带电粒子在匀强磁场中的运动(新课)
- 格式:ppt
- 大小:1.62 MB
- 文档页数:33
第03讲带电粒子在匀强磁场中的运动【学习目标】(1)知道带电粒子沿着与磁场垂直的方向射入匀强磁场会在磁场中做匀速圆周运动,能推导出匀速圆周运动的半径公式和周期公式,能解释有关的现象,解决有关实际问题。
(2)经历实验验证带电粒子在洛伦兹力作用下做匀速圆周运动以及其运动半径与磁感应强度的大小和入射速度的大小有关的过程,体会物理理论必须经过实验检验。
(3)知道洛伦兹力作用下带电粒子做匀速圆周运动的周期与速度无关,能够联想其可能的应用。
能用洛伦兹力分析带电粒子在匀强磁场中的圆周运动。
了解带电粒子在匀强磁场中的偏转及其应用。
【基础知识】【考点剖析】一.带电粒子在匀强磁场中的运动已知带电粒子质量为m,电荷量为q,速度大小为v,磁感应强度为B,以下列不同方式进入磁场将做什么运动?(不计重力)1.不加磁场时,观察带电粒子的运动轨迹为电子束沿直线运动。
2.施加垂直于纸面的磁场后,观察电子束的径迹为电子束沿圆轨迹运动。
3.保持入射电子的速度不变,增加磁感应强度,电子束圆周运动的半径减小。
4.保持磁感应强度不变,增加出射电子的速度,电子束圆周运动的半径变大总结:带电粒子的速度方向与磁场方向平行时,不受洛伦兹力,粒子做匀速直线运动;带电粒子垂直进入磁场时,粒子所受洛伦兹力总与速度方向垂直,所以洛伦兹力不改变带电粒子速度的大小,粒子做匀速圆周运动。
二.半径和周期的理论推导带电粒子以垂直磁感应强度方向的速度进入磁场时,带电粒子做匀速圆周运动.向心力由洛伦兹力提供,,根据向心力公式,,可得轨迹半径。
轨迹半径与带电粒子的质量和速度成正比,与带电粒子的电荷量和磁感应强度成反比。
由可知,磁感应强度增大,半径减小;速度增大,半径增大。
圆周运动的周期,把代入,可得:。
带电粒子的周期跟轨迹半径和运动速度无关。
总结:带电粒子的周期跟轨迹半径和运动速度无关,即同一带电粒子以不同的速度进入同一磁场,半径不同,但周期相同。
典题分析例1.质量和电荷量都相等的带电粒子M 和N ,以不同的速率经小孔S 垂直进入匀强磁场,运行的半圆轨迹如图中虚线所示,下列表述正确的是( )A .M 带负电,N 带正电B .M 的速率小于N 的速率C .洛伦兹力对M 、N 做正功D .M 的运行时间大于N 的运行时间解析:根据左手定则可知N 带正电,M 带负电,选项A 正确;由qvB =m v 2r 得r =mv Bq,由题知m 、q 、B 相同,且r N <r M ,所以v M >v N ,选项B 错误;由于洛伦兹力的方向始终与带电粒子的运动方向垂直,故洛伦兹力不会对M 、N 做功,选项C 错误;又周期T =2πr v =2πmBq,两个带电粒子在磁场中运动的周期相等,由图可知两个粒子在磁场中均偏转了半个周期,故在磁场中运动的时间相等,选项D 错误. 答案:A三.带电粒子在匀强磁场中的匀速圆周运动分析 1.轨迹圆心的两种确定方法(1)已知粒子运动轨迹上两点的速度方向时,如何确定圆心的位置?(提示:圆心一定在垂直于速度的直线上)作这两速度方向的垂线,交点即为圆心,如图所示。
选修3-1第三章3.6带电粒子在匀强磁场中的运动一、教材分析本节课的内容是高考的热点之一,不仅要求学生有很强的分析力和运动关系的能力,还要求学生有一定的平面几何的知识,在教学中要多给学生思考的时间二、教学目标(一)知识与技能1、理解洛伦兹力对粒子不做功。
2、理解带电粒子的初速度方向与磁感应强度的方向垂直时,粒子在匀强磁场中做匀速圆周运动。
3、会推导带电粒子在匀强磁场中做匀速圆周运动的半径、周期公式,知道它们与哪些因素有关。
4、了解回旋加速器的工作原理。
(二)过程与方法通过带电粒子在匀强磁场中的受力分析,灵活解决有关磁场的问题。
(三)情感、态度与价值观通过本节知识的学习,充分了解科技的巨大威力,体会科技的创新与应用历程。
三、教学重点难点教学重点带电粒子在匀强磁场中的受力分析及运动径迹教学难点带电粒子在匀强磁场中的受力分析及运动径迹四、学情分析本节教材的内容属于洛仑兹力知识的应用,采用先实验探究,再理论分析与推导的方法。
先实验观察再理论论证比较符合一般学生的认知过程,也可降低学习的难度。
五、教学方法实验观察法、讲述法、分析推理法六、课前准备1、学生的准备:认真预习课本及学案内容2、教师的准备:洛伦兹力演示仪、电源、多媒体课件制作,课前预习学案,课内探究学案,课后延伸拓展学案七、课时安排:1课时八、教学过程(一)预习检查、总结疑惑(二)情景引入、展示目标提问:(1)什么是洛伦兹力?(2)带电粒子在磁场中是否一定受洛伦兹力?(3)带电粒子垂直磁场方向进入匀强磁场时会做什么运动呢?(三)合作探究、精讲点播1、带电粒子在匀强磁场中的运动介绍洛伦兹力演示仪。
如图所示。
引导学生预测电子束的运动情况。
(1)不加磁场时,电子束的径迹;(2)加垂直纸面向外的磁场时,电子束的径迹;(3)保持出射电子的速度不变,增大或减小磁感应强度,电子束的径迹;(4)保持磁感应强度不变,增大或减小出射电子的速度,电子束的径迹。
教师演示,学生观察实验,验证自己的预测是否正确。
第节 带电粒子在匀强磁场中的运动教学步骤回答:平抛和匀速圆周运动.在此学生很有可能根据带电粒子进入匀强电场做平抛运动的经验,误认为带电粒子垂直进入匀强磁场也做平抛运动.在这里不管学生回答 正确与错误,都应马上追问:为什么?引导学生思考,自己得出正确答 案..介绍并观察演示实验:带电粒子在磁场中的运动──洛仑兹力演 示仪.和匀强磁场中,它们将做什么运动? (如图所示)提出问题:引 发学生思考, 为后面的教学 抛砖引玉导 入 新 课.复习提问:如图所示,当带电粒子以速度分别垂直进入匀强电场新课教学.带电粒子垂直进入匀强磁场的轨迹(板书)提问:①洛在什么平面内?它与的方位关系怎样?② 洛对运动电荷是否做功?③洛对运动电荷的运动起何作用?④带电粒子在磁场中的运动具有什么特点?结论:(板书)①带电粒子垂直进入匀强磁场,其初速度与磁场垂直,根据左手定则,其受洛仑兹力的方向也跟磁场方向垂直,并与初速度方向都在同一垂直磁场的平面内,所以粒子只能在该平面内运动.②洛仑兹力总是跟带电粒子的运动方向垂直,它只改变粒子运动的方向,不改变粒子速度的大小,所以粒子在磁场中运动的速率是恒定的,这时洛仑兹力的大小也是恒定的.③洛仑兹力对运动粒子不做功.④洛仑兹力对运动粒子起着向心力的作用,因此粒子的运动一定是匀速圆周运动..带电粒子在磁场中运动的轨道半径提问:①带电粒子做匀速圆周运动时,什么力作为向心力?心洛()②做匀速圆周运动的物体所受的向心力心与物体质量、速度和半径的关系如何?心/()进而由学生自己推出讨论:①粒子运动轨道半径与哪些因素有关,关系如何?②质量不同电量相同的带电粒子,若以大小相等的动量垂直进入同一匀强磁场,它们的轨道半径关系如何?③速度相同,荷质比不同的带电粒子垂直进入同一匀强磁场,它们的轨道半径关系如何?④在同一磁场中做半径相等的圆周运动的氢、氦原子核,哪个运动速度大?通过学生的回答,展开讨论,让同学自己得出正确的答案,强化上节所学知识── 洛仑兹力产生条件,洛仑兹力大小、方向的计算和判断方法.通过讨论对刚才的结论有更深的认识粒子在磁场中做匀速圆周运动的轨道半径为 2mu / qB 2故到的距离为: 2mu / qB 2教师讲解:和进入磁场的速度无关,进入同一磁场时,∝ m ,而且这些个q量中,、、可以直接测量,那么,我们可以用装置来测量电荷的荷质比。
第6节带电粒子在匀强磁场中的运动1.洛伦兹力不改变带电粒子速度的大小,即洛伦兹力对带电粒子不做功。
2.带电粒子沿垂直磁场方向进入匀强磁场时,洛伦兹力提供向心力,带电粒子做匀速圆周运动。
3.带电粒子在匀强磁场中做匀速圆周运动的牛顿第二定律表达式为qvB =m v 2r ,轨道半径为r =mvqB,周期为T =2πmqB,可见周期与带电粒子的速度没有关系。
4.回旋加速器由两个D 形盒组成,带电粒子在D 形盒中做圆周运动,每次在两个D 形盒之间的窄缝区域被电场加速,带电粒子最终获得的动能为E k =q 2B 2R 22m。
一、带电粒子在匀强磁场中的运动1.用洛伦兹力演示仪观察运动电子在磁场中运动实验操作 轨迹特点 不加磁场时 电子束的径迹是直线 给励磁线圈通电后 电子束的径迹是圆 保持电子速度不变,改变磁感应强度 磁感应强度越大,轨迹半径越小保持磁感应强度不变,改变电子速度电子速度越大,轨迹半径越大2.洛伦兹力的作用效果洛伦兹力只改变带电粒子速度的方向,不改变带电粒子速度的大小,或者说洛伦兹力不对带电粒子做功,不改变粒子的能量。
3.带电粒子的运动规律沿着与磁场垂直的方向射入磁场的带电粒子,在匀强磁场中做匀速圆周运动。
洛伦兹力总与速度方向垂直,正好起到了向心力的作用。
⎩⎪⎨⎪⎧公式:qvB =mv 2r半径:r =mv qB周期:T =2πm qB二、质谱仪和回旋加速器1.质谱仪(1)原理图:如图所示。
(2)加速带电粒子进入质谱仪的加速电场,由动能定理得:qU =12mv 2。
①(3)偏转带电粒子进入质谱仪的偏转磁场做匀速圆周运动,洛伦兹力提供向心力:qvB =mv 2r 。
②(4)由①②两式可以求出粒子的运动半径r 、质量m 、比荷q m等。
其中由r =1B 2mUq可知电荷量相同时,半径将随质量变化。
(5)质谱仪的应用可以测定带电粒子的质量和分析同位素。
2.回旋加速器的结构和原理(1)两个中空的半圆金属盒D 1和D 2,处于与盒面垂直的匀强磁场中,D 1和D 2间有一定的电势差,如图所示。
第一章安培力与洛伦兹力带电粒子在匀强磁场中的运动课后篇素养形成必备知识基础练1.如图所示,MN为铝质薄平板,铝板上方和下方分别有垂直于纸面的匀强磁场(未画出)。
一带电粒子从紧贴铝板上表面的P点垂直于铝板向上射出,从Q点穿越铝板后到达PQ的中点O。
已知粒子穿越铝板时,其动能损失一半,速度方向和电荷量不变。
不计重力。
铝板上方和下方的磁感应强度大小之比为()A.2B.√2C.1D.√22P点时初速度为v1,从Q点穿过铝板后速度为v2,则E k1=12m v12,E k2=12m v22;由题意可知E k1=2E k2,即12m v12=m v22,则v1v2=√21。
由洛伦兹力提供向心力,即qvB=mv2r,得r=mvqB,由题意可知r1r2=21,所以B1B2=v1r2v2r1=√22,故选项D正确。
2.(多选)空间存在方向垂直于纸面向里的匀强磁场,如图所示的正方形虚线为其边界。
一细束由两种粒子组成的粒子流沿垂直于磁场的方向从O点入射。
这两种粒子带同种电荷,它们的电荷量、质量均不同,但其比荷相同,且都包含不同速率的粒子。
不计重力。
下列说法正确的是()A.入射速度不同的粒子在磁场中的运动时间一定不同B.入射速度相同的粒子在磁场中的运动轨迹一定相同C.在磁场中运动时间相同的粒子,其运动轨迹一定相同D.在磁场中运动时间越长的粒子,其轨迹所对的圆心角一定越大由于粒子比荷相同,由r=mvqB可知入射速度相同的粒子运动半径相同,运动轨迹也必相同,B正确;对于入射速度不同的粒子在磁场中可能的运动轨迹如图所示,由图可知,粒子的轨迹直径不超过磁场边界一半时转过的圆心角都相同,运动时间都为半个周期,而由T=2πmqB知所有粒子在磁场中运动周期都相同,A、C错误;再由t=θ2πT=θmqB可知D正确。
故选B、D。
3.(多选)如图所示,a、b、c、d为4个正离子,电荷量均为q,同时沿图示方向进入速度选择器后,a粒子射向P1板,b粒子射向P2板,c、d两粒子通过速度选择器后,进入另一磁感应强度为B2的磁场,分别打在A1和A2两点,A1和A2两点相距Δx。