第二章控制系统数学模型
- 格式:ppt
- 大小:1.72 MB
- 文档页数:88
第二章控制系统的数学模型§2.1引言●数学模型(1)描述系统输入、输出变量及内部各变量关系的数学表达式。
I—O—内部变量(2)系统中各物理量之间相互作用的关系及各自的变化规律用数学形式表达出来。
(3)是舍弃了各种事物的具体特点而抽象出它们的共同性质(即运动)来加以研究的工具。
●控制理论研究的问题是:(1)一个给定的控制系统,它的运动有何性质和特性—分析* 运动:泛指一切物理量随时间的变化(2)怎样设计一个控制系统,使其运动具有给定的性质和特性—综合和设计●工程角度上:控制理论要解决的问题(进一步解释)(1)不满足于求解方程c(t)=f(r(t) )—数学课程已有(2)提出更深入的问题a.这些曲线有何共同性质;b.系统参数值波动对曲线有何影响?c.如何修改参数甚至结构才能改进这些曲线,使之满足工程要求。
—建立控制系统的数学模型,也是研究和解决这些问题的第一步,故建立描述控制系统运动的数学模型是控制理论的基础。
数学模型的形式不只一种:它们各有特长和最适合的场合;它们彼此之间也有紧密的联系;各种数学描述方法的共同基础是微分方程;一元高次微分方程多元一次微分方程(状态方程)Laplace变换为工具——传函传函阵§ 2.2 基本数学模型例 用数学模型表示下图的RC 无源网络给定r u 为输入量,c u 为输出量解:由克希霍夫定律 ⎰+⋅=idt i R u C r 1 r c c u u dtdu RC =+ ⎰=idt u C c 1 令T RC =(时间参数),则微分方程为:r c c u u dtdu T =+ 线性定常系统在初始条件为零时,传递函数为:£{c(t)}/£{r(t)})()()(s U s U s U s T r c c =+⋅⋅ 1.1)(/)()(+==→s T s U s U s G r c 其形式和参数由系统的结构和参数决定,与r(t)无关。
第2章控制系统的数学模型§1 系统数学模型的基本概念一. 系统模型系统的模型包括实物模型、物理模型、和数学模型等等。
物理本质不同的系统,可以有相同的数学模型,从而可以抛开系统的物理属性,用同一方法进行具有普遍意义的分析研究(信息方法)。
从动态性能看,在相同形式的输入作用下,数学模型相同而物理本质不同的系统其输出响应相似。
相似系统是控制理论中进行实验模拟的基础。
二. 系统数学模型1. 系统数学模型系统的数学模型是系统动态特性的数学描述。
数学模型是描述系统输入、输出量以及内部各变量之间关系的数学表达式,它揭示了系统结构及其参数与其性能之间的内在关系。
2. 系统数学模型的分类数学模型又包括静态模型和动态模型。
(1) 静态数学模型静态条件(变量各阶导数为零)下描述变量之间关系的代数方程。
反映系统处于稳态时,系统状态有关属性变量之间关系的数学模型。
(2) 动态数学模型描述变量各阶导数之间关系的微分方程。
描述动态系统瞬态与过渡态特性的模型。
也可定义为描述实际系统各物理量随时间演化的数学表达式。
动态系统的输出信号不仅取决于同时刻的激励信号,而且与它过去的工作状态有关。
微分方程或差分方程常用作动态数学模型。
动态模型在一定的条件下可以转换成静态模型。
在控制理论或控制工程中,一般关心的是系统的动态特性,因此,往往需要采用动态数学模型。
即,一般所指的系统的数学模型是描述系统动态特性的数学表达式。
三. 系统数学模型的形式对于给定的同一动态系统,数学模型的表达不唯一。
如微分方程、传递函数、状态方程、单位脉冲响应函数及频率特性等等。
对于线性系统,它们之间是等价的。
但系统是否线性这一特性,不会随模型形式的不同而改变。
线性与非线性是系统的固有特性,完全由系统的结构与参数确定。
经典控制理论采用的数学模型主要以传递函数为基础。
而现代控制理论采用的数学模型主要以状态空间方程状态空间方程为基础。
而以物理定律及实验规律为依据的微分方程微分方程又是最基本的数学模型,是列写传递函数和状态空间方程的基础。