电路第二章习题解答
- 格式:doc
- 大小:4.73 MB
- 文档页数:16
第2章逻辑门电路2.1 题图2.1(a)画出了几种两输入端的门电路,试对应题图2.1(b)中的A、B波形画出各门的输出F1~F6的波形。
题图2.1解:2.2 求题图2.2所示电路的输出逻辑函数F1、F2。
题图2.2解:2.3 题图2.3中的电路均为TTL门电路,试写出各电路输出Y1~Y8状态。
题图2.3解: Y1=0, Y2=0, Y3=Hi-Z, Y4=0, Y5=0, Y6=0, Y7=0, Y8=0.2.4 题图2.4中各门电路为CMOS电路,试求各电路输出端Y1、Y2和Y的值。
题图2.4解: Y1=1, Y2=0, Y3=0.2.5 6个门电路及A、B波形如题图2.5所示,试写出F1~F6的逻辑函数,并对应A、B波形画出F1~F6的波形。
题图2.5解:2.6 电路及输入波形分别如题图2.6(a)和2.6(b)所示,试对应A、B、C、x1、x2、x3波形画出F端波形。
题图2.6解:2.7 TTL与非门的扇出系数N是多少?它由拉电流负载个数决定还是由灌电流负载决定?解: N≤8 N由灌电流负载个数决定.2.8 题图2.8表示三态门用于总线传输的示意图,图中三个三态门的输出接到数据传输总线,D1D2、D3D4、…、D m D n为三态门的输入端,EN1、EN2、EN n分别为各三态门的片选输入端。
试问:EN信号应如何控制,以便输入数据D1D2、D3D4、…、D m D n顺序地通过数据总线传输(画出EN1~EN n 的对应波形)。
题图2.8解:用下表表示数据传输情况2.9 某工厂生产的双互补对称反相器(4007)引出端如题图2.9所示,试分别连接成:(1)反相器;(2)三输入与非门;(3)三输入或非门。
题图2.9解: (1) 反向器(2)与非门 (3)或非门2.10 按下列函数画出NMOS 电路图。
123()()()F AB CD E H G F A B CD AB CD F A B=+++=+++=⊕解:(1)(2) (3)2.11 将两个OC门如题图2.11连接,试写出各种组合下的输出电压u o及逻辑表达式。
第二章:电力电子习题解答第二章 整流电路习题及思考题1.单相半波可控整流电路对电阻负载供电,R =20Ω,U =100V ,求当α=0°和60°时的负载电流Id ,并画出u d 与i d 波形。
解:当α=0°时: )(V .U .U d 451004504502=⨯==)(A ./RU I dd 2522045===当α=60°时: )(A ..U .U d 753325014502=+⨯=)(A ..RU I dd 691207533===u d 与i d 的波形见:教材43页图2-1。
2.图2-9为具有变压器中心抽头的单相全波可控整流电路。
问该变压器还有直流磁化问题吗?试说明:① 晶闸管承受的最大正反向电压为222U ;② 当负载为电阻或电感时其输出电压和电流的波形与单相全控桥时相同。
解:由图2-9图可以看出,在2U 正半周1VT 导通,负载电流由变压器次级上端流出,由中心抽头流入,当2U 负半周时2VT 导通,负载电流由B 次级下端流出由中心抽头流入,正负半周电流相等,但在铁芯中产生的磁势方向大小相等且方向相反,故变压器无直流磁化问题。
① 当1VT 导通时,在2u =22U 时,2VT 的阴极为22U ,而其阳极为-22U ,所以VT 承受的最大反压为222U 。
如果是阻感负载且电感是足够大时,当90=α,1VT 导通,2VT 的阴极电压为-22U 而其阳极电压为22,故其承受的最大正向电压为-222U 。
② 正半周1VT 导通,2U ud=,负半周2VT 导通2U u d =。
所以输出电压和电流的波形与单相全控桥时相同。
3.单相桥式全控整流电路,V U 1002=,负载中R=Ω2,L值极大,当30时,要求:① 作出du ,di 和2i 的波形;② 求整流输出平均电压dU 、电流dI ,变压器二次电流有效值2I ;③ 考虑安全裕量,确定晶闸管的额定电压和额定电流。
第二章 电路的分析方法2.1.1 在图2.01的电路中,V 6=E ,Ω=61R ,Ω=32R ,Ω=43R ,Ω=34R ,Ω=15R 。
试求3I 和4I 。
4I ↓图2.01解:图2.01电路可依次等效为图(a )和图(b )。
R 3R 1R(b)Ω=+×=+×=23636414114R R R R R Ω=+++×=+++×=2243)24(3)(14321432R R R R R R R A 22165=+=+=R R E IA 322363)(214323=×+=++=I R R R R IA 943263631414−=×+−=+−=I R R R I2.3.3 计算图2.12中的电流3I 。
Ω=1R A2S =图2.12解:根据电压源与电流源的等效变换,图2.12所示电路可依次等效为图(a )和图(b ),由图(b )可求得A 2.15.023=+=I由图(a )可求得:A 6.02.121213=×==I IΩ=1R V22=Ω=14R(b)Ω=12R2.6.1 在图2.19中,(1)当将开关S 合在a 点时,求电流1I ,2I 和3I ;(2)当将开关S 合在b 点时,利用(1)的结果,用叠加定理计算电流321,I I I 和 。
I图2.19I (a)I (b)解:(1)当将开关S 合在a 点时,图2.19所示电路即为图(a ),用支路电流法可得:=+=+=+12042130423231321I I I I I I I 解得:===A 25A 10A 15321I I I(2)开关S 合在b 点时,利用叠加原理图2.19所示电路可等效为图(a )和图(b ),其中图(a )电路中130V 和120V 两个电压源共同作用时所产生的电流已在(1)中求得,即:A 151=,I A 102=,I A 253=,I由图3(b )可求得:A 642422202=+×+=,,I A 464241−=×+−=,,IA26422=×+=则:A 11415111=−=+=,,,I I IA 16610,222=+=+=,,I I IA 27225333=+=+=,,,I I I2.6.2 电路如图2.20(a )所示,V 10ab ,,V 124321=====U R R R R E 。
2-1、求电路的入端电阻R AB 。
R= 2//2+4//6AB答案 3.4Ω2-2、求各电路的入端电阻R AB。
(6//6+9)//102-3、求各电路的入端电阻R AB。
→解:(a)(3//6+1)//6=2Ω(b) 等效电路如图所示:即2-4、试求下图所示电路中的电流I。
答案-1.1A2-5、求图示电路中的电流i。
答案:- 0.1A2-6、电路如图所示,求B点的电位V B。
解:该电路图可以改变成如下图所示的形式2-7、电路如图所示,求电流I和电压U AB。
解:原电路可以等效变换为如下电路152-8、电路如图所示,求AB端的等效电阻R AB。
解:在AB端外加电源,使u、i对二端电路来说是关联参考方向。
由图可得:得到2-9、求图 (a) 和 (b) 所示两电路的输入电阻。
2-10、用电源等效变换法求图示电路中负载R L 上的电压U 。
12A5ΩR L+ -14V +-4Ω14-2Ω 2Ω2Ω2-11、化简为一个等效的电压源支路。
(a) (b) (c) (d)其中111R U I S S =,222R U I S S =,21S S S I I I +=,)(2121R R R R R S +=,S S S I R U =。
恒流源与恒压源的串联和并联两种情况(1) (2)2-12、化简图示电路。
(a) (b) (c) (d)2-13、在图(a )所示电路中,已知V 12=S U ,Ω=31R ,A 5=S I ,Ω=62R ,试求2R 支路中的电流2I 。
(a) (b) (c)解: 3)5312(633)(12112=++=++=S S I R U R R R I A10;2-14、在图示电路中,N为一个实际的直流电源。
当开关S断开时,电压表读数为V1。
试求该直流电源N的电压源模型与电流源模型。
当开关S闭合时,电流表读数为A解:等效电路如图:,2-15、电路如图所示。
已知Ω=61R ,Ω=1.02R ,98.0=α,Ω=53R ,V U 9.4=。
第二章 习题2.1.13 在图中R 1= R 2 = R 3 = R 4 = 300Ω,R 5 = 600Ω, 试求开关 S 断开和闭合时a 、b 之间的等效电阻。
【解】开关 S 断开时:Ω=++=++=200600//)300300//()300300(//)//()(54231R R R R R R开关 S 闭合时:Ω=+=+=+=200600//)150150(600//]300//300300//300[//)]//()//[(54321R R R R R R2.3.5 在图示的电路中,求各理想电流源的端电压、功率及各电阻上消耗的功率。
【解】由KCL ,电阻R 1上电流: A I I I 11212=-=-=左边电流源:端电压(其与R1并联,电压相等): V IR U 2020111=⨯== 功率 W U I P S 20201111=⨯==右边电流源:由KVL 可得端电压 V R I IR U 401022012212=⨯+⨯=+= 功率 W U I P S 40202222=⨯==电阻上消耗的功率:W R I P R 2020121211=⨯==,W R I P R 4010222222=⨯==2.3.9 试用电压源与电流源等效变换的方法计算图中2Ω电阻中的电流。
【解】对电路作等效变换,有:1Ω2A1Ω3Ω6Ω6V 12V 2ΩIR 1R 4R 5R 2R 3S3Ω6Ω2Ω I2A2V2A 2Ω-+ 1A10Ω20ΩR 1 R 2I 1I 2 2AU 1U 2I3Ω6Ω 2Ω I2A 2V 1Ω- + 6V + - 1Ω计算电流:A I 122228=++-=2.4.2 试用支路电流法求图示电路中的各支路电流,并求三个电源的输出功率和负载电阻R L 取用的功率。
0.8Ω和0.4Ω分别为两个电压源的内阻。
【解】对节点A ,由KCL 有:I I I =++1021 对回路,由KVL : I I 48.01201+=I I 44.01162+=联立求解得:I 1=9.38A ,I 2= 8.75A ,I =28.13A , 三个电源的输出功率:W I I E P E 10558.021111=⨯-⨯=, W I I E P E 9844.022222=⨯-⨯=,W I IR I U P S L S AB IS 11251013.284=⨯⨯=⨯=⨯=负载电阻R L 取用的功率:W R I P L IS 316413.281613.28422=⨯=⨯== P L =3164W 。