点高、粘度低、油烟少,抗氧化性与热稳定性较好,使用寿命长等优点,适合于作淬火油使用。
淬火油只使用于淬透性好、工件壁厚不大、形状复杂、要求淬火变形小的工件。
淬火油对周围环境的污染大,淬火时容易引起火灾。
影响淬火油冷却能力的主要因素是其粘度值,在常温下低粘度油比高粘度油冷却能力大,温度升高,油的流动性增加,冷却能力有所提高。
适当提高淬火油的使用温度,也能使油的冷却能力提高。
3.熔盐,熔碱
这类淬火介质的特点是在冷却过程中不发生物态变化,工件淬火主要靠对流冷却,通常在高温区域冷却速度快,在低温区域冷却速度慢,淬火性能优良,淬透力强,淬火变形小,基本无裂纹产生,但是对环境污染大,劳动条件差,耗能多,成本高,常用于形状复杂,截面尺寸变化悬殊的工件和工模具的淬火。
熔盐有氯化钠,硝酸盐,亚硝酸盐等,工件在盐浴中淬火可以获得较高的硬度,而变形极小,不易开裂,通常用作等温淬火或分级淬火。
其缺点是熔盐易老化,对工件有氧化及腐蚀的作用。
熔碱有氢氧化钠,氢氧化钾等,它具有较大的冷却能力,工件加热时若未氧化,淬火后可获得银灰色的洁净表面,也有一定的应用。
但熔碱蒸气具有腐蚀性,对皮肤有刺激作用,使用时要注意通风和采取防护措施。
4.新型淬火介质及其应用
有机聚合物淬火剂
近年来,新型淬火介质最引人注目的进展是有机聚合物淬火剂的研究和应用。
这类淬火介质是将有机聚合物溶解于水中,并根据需要调整溶液的浓度和温度,配制成冷却性能能满足要求的水溶液,它在高温阶段冷却速度接近于水,在低温阶段冷却速度接近于油。
其优点是无毒,无烟无臭,无腐蚀,不燃烧,抗老化,使用安全可靠,且冷却性能好,冷却速度可以调节,适用范围广,工件淬硬均匀,可明显减少变形和开裂倾向,因此,能提高工件的质量,改善工作环境和劳动条件,给工厂带来节能、环保、技术和经济效益。
目前有机聚合物淬火剂在工件大批量、单一品种的热处理上用得较多,尤其对于水淬开裂,变形大,油淬不硬的工件,采用有机聚合物淬火剂比淬火油更经济、高效和节能。
从提高工件质量、改善劳动条件、避免火灾和节能得角度考虑,有机聚合物淬火剂有逐步取代淬火油的趋势,是淬火介质的主要发展方向。
有机聚合物淬火剂的冷却速度受浓度,使用温度和搅拌程度3个基本参数的影响。
一般来说,浓度越高,冷却速度越慢;使用温度越高,冷却速度越慢;搅拌程度越激烈,冷却速度越快。
搅拌的作用很重要;1使溶液浓度均匀;2加强溶液的导热能力从而保证淬火后工
件硬度高且分布均匀,减少产生淬火软点和变形及开裂的倾向。
通过控制上述这些因素,可以调整有机聚合物淬火剂的冷却速度,从而达到理想的淬火效果。
一般来说,夏季使用的浓度可低些,冬季使用的浓度可高些,而且要有充分的搅拌。
有机聚合物淬火剂大多制成含水的溶液,在使用时可根据工件的特点和技术要求,加水稀释成不同的浓度,便可以得到具有多种淬火烈度的淬火液,以适应不同的淬火需要。