高中物理带电粒子在匀强磁场中的运动
- 格式:docx
- 大小:166.64 KB
- 文档页数:4
第3节 带电粒子在匀强磁场中的运动核心素养导学一、带电粒子在匀强磁场中的运动1.带电粒子沿着与磁场垂直的方向射入匀强磁场,由于带电粒子初速度的方向和洛伦兹力的方向都在与磁场方向 的平面内。
所以,粒子只能在该平面内运动。
2.洛伦兹力总是与粒子运动方向垂直,只改变粒子速度的方向,不改变粒子速度的大小。
3.粒子速度大小不变,粒子在匀强磁场中所受洛伦兹力大小也不改变,洛伦兹力提供粒子做圆周运动的向心力,粒子做 运动。
带电粒子在匀强磁场中做匀速圆周运动,带电粒子的重力忽略不计,洛伦兹力提供向心力。
二、带电粒子在磁场中做圆周运动的半径和周期1.半径公式由洛伦兹力提供向心力q v B =m v 2r ,可得圆周运动的半径r = 。
2.周期公式匀速圆周运动的周期T =2πr v ,将r =m v qB 代入,可得T = 。
1.电子以某一速度进入洛伦兹力演示仪中。
(1)励磁线圈通电前后电子的运动情况相同吗?提示:①通电前,电子做匀速直线运动。
②通电后,电子做匀速圆周运动。
(2)电子在洛伦兹力演示仪中做匀速圆周运动时,什么力提供向心力?提示:洛伦兹力提供向心力。
2.如图,带电粒子在匀强磁场中做匀速圆周运动。
判断下列说法的正误。
(1)运动电荷在匀强磁场中做匀速圆周运动的周期与速度有关。
( )(2)带电粒子做匀速圆周运动的半径与带电粒子进入匀强磁场时速度的大小有关。
( )(3)带电粒子若垂直进入非匀强磁场后做半径不断变化的运动。
( )新知学习(一)⎪⎪⎪带电粒子做圆周运动的半径和周期[任务驱动]美丽的极光是由来自太阳的高能带电粒子流进入地球高空大气层出现的现象。
科学家发现并证实,向地球两极做螺旋运动的这些高能粒子的旋转半径是不断减小的,这主要与哪些因素有关?提示:一方面磁场在不断增强,另一方面由于大气阻力粒子速度不断减小,根据r =m v qB,半径r 是不断减小的。
[重点释解]1.由公式r =m v qB 可知,带电粒子在匀强磁场中做圆周运动的半径r 与比荷q m 成反比,与速度v 成正比,与磁感应强度B 成反比。
带电粒子在匀强磁场中运动轨迹带电粒子在匀强磁场中运动轨迹一、带电粒子在匀强磁场中运动轨迹带电粒子只受洛伦兹力作用的条件下,在匀强磁场中的运动有:1.粒子初速度方向平行磁场方向(V ∥B ):运动轨迹:匀速直线运动2.粒子初速度方向垂直磁场方向(V ⊥B ):(1)动力学角度:洛伦兹力提供了带电粒子做匀速圆周运动所需的向心力(2)运动学角度:加速度方向始终和运动方向垂直,而且加速度大小不变。
运动轨迹:匀速圆周运动二、轨道半径和运动周期1.轨道半径r :qBm v r = 在匀强磁场中做匀速圆周运动的带电粒子,轨道半径跟运动速率成正比。
2.运动周期T :qBm T π2= (1)周期跟轨道半径和运动速率均无关(2)粒子运动不满一个圆周的运动时间:qB m t θ=,θ为带电粒子运动所通过的圆弧所对的圆心角三、有界磁场专题:(三个确定)1、圆心的确定已知进出磁场速度方向已知进出磁场位置和一个速度方向2. 半径的确定:半径一般都在确定圆心的基础上用平面几何知识求解,常常要解三角形带电粒子在匀强磁场中运动轨迹3、时间的确定(由圆心角确定时间)粒子速度的偏转角(?)等于回旋角(α),并等于AB 弦与切线的夹角(弦切角θ)的2倍即.θα?2==粒子在磁场中运动一周的时间为T ,当粒子运动的圆弧所对应的圆心角为α时,其运动时间可由下式表示:T t πα2= (1)直界磁场区: 如图,虚线上方存在无穷大的磁场B ,一带正电的粒子质量m 、电量q 、若它以速度v 沿与虚线成o o o o o o*****6030、、、、、角分别射入,请你作出上述几种情况下粒子的轨迹、并求其在磁场中运动的半径和时间。
粒子在直界磁场(足够大)的对称规律:从同一边界射入的粒子,从同一边界射出时,速度与边界的夹角相等。
(2)、圆界磁场带电粒子在匀强磁场中运动轨迹偏转角:rR =2tan θR :磁场半径r:圆周运动半径经历时间:qBmt θ= 圆运动的半径:qBm v r = 圆界磁场对称规律:在圆形磁场区域内,沿径向射入的粒子,必沿径向射出。
高三物理一轮复习资料【带电粒子在匀强磁场中的运动】 [考点分析]1.命题特点:带电粒子在匀强磁场中的运动是等级考命题的热点问题,对此部分内容的考查以带电粒子在各类有界匀强磁场中的运动为主,题型有选择也有计算,难度中等偏上.2.思想方法:对称法、图解法、模型法等.[知能必备]1.单边界磁场问题的对称性带电粒子在单边界匀强磁场中的运动一般都具有对称性,可总结为:单边进出(即从同一直线边界进出),等角进出,如图所示.2.缩放圆法的应用技巧当带电粒子以任一速度沿特定方向射入匀强磁场时,它们的速度v0越大,在磁场中做圆周运动的轨道半径也越大,它们运动轨迹的圆心在垂直速度方向的直线PP′上,此时可以用“缩放圆法”分析——以入射点为定点,圆心位于直线PP′上,将半径缩放作粒子的运动轨迹,从而探索出临界条件.3.带电粒子在磁场中运动产生多解的原因[真题再练]1. (多选)如图所示,在Oxy 平面的第一象限内存在方向垂直纸面向里,磁感应强度大小为B 的匀强磁场.一带电粒子从y 轴上的M 点射入磁场,速度方向与y 轴正方向的夹角θ=45°.粒子经过磁场偏转后在N 点(图中未画出)垂直穿过x 轴.已知OM =a ,粒子电荷量为q ,质量为m ,重力不计.则( )A .粒子带负电荷B .粒子速度大小为qBamC .粒子在磁场中运动的轨道半径为aD .N 与O 点相距(2+1)a解析:AD 由左手定则,分析粒子在M 点受的洛伦兹力,可知粒子带负电,选项A 正确;粒子的运动轨迹如图所示,O ′为粒子做匀速圆周运动的圆心,其轨道半径R =2a ,选项C 错误;由q v B =m v 2R ,可求出v =2qBa m ,选项B 错误;由图可知,ON =a +2a =(2+1)a ,选项D 正确.2.如图,在0≤x ≤h ,-∞<y <+∞区域中存在方向垂直于纸面的匀强磁场,磁感应强度B 的大小可调,方向不变.一质量为m 、电荷量为q (q >0)的粒子以速度v 0从磁场区域左侧沿x 轴进入磁场,不计重力.(1)若粒子经磁场偏转后穿过y 轴正半轴离开磁场,分析说明磁场的方向,并求在这种情况下磁感应强度的最小值B m ;(2)如果磁感应强度大小为B m2,粒子将通过虚线所示边界上的一点离开磁场.求粒子在该点的运动方向与x 轴正方向的夹角及该点到x 轴的距离.解析:(1)由题意,粒子刚进入磁场时应受到方向向上的洛伦兹力,因此磁场方向垂直于纸面向里.设粒子进入磁场中做圆周运动的半径为R ,根据洛伦兹力公式和圆周运动规律,有q v 0B =m v 20R①由此可得R =m v 0qB②粒子穿过y 轴正半轴离开磁场,其在磁场中做圆周运动的圆心在y 轴正半轴上,半径应满足R ≤h ③由题意,当磁感应强度大小为B m 时,粒子的运动半径最大,由此得B m =m v 0qh④ (2)若磁感应强度大小为B m2,粒子做圆周运动的圆心仍在y 轴正半轴上,由②④式可得,此时圆弧半径为R ′ =2h ⑤粒子会穿过图中P 点离开磁场,运动轨迹如图所示.设粒子在P 点的运动方向与x 轴正方向的夹角为α,由几何关系sin α=h 2h =12⑥即α=π6⑦由几何关系可得,P 点与x 轴的距离为 y =2h (1-cos α)⑧联立⑦⑧式得y = (2-3)h ⑨ 答案:(1)磁场方向垂直于纸面向里 m v 0qh(2)π6(2-3)h带电粒子在匀强磁场中运动问题的解题流程[精选模拟]视角1:带电粒子在匀强磁场中运动的临界、极值问题1.(多选)如图所示,S 处有一电子源,可向纸面内任意方向发射电子,平板MN 垂直于纸面,在纸面内的长度L =9.1 cm ,中点O 与S 间的距离d =4.55 cm ,MN 与SO 直线的夹角为θ,板所在平面有电子源的一侧区域有方向垂直于纸面向外的匀强磁场,磁感应强度B =2.0×10-4 T ,电子质量m =9.1×10-31kg ,电荷量e =1.6×10-19C ,不计电子重力,电子源发射速度v =1.6×106 m/s 的一个电子,该电子打在板上可能位置的区域的长度为l ,则( )A .θ=90°时,l =9.1 cmB .θ=60°时,l =9.1 cmC .θ=45°时,l =4.55 cmD .θ=30°时,l =4.55 cm解析:AD 电子在磁场中运动,洛伦兹力提供向心力:e v B =m v 2R ,R =m v Be=4.55×10-2 m =4.55 cm =L2,θ=90°时,击中板的范围如图甲,l =2R =9.1 cm ,选项A 正确;θ=60°时,击中板的范围如图乙所示,l <2R =9.1 cm ,选项B 错误;θ=30°,如图丙所示,l =R =4.55 cm ,当θ=45°时,击中板的范围如图丁所示,l >R (R =4.55 cm),故选项D 正确,选项C 错误.2.如图所示,竖直线MN ∥PQ ,MN 与PQ 间距离为a ,其间存在垂直纸面向里的匀强磁场,磁感应强度为B ,O 是MN 上一点,O 处有一粒子源,某时刻放出大量速率均为v (方向均垂直磁场方向)、比荷一定的带负电粒子(粒子重力及粒子间的相互作用力不计),已知沿图中与MN 成θ=60°角射入的粒子恰好垂直PQ 射出磁场,则粒子在磁场中运动的最长时间为( )A.πa3v B .23πa 3vC.4πa 3vD .2πa v解析:C 当θ=60°时,粒子的运动轨迹如图甲所示,则a =R sin 30°,即R =2a .设带电粒子在磁场中运动轨迹所对的圆心角为α,则其在磁场中运行的时间为t =α2πT ,即α越大,粒子在磁场中运行时间越长,α最大时粒子的运行轨迹恰好与磁场的右边界相切,如图乙所示,因R =2a ,此时圆心角αm 为120°,即最长运行时间为T 3,而T =2πR v =4πav ,所以粒子在磁场中运动的最长时间为4πa3v,C 正确.3.如图是某屏蔽高能粒子辐射的装置,铅盒左侧面中心O 有一放射源可通过铅盒右侧面的狭缝MQ 向外辐射α粒子,铅盒右侧有一左右边界平行的匀强磁场区域.过O 的截面MNPQ 位于垂直磁场的平面内,OH 垂直于MQ .已知∠MOH =∠QOH =53°.α粒子质量m =6.64×10-27kg ,电量q =3.20×10-19C ,速率v =1.28×107m/s ;磁场的磁感应强度B=0.664 T ,方向垂直于纸面向里;粒子重力不计,忽略粒子间的相互作用及相对论效应,sin 53°=0.80,cos 53°=0.60.(1)求垂直于磁场边界向左射出磁场的粒子在磁场中运动的时间t ;(2)若所有粒子均不能从磁场右边界穿出,达到屏蔽作用,求磁场区域的最小宽度d . 解析:(1)粒子在磁场内做匀速圆周运动,则T =2πmqB垂直于磁场边界向左射出磁场的粒子在磁场中运动的时间为:t =T2代入数据解得:t =π32×10-6 s ≈9.81×10-8 s.(2)粒子在磁场中做匀速圆周运动,q v B =m v 2R沿OQ 方向进入磁场的粒子运动轨迹与磁场右边界相切,则所有粒子均不能从磁场的右边界射出,如图所示,由几何关系可得:d =R +R sin 53° 代入数据可得:d =0.72 m. 答案:(1)9.81×10-8 s (2)0.72 m视角2:带电粒子在匀强磁场中运动的多解问题4.(多选)长为l 的水平极板间有垂直纸面向里的匀强磁场,如图所示,磁感应强度为B ,板间距离也为l ,板不带电,现有质量为m 、电荷量为q 的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v 水平射入磁场,欲使粒子不打在极板上,可采用的办法是( )A .使粒子的速度v <Bql4mB .使粒子的速度v >5Bql4mC .使粒子的速度v >BqlmD .使粒子的速度v 满足Bql 4m <v <5Bql4m解析:AB 带电粒子刚好打在极板右边缘,有r 21=⎝⎛⎭⎫r 1-l 22+l 2,又因r 1=m v 1Bq ,解得v 1=5Bql 4m ;粒子刚好打在极板左边缘,有r 2=l 4=m v 2Bq ,解得v 2=Bql4m,故A 、B 正确.。
临清三中—物理—朱广明—盛淑贞选修3-1第三章带电粒子在匀强磁场中的运动一、教材分析本节课的内容是高考的热点之一,不仅要求学生有很强的分析力和运动关系的能力,还要求学生有必然的平面几何的知识,在教学中要多给学生思考的时间二、教学目标(一)知识与技术一、理解洛伦兹力对粒子不做功。
二、理解带电粒子的初速度方向与磁感应强度的方向垂直时,粒子在匀强磁场中做匀速圆周运动。
3、会推导带电粒子在匀强磁场中做匀速圆周运动的半径、周期公式,知道它们与哪些因素有关。
4、了解回旋加速器的工作原理。
(二)进程与方式通过带电粒子在匀强磁场中的受力分析,灵活解决有关磁场的问题。
(三)情感、态度与价值观通过本节知识的学习,充分了解科技的庞大威力,体会科技的创新与应用历程。
三、教学重点难点教学重点带电粒子在匀强磁场中的受力分析及运动径迹教学难点带电粒子在匀强磁场中的受力分析及运动径迹四、学情分析本节教材的内容属于洛仑兹力知识的应用,采用先实验探讨,再理论分析与推导的方式。
先实验观察再理论论证比较符合一般学生的认知进程,也可降低学习的难度。
五、教学方式实验观察法、讲述法、分析推理法六、课前准备一、学生的准备:认真预习讲义及学案内容二、教师的准备:洛伦兹力演示仪、电源、多媒体课件制作,课前预习学案,课内探讨学案,课后延伸拓展学案七、课时安排:1课时八、教学进程(一)预习检查、总结疑惑(二)情景引入、展示目标提问:(1)什么是洛伦兹力?(2)带电粒子在磁场中是不是必然受洛伦兹力?(3)带电粒子垂直磁场方向进入匀强磁场时会做什么运动呢?(三)合作探讨、精讲点播一、带电粒子在匀强磁场中的运动介绍洛伦兹力演示仪。
如图所示。
引导学生预测电子束的运动情况。
(1)不加磁场时,电子束的径迹;(2)加垂直纸面向外的磁场时,电子束的径迹;(3)维持出射电子的速度不变,增大或减小磁感应强度,电子束的径迹;(4)维持磁感应强度不变,增大或减小出射电子的速度,电子束的径迹。
确定带电粒子在磁场中运动轨迹的四种方法带电粒子在匀强磁场中作圆周运动的问题是高考的热点,这些考题不仅涉及到洛伦兹力作用下的动力学问题,而且往往与平面图形的几何关系相联系,成为考查学生综合分析问题、运用数字知识解决物理问题的难度较大的考题。
但无论这类问题情景多么新颖、设问多么巧妙,其关键一点在于规范、准确地画出带电粒子的运动轨迹。
只要确定了带电粒子的运动轨迹,问题便迎刃而解。
现将确定带电粒子运动轨迹的方法总结如下:一、对称法带电粒子如果从匀强磁场的直线边界射入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,且入射速度方向与出射速度方向与边界的夹角相等(如图1);带电粒子如果沿半径方向射入具有圆形边界的匀强磁场,则其射出磁场时速度延长线必过圆心(如图2 )。
利用这两个结论可以轻松画出带电粒子的运动轨迹,找出相应的几何关系。
例1.如图3 所示,直线MN上方有磁感应强度为B 的匀强磁场。
正、负电子同时从同一点同样速度v 射入磁场(电子质量为m,电荷为e),它们从磁场中射出时相距多远?射出的时间差是多少?解析:正、负电子的半径和周期是相同的。
只是偏转方向相反。
先确定圆心,画出半径和轨迹(如图4),由对称性知:射入、射出点和圆心恰好组成正三角形。
所以两个射出点相距s =2r= ,由图还看出经历时间相差,所以解此题的关键是找圆心、找半径和用对称。
图6 所示。
O以与MN 成30°角的例2.如图5 所示,在半径为r 的圆形区域内,有一个匀强磁场。
一带电粒子以速度v0 从M点沿半径方向射入磁场区,并由N点射出,O点为圆心。
当∠ MO=N 120°时,求:带电粒子在磁场区的偏转半径R及在磁场区中的运动时间。
解析:分别过M、N 点作半径OM、ON的垂线,此两垂线的交点O'即为带电粒子作圆周运动时圆弧轨道的圆心,如由图中的几何关系可知,圆弧MN所对的轨道圆心角为60°,O、O' 的边线为该圆心角的角平分线,由此可得带电粒子圆轨道半径为R=r/tan30 ° =又带电粒子的轨道半径可表示为:故带电粒子运动周期:带电粒子在磁场区域中运动的时间二、旋转圆法在磁场中向垂直于磁场的各个方向发射速度大小相同的带电粒子时,带电粒子的运动轨迹是围绕发射点旋转的半径相同的动态圆(如图7),用这一规律可快速确定粒子的运动轨迹。
第四节带电粒子在匀强磁场中的运动
一、带电粒子在匀强磁场中的运动
1.若v∥B,带电粒子不受洛伦兹力,在匀强磁场中做____________运动.
2.若v⊥B,带电粒子仅受洛伦兹力作用,在垂直于磁感线的平面内以入射速度v做_______运动.
(1)向心力由洛伦兹力提供:qvB=__________=__________;
(2)轨道半径公式:R=mv qB
;
(3)周期:T=2πR
v
=
2πm
qB
(周期T与速度v、轨道半径R无关);
(4)频率:f=1
T
=
qB
2πm
;
(5)角速度:ω=2π
T
=__________.
二、带电粒子在有界磁场中的运动
1.分析方法:找圆心、求半径、确定转过的圆心角的大小是解决这类问题的前提,确定轨道半径和给定的几何量之间的关系是解题的基础,有时需要建立运动时间t和转过的圆心角α之间的关系作为辅助.
(1)圆心的确定
①基本思路:与速度方向垂直的直线和图中弦的中垂线一定过圆心.
②两种情形
a.已知入射方向和出射方向时,可通过入射点和出射点分别作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图所示,图中P为入射点,M为出射点).b.已知入射方向和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心(如图所示,图中P为入射点,M为出射点).
(2)半径的确定
用几何知识(勾股定理、三角函数等)求出半径大小.
(3)运动时间的确定
粒子在磁场中运动一周的时间为T,当粒子运动的圆弧所对应的圆心角为α时,其运动时间为:
t=
α
360°
T(或t=
α
2π
T).
2.规律总结
带电粒子在不同边界磁场中的运动
(1)直线边界(进出磁场具有对称性,如图)
(2)平行边界(存在临界条件,如图)
(3)圆形边界(沿径向射入必沿径向射出,如图)
典例分析:
例1、在磁感应强度为B的匀强磁场中,一带电粒子做匀速圆周运动,又垂直进入磁感应强度为2B 的匀强磁场中,则( )
A.粒子速率加倍,周期减半
B.粒子速率不变,半径减半
C.粒子速率减半,半径变为原来的1/4
D.粒子速率不变,周期减半
例2.一个带电粒子沿垂直于磁场的方向射入一匀强磁场,粒子的一段径迹如图所示,径迹上的每小段都可以近似看成圆弧,由于带电粒子使沿途空气电离,粒子的能量逐渐减小(带电荷量不变),从图中情况可以确定 ()。
A.粒子从a到b,带正电
B.粒子从b到a,带正电
C.粒子从a到b,带负电
D.粒子从b到a,带负电
例3、如图所示,在有界匀强磁场边界线SP∥MN,速度不同的同种带电粒子从S点沿SP方向同时射入磁场,其中穿过a点的粒子速度v1与MN垂直,穿过b点的粒子,其速度方向与MN成60˚角.设两粒子从S到a、b所需时间分别为t1、t2,则t1∶t2为( )
A.1∶3
B.4∶3
C.1∶1
D.3∶2
例4、如图所示,平面直角坐标系的第Ⅰ象限内有一匀强磁场垂直于纸面向里,磁感应强度为B.
一质量为m、电荷量为q的粒子以速度v从O点沿着与y轴夹角为30°的方向进入磁场,运动到A点时速度方向与x轴的正方向相同,不计粒子的重力,则( )
A.该粒子带正电
B.A点与x轴的距离为mv 2qB
C.粒子由O到A经历时间t=πm 3qB
D.运动过程中粒子的速度不变
例5、如图所示,在一底边长为2a,θ=30°的等腰三角形区域内(D在底边中点),有垂直纸面向外的匀强磁场.现有一质量为m,电荷量为q的带正电的粒子,从静止开始经过电势差为U 的电场加速后,从D点垂直于EF进入磁场,不计重力与空气阻力的影响.
(1)若粒子恰好垂直于EC边射出磁场,求磁场的磁感应强度B为多少?
(2)改变磁感应强度的大小,粒子进入磁场偏转后能打到ED板,求粒子从进入磁场到第一次
打到ED板的最长时间是多少?
课堂针对练习:
1、关于带电粒子在匀强磁场中运动,不考虑其他场力(重力)作用,下列说法正确的是( )
A.可能做匀速直线运动 B.可能做匀变速直线运动
C.可能做匀变速曲线运动 D.只能做匀速圆周运动
2、一个带电粒子,沿垂直于磁场的方向射入一匀强磁场.粒子的一段径迹如下图所示.径迹
上的每一小段都可近似看成圆弧.由于带电粒子使沿途的空气电离,粒子的能量逐渐减小(带电量不变).从图中情况可以确定 ( )
A.粒子从a到b,带正电
B.粒子从a到b,带负电
C.粒子从b到a,带正电
D.粒子从b到a,带负电
3、如图所示,比荷为e/m的电子从左侧垂直于界面、垂直于磁场射入宽度为d、磁感受应强度为B
的匀强磁场区域,要从右侧面穿出这个磁场区域,电子的速度至少应为()
A、2Bed/m
B、Bed/m
C、Bed/(2m)
D、2Bed/m
4、如图所示,圆形区域内有垂直纸面的匀强磁场,三个质量和电荷量相同的带电粒子a、b、c,
以不同的速率对准圆心O沿着AO方向射入磁场,其运动轨迹如图。
若带电粒子只受磁场力的作用。
则下列说法正确的是( )
A.a粒子动能最大
B.c粒子速率最大
C.b粒子在磁场中运动时间最长
D.它们做圆周运动的周期T a<T b<T c
5.如图所示,质量为m,电荷量为+q的带电粒子,以不同的初速度两次从O点垂直于磁感线和磁场边界向上射入匀强磁场,在洛伦兹力作用下分别从M、N两点射出磁场,测得OM∶ON=3∶4,则下列说法中错误的是( )
A.两次带电粒子在磁场中经历的时间之比为3∶4
B.两次带电粒子在磁场中运动的路程长度之比为3∶4
C.两次带电粒子在磁场中所受的洛伦兹力大小之比为3∶4
D.两次带电粒子在磁场中所受的洛伦兹力大小之比为4∶3
6、如图所示,在y<0的区域内存在匀强磁场,磁场方向垂直于xy平面并指向纸里,磁感应强度
为B.一带负电的粒子(质量为m、电荷量为q)以速度v0从O点射入磁场,入射方向在xy平面内,与x轴正向的夹角为θ.求:
(1)该粒子射出磁场的位置;
(2)该粒子在磁场中运动的时间.(粒子所受重力不计)
1、两个电荷量相等的带电粒子,在同一匀强磁场中只受洛伦兹力作用而做匀速圆周运动.下列说法中正确的
是( )
A.若它们的运动周期相等,则它们的质量相等
B.若它们的运动周期相等,则它们的速度大小相等
C.若它们的轨迹半径相等,则它们的质量相等
D.若它们的轨迹半径相等,则它们的速度大小相等
2、如图所示,在垂直于纸面向内的匀强磁场中,垂直于磁场方向发射出两个电子1和2,其速度
分别为v1和v2.如果v2=2v1,则1和2的轨道半径之比r1∶r2及周期之比T1∶T2分别为( ) A.r 1∶r2=1∶2,T1∶T2=1∶2
B.r1∶r2=1∶2,T1∶T2=1∶1
C.r1∶r2=2∶1,T1∶T2=1∶1
D.r1∶r2=1∶1,T1∶T2=2∶1
3、质量和电荷量都相等的带电粒子M和N,以不同的速率经小孔S垂直进入匀强磁场,运行的半
圆轨迹如图中虚线所示.下列表述正确的是( )
A.M带负电,N带正电
B.M的速率小于N的速率
C.洛伦兹力对M、N做正功
D.M的运行时间大于N的运行时间
4、如图所示,水平导线中有稳恒电流I通过,导线正下方的电子初速度方向与电流方向相同,其
后电子将()
A.沿路径a运动,轨迹是圆;
B.沿路径a运动,曲率半径变小;
C.沿路径a运动,曲率半径变大;
D.沿路径b运动,曲率半径变小.
5、边长为a的正方形,处于有界磁场,如图所示,一束电子以v
水平射入磁场
后,分别从A处和C处射出,则v
A :v
C
=____;所经历的时间之比t
A
:t
B
=____。
6.如图所示,圆形区域内有垂直纸面向里的匀强磁场,磁感应强度为B,一带电粒子(不计重力)以某一初速度沿圆的直径方向射入磁场,粒子穿过此区域的时间为t,粒子飞出此区域时速度方向偏转角为60°,根据以上条件可求下列物理量中的()
A.带电粒子的比荷
B.带电粒子的初速度
C.带电粒子在磁场中运动的周期
D.带电粒子在磁场中运动的半径
7、如图所示,M、N为两块带等量异种电荷的平行金属板,两板间电压可取从零到某一最大值之间
的各种数值.静止的带电粒子带电荷量为 +q,质量为m(不计重力),从点P经电场加速后,从小孔Q进入N板右侧的匀强磁场区域,磁感应强度大小为B,方向垂直于纸面向外,CD为磁场边界上的一绝缘板,它与N板的夹角为θ = 45°,孔Q到板的下端C的距离为L,当M、N 两板间电压取最大值时,粒子恰垂直打在CD板上,求:
⑴两板间电压的最大值U m;
⑵CD板上可能被粒子打中的区域的长度s;
⑶粒子在磁场中运动的最长时间t m.。