【中考复习】一次函数的应用
- 格式:doc
- 大小:510.00 KB
- 文档页数:16
1.(2013•鄂州)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地距离y(千米)与x(小时)之间的函数关系.请根据图象解答下列问题:(1)轿车到达乙地后,货车距乙地多少千米?(2)求线段CD对应的函数解析式.(3)轿车到达乙地后,马上沿原路以CD段速度返回,求轿车从甲地出发后多长时间再与货车相遇(结果精确到0.01).一次函数的应用知识点一:一次函数与坐标轴交点和面积问题1:交点问题一次函数b kx y +=的图象是经过(0,b )和(-kb,0)两点。
【典型例题】1.直线y=-x+2与x 轴的交点坐标是 ,与y 轴的交点坐标是 2.直线y=-x -1与x 轴的交点坐标是 ,与y 轴的交点坐标是 3.函数y=x+1与x 轴交点为( )A .(0,-1)B .(1,0)C .(0,1)D .(-1,0)4.直线y=-32x+3与x 轴、y 轴所围成的三角形的面积为( ) A .3 B .6 C .34 D .325.直线y=-2x-4交x 轴、y 轴于点A 、B ,O 为坐标原点,则S △AOB = 。
6.若直线y=3x+b 与两坐标轴所围成的三角形的面积是6个单位,则b 的值是 。
7.如图所示,已知直线y=kx-2经过M 点,求此直线与x 轴交点坐标和直线与两坐标轴围成三角形的面积.2:面积问题面积:一次函数y=kx+b 与x 、y 轴所交的两点与原点组成的三角形的面积为2b k(1):两直线交点坐标必满足两直线解析式,求交点就是联立两直线解析式求方程组的解。
(2):复杂图形“外补内割”即:往外补成规则图形,或分割成规则图形(三角形)。
(3):往往选择坐标轴上的线段作为底,底所对的顶点的坐标确定高。
1. 直线经过(1,2)、(-3,4)两点,求直线与坐标轴围成的图形的面积。
【初中数学】初中数学公式:一次函数的应用【—一次函数的应用】一次函数的应用要领:分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际。
主函数的应用一、分段函数问题二、函数的多变量问题三、概括整合(1)简单的一阶函数问题:① 功能模型的建立方法;② 分段函数思想的应用。
(2)理清题意是采用分段函数解决问题的关键。
通用公式1.求函数图像的k值:(y1-y2)/(x1-x2)2.找到平行于X轴的线段的中点:(x1+x2)/23.求与y轴平行线段的中点:(y1+y2)/24.求任意线段的长度:√ [(x1-x2)^2+(y1-y2)^2]5.求两个一次函数式图像交点坐标:解两函数式两个主要函数Y1=K1X+b1y2=k2x+B2,让Y1=Y2得到K1X+B1=k2x+B2,用Y1=K1X+b1y2=k2x+B2替换x=x0的值,得到y=Y0,那么(x0,Y0)是Y1=K1X+B1和Y2=k2x+B2的交点坐标6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]7.求任意两点连线主函数的解析式:(x-x1)/(x1-x2)=(Y-Y1)/(Y1-y2)(分母为0,分子为0)xy+,+(正,正)在第一象限-,+(负,正)在第二象限-,-(负,负)在第三象限+,-(正,负)在第四象限如果有两条直线,≠ K1+y2=YB1+y29.如两条直线y1=k1x+b1⊥y2=k2x+b2,则k1×k2=-1十y=k(x-n)+b就是直线向右平移n个单位Y=K(x+n)+B是直线向左平移n个单位口诀:右减左加(对于y=kx+b来说,只改变n)Y=KX+B+n是向上平移n个单位y=kx+b-n就是向下平移n个单位简洁的公式:加减(对于y=KX+B,只改变B)11.直线y=kx+b与x轴的交点:(-b/k,0)与y轴的交点:(0,b)温馨提示:当解决多变量问题时,你可以分析这些变量之间的关系,选择其中一个作为自变量,然后根据问题的情况找到一个能反映实际问题的函数。
4.4 一次函数的应用学习目标1.能通过函数图象获取信息,进而解决简单的实际问题。
2.初步体会方程与函数的关系。
知识详解1.确定一次函数表达式(1)借助图象确定函数的表达式先观察直线是否过坐标原点,若过原点,则为正比例函数,可设其关系式为y=kx(k≠0);若不过原点,则为一次函数,可设其关系式为y=kx+b(k≠0);然后再观察图象上有没有明确几个点的坐标.对于正比例函数,只要知道一个点的坐标即可;对于一次函数,则需要知道两个点的坐标;最后将各点坐标分别代入y=kx或y=kx+b中,求出其中的k,b,即可确定出其关系式.(2)确定正比例函数、一次函数表达式需要的条件①由于正比例函数y=kx(k≠0)中只有一个未知系数k,故只要一个条件,即一对x,y的值或一个点的坐标,就可以求出k的值,确定正比例函数的表达式.②一次函数y=kx+b(k≠0)有两个未知系数k,b,需要两个独立的关于k,b的条件,求得k,b的值,这两个条件通常是两个点的坐标或两对x,y的值.用待定系数法求直线解析式由图象观察可知该函数为一次函数,故应设成y=kx+b(k≠0)的形式,再将A,B两点坐标代入该关系式,即可求出k,b,从而确定出具体的关系式.2.待定系数法(1)定义:先设出式子中的未知系数,再根据条件求出未知系数,从而写出这个式子的方法,叫做待定系数法,其中的未知数也称为待定系数.(2)用待定系数法求解析式的一般步骤:①根据已知条件写出含有待定系数的解析式;②将x,y的几对值或图象上几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组;③解方程(组),得到待定系数的值;④将求出的待定系数代回所求的函数解析式中,得到所求函数的解析式.3.一次函数的实际应用(1)通过图象获取信息通过观察一次函数的图象获取有用的信息是我们在日常生活中经常遇到的问题,要掌握这个重点在于对函数图象的观察和分析,观察函数图象时,首先要看横轴、纵轴分别代表的是什么,也就是观察图象反映的是哪两个变量之间的关系.函数图象中的特殊点观察图象获取信息时,一定要注意图象上的特殊点,这些特殊点对我们解决问题有很大的帮助.(2)一次函数图象的应用一次函数和正比例函数是我们接触到的最简单的函数,它们的图象和性质在现实生活中有着广泛的应用.利用一次函数和正比例函数的图象解决问题是本节的一个重点,这部分内容在中考中占有重要的地位.函数y =kx +b 图象的变化形式:在实际问题中,当自变量的取值范围受到一定的限制时,函数y =kx +b (k≠0)的图象就不再是一条直线.要根据实际情况进行分析,其图象可能是射线、线段或折线等等.函数图象交点规律:两函数图象在同一坐标系中,当取相同的自变量时,下方图象对应的函数的函数值小;交点处的函数值相等.4.一次函数和一元一次方程的关系当一次函数y =kx +b (k≠0)中的函数值为0时,可得0=kx +b 即kx +b =0,这在形式上变成了求关于x 的一元一次方程,也就是说,当一次函数y =kx +b 的函数值为0时,相应的自变量的值即为方程kx +b =0的解;若从图象上来看,则可看做函数y =kx +b 的图象与x 轴的交点的横坐标,即为方程kx +b =0的解.由此可见,方程与函数是密不可分的.5.一次函数图象的平移一次函数y =kx +b (k≠0)的图象可以看做由直线y =kx 平移|b|个单位长度而得到(当b >0时,向上平移;当b <0时,向下平移).实际上就是指一次函数y =kx +b 的图象沿y轴平移时,在b 的位置上按照“上加下减”的规律进行.如:一次函数1l :y =23x +2的图象可以看做是由正比例函数l :y =23x 的图象沿y 轴向上平移2个单位长度得到的;一次函数2l :y =23x -2的图象可以看做是由正比例函数l :y =23x 的图象沿y 轴向下平移2个单位长度得到的.平移中的函数解析式:解决平移问题可以对性质进行记忆直接运用,也可以找出平移后借助坐标系运用待定系数法求解.平移前后k 的值不变,改变的是b 的值.6.函数、方程和不等式的完美结合从“数”的角度看,由于任何一元一次方程都可以转化为ax +b =0(a ,b 为常数,且a≠0)的形式,所以解一元一次方程可以看做:当一次函数y =ax +b 的值为0时,求相应的自变量的值;反之,求自变量x 为何值时,一次函数y =ax +b 的值为0,只要求出方程ax +b =0的解即可.由于任何一元一次不等式都可以转化为类似ax +b >0或ax +b <0的形式,所以解一元一次不等式可以看做:当一次函数y =ax +b 的值大(小)于0时,求自变量相应的取值范围;反之,求一次函数y =ax +b 的值何时大(小)于0时,只要求出不等式ax +b >0或ax +b <0的解集即可.从一元一次方程、一元一次不等式与一次函数的关系可以看出,三者最终能用函数观点统一起来,并且达到一种完美的结合,这种结合,又常常在一些考题中得以体现.7.如何确定一次函数的表达式确定正比例函数和一次函数的解析式是一次函数这部分内容考查的一个重要知识点.那么应该怎样确定正比例函数和一次函数的解析式呢?因为正比例函数的解析式y =kx 中,只有一个待定系数k ,确定了k 的值,也就确定了正比例函数的解析式.而一次函数的解析式y =kx +b 中,有两个待定系数k 和b ,因此需要两个条件,此条件可以是直线上的两个点的坐标,也可以是两对变量与函数的对应值.但在实际求正比例函数和一次函数的解析式时,应该具体问题具体分析.(1)定义型若两个量y与x成正比例,可设为正比例函数形式:y=kx(其中k是常数,k≠0),再用待定系数法求比例系数k.(2)两(或一)点型把点的坐标代入所设的关系式中,根据点的坐标求解.(3)图象型解决看图获取信息的问题,不仅要注意坐标轴所表示的量是什么,还要抓住图中一些关键的点(如:起点、终点、折线中的折点)所反映出的信息.通过观察图象,发掘图象经过坐标轴上的两点,根据两点的坐标构造待定系数的方程组,求出k,b;它体现了数与形的完美结合,是解题的重要思想方法之一.点在函数图象上,就是说点的坐标满足该图象的函数解析式.只需把点的坐标代入函数解析式,然后求方程(组)的解即可.(4)平移型平移不改变k的大小,只改变b的大小.(5)实际应用型解这类题的方法是对问题的审读和理解,掌握用一个变量的代数式表示另一个变量,建立两个变量间的等量关系,同时从题中确定自变量的取值范围.这是求实际应用型问题的函数关系式的至关重要的一点.8.分段计费问题在自变量的不同取值范围内表示函数关系的解析式有不同的形式,这样的函数称为分段函数,有关运用分段函数的知识解决生活中的问题是近几年中考的热点之一,能考查学生分析问题、解决问题的能力,及培养学生思维的广阔性和深刻性.分段计费问题和实际生活联系密切,这类问题考查有效地应用数学知识解决实际问题的能力.常见的分段计费问题有:水费分段计费、电费分段计费、话费分段计费等.解决问题的关键是根据已知条件构建函数在不同的条件下的解析式,再由条件选择对应的解析式求解.【典型例题】例1. 一次函数图象如图所示,求其解析式.【答案】设一次函数解析式为y=kx+b,∵一次函数图象过点(0,-2),∴-2=k×0+b,∴b=-2.∵一次函数图象过点(1,0),∴0=k×1+b,∴k=2.∴一次函数解析式为y=2x-2.【解析】利用图象所给的信息,即直线与坐标轴交点的坐标,再用待定系数法求出k,b的值,从而确定表达式.例2. 如图所示,将直线OA向上平移1个单位长度,得到一个一次函数的图象,那么这个一次函数的解析式是__________.【答案】y=2x+1【解析】由图象可知,直线经过原点,所以设直线的解析式为y=kx(k≠0).因为直线经过点(2,4),所以直线的解析式为y=2x.根据“上加下减”的原则,可知所求的一次函数解析式为y=2x+1.例3. 已知一次函数y=ax+b(a,b是常数,且a≠0).x与y的部分对应值如下表:那么方程ax+b=0的解是__________,不等式ax+b>0的解集是__________.【答案】x=1 x<1【解析】本题先以表格的形式向我们提供了一次函数y=ax+b的信息.按一般解法,我们完全可以利用这些对应值,通过待定系数法求出未知系数a和b,然后再去解方程或不等式,于是得解.果真那样去做的话,说明你没有真正领会到本题的用意.事实上,本题是想考查你对一元一次方程、一元一次不等式和一次函数之间关系的掌握情况.由三者之间的关系可知,求方程ax+b=0的解,实质上就是求一次函数y=ax+b的函数值为0时,对应的自变量x的取值,从表中可直接看出x=1;同理,求不等式ax+b>0的解集,实质上就是求当一次函数y=ax+b的函数值大于0时,对应的自变量x的取值范围,这时也可以从表中直接看出为x<1.【误区警示】易错点1:如何确定函数的表达式1.直线y=kx+b经过点A(-3,0)和点B(0,2),求这条直线的表达式.【答案】把点A和点B的横、纵坐标分别当做x,y的值代入y=kx+b中,得0=-3k+b,2=b,得出23k=,b=2,从而得出这条直线的表达式为223y x=+.【解析】把点A和点B的横、纵坐标分别当做x,y的值代入y=kx+b中,求出k,b即可.易错点2:平移型表达式2.将直线y=2x向上平移两个单位长度,所得的直线是( ).A.y=2x+2B.y=2x-2C.y=2(x-2)D.y=2(x+2)【答案】A【解析】由于直线y=kx+b可以看做由直线y=kx平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移),所以将直线y=2x向上平移两个单位长度,所得的直线是y=2x+2.【综合提升】针对训练1. 甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是()A.①②③B.仅有①②C.仅有①③D.仅有②③2. 已知等腰三角形周长为20,则底边长y关于腰长x的函数图象是()A.B.C.D.3. 某市打市电话的收费标准是:每次3分钟以内(含3分钟)收费0.2元,以后每分钟收费0.1元(不足1分钟按1分钟计).某天小芳给同学打了一个6分钟的市话,所用电话费为0.5元;小刚现准备给同学打市电话6分钟,他经过思考以后,决定先打3分钟,挂断后再打3分钟,这样只需电话费0.4元.如果你想给某同学打市话,准备通话10分钟,则你所需要的电话费至少为()A.0.6元B.0.7元C.0.8元D.0.9元1.【答案】A【解析】甲的速度为:8÷2=4(米/秒);乙的速度为:500÷100=5(米/秒);b=5×100-4×(100+2)=92(米);5a-4×(a+2)=0,解得a=8,c=100+92÷4=123(秒),∴正确的有①②③.2.【答案】D【解析】利用周长的定义得到y+2x=20,变形为y=-2x+20,然后利用三角形三边的关系得到y>0且2x>y,解不等式组可得5<x<10,于是得到底边长y关于腰长x的函数关系为y=-2x+20(5<x<10),所以其图象为线段(除端点),并且y随x的增大而减小.3.【答案】B【解析】由已知通过分析可得:根据小刚通话的方式进行,需要电话费最少,即先打3分钟,挂断后再打3分钟,再挂断打10-3-3=4分钟,则费用为:0.2+0.2+0.2+0.1=0.7.课外拓展这里介绍两则真实的故事。
一次函数的应用一、选择题1.(2011天津3分)一家电信公司给顾客提供两种上网收费方式:方式A 以每分0.1元的价格按上网所用时间计算;方式B 除收月基费20元外.再以每分0.05元的价格按上网所用时间计费。
若上网所用时问为x 分.计费为y 元,如图.是在同一直角坐标系中.分别描述两种计费方式的函救的图象,有下列结论:① 图象甲描述的是方式A :② 图象乙描述的是方式B ;③ 当上网所用时间为500分时,选择方式B 省钱.其中,正确结论的个数是(A) 3 (B) 2 (C) 1 (D) 0【答案】A 。
【考点】一次函数的图象和性质。
【分析】① 方式A 以每分0.1元的价格按上网所用时间计算,函数关系式为y =0.1x ,与图象甲描述的是方式相同,故结论正确;②方式B 除收月基费20元外.再以每分0.05元的价格按上网所用时间计费,函数关系式为y =0.05x +20,与图象乙描述的是方式相同,故结论正确;③从图象观察可知,当x >400时,y 乙<y 甲,所以当上网所用时间为500分时,选择方式B 省钱,故结论正确。
综上,选A 。
2.(2011重庆潼南4分)目前,全球淡水资源日益减少,提倡全社会节约用水.据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没有把水龙头拧紧,水龙头以测试的速度滴水,当小康离开x 分钟后,水龙头滴出y 毫升的水,请写出y 与x 之间的函数关系式是A 、y =0.05xB 、y =5xC 、y =100xD 、y =0.05x +100【答案】B 。
【考点】根据实际问题列一次函数关系式。
【分析】每分钟滴出100滴水,每滴水约0.05毫升,则一分钟滴水100³0.05毫升,则x 分钟可滴100³0.05x 毫升,据此得y =100³0.05x =5x 。
故选B 。
3.(2011浙江绍兴4分)小敏从A 地出发向B 地行走,同时小聪从B地出发向A 地行走,如图所示,相交于点P 的两条线段l1、l2分别表示小敏、小聪离B 地的距离y (km )与已用时间x (h )之间的关系,则小敏、小聪行走的速度分别是A 、3km/h 和4km/hB 、3km/h 和3km/hC 、4km/h 和4km/hD 、4km/h 和3km/h【答案】D 。
考点十一一次函数的实际应用【命题趋势】在中考中,一次函数的实际应用常以解答题考查,并结合二次函数最值问题考查为主【中考考查重点】一、利用一次函数解决购买、销售、分配问题二、利用一次函数解决工程、生产、行程问题三、利用一次函数解决有关方案问题考点一:购买、销售、分配类问题1.(2021秋•柯桥区月考)在近期“抗疫”期间,某药店销售A,B两种型号的口罩,已知销售80只A型和45只B型的利润为21元,销售40只A型和60只B型的利润为18元.(1)求每只A型口罩和B型口罩的销售利润;(2)该药店计划一次购进两种型号的口罩共2000只,其中B型口罩的进货量不少于A 型口罩的进货量且不超过它的3倍,则该药店购进A型、B型口罩各多少只,才能使销售总利润y最大?最大值是多少?2.(2021•南宁一模)自2020年12月以来,我国全面有序地推进全民免费接种新冠疫苗,现某国药集团在甲、乙仓库共存放新冠疫苗450万剂,如果调出甲仓库所存新冠疫苗的60%和乙仓库所存新冠疫苗的40%后,剩余的新冠疫苗乙仓库比甲仓库多30万剂.(1)求甲、乙两仓库各存放新冠疫苗多少万剂?(2)若该国药集团需从甲、乙仓库共调出300万剂新冠疫苗运往B市,设从甲仓库调运新冠疫苗m万剂,请求出总运费W关于m的函数解析式并写出m的取值范围;其中,从甲、乙仓库调运新冠疫苗到B市的运费报价如表:甲仓库运费定价调运疫苗不超过130万剂时调运疫苗超过130万剂时135元/万剂不优惠优惠10%m元/万剂乙仓库105元/万剂不优惠(3)在(2)的条件下,国家审批此次调运新冠疫苗总运费不高于33000元,请通过计算说明此次调运疫苗最低总运费是否在国家审批的范围内?3.(2019春•增城区期末)为了让学生体验生活,某学校决定组织师生参加社会实践活动,现准备租用7辆客车,现有甲、乙两种客车,它们的载客量和租金如下表,设租用甲种客车x辆,租车总费用为y元.甲种客车乙种客车载客量(人/辆)6045租金(元/辆)360300(1)求出y与x之间的函数关系式;(2)若该校共有380名师生前往参加活动,确保每人都有座位坐,共有哪几种租车方案?(3)在(2)的条件下,带队老师从学校预支租车费2500元,试问预支的租车费用是否有结余?若有结余,最多可以结余多少元?考点二:工程、生产、行程问题4.(2021春•江夏区期末)在2018春季环境整治活动中,某社区计划对面积为1600m2的区域进行绿化.经投标,由甲、乙两个工程队来完成,若甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用5天.(1)求甲、乙两工程队每天能完成绿化的面积;(2)设甲工程队施工x天,乙工程队施工y天,刚好完成绿化任务,求y关于x的函数关系式;(3)若甲队每天绿化费用是0.6万元,乙队每天绿化费用为0.25万元,且甲乙两队施工的总天数不超过25天,则如何安排甲乙两队施工的天数,使施工总费用最低?并求出最低费用.5.(2021秋•金牛区期末)某模具厂引进一种新机器,这种机器同一时间只能生产一种零件,每天只能工作8小时,每月工作25天.若一天用3小时生产A型零件、5小时生产B型零件共可生产34个;若一天用5小时生产A型零件、3小时生产B型零件则共可生产30个.(1)每小时可单独加工A型零件、B型零件各多少个?(2)按市场统计,一个A型零件的利润是150元,一个B型零件的利润是100元,设该模具厂每月安排x(小时)生产A型零件,这两种零件所获得的总利润为y(元),试写出y与x的函数关系式(不要求写出自变量的取值范围).6.(2020秋•沭阳县期末)学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地两人之间的距离y (米)与时间t(分钟)之间的函数关系如图所示.(1)根据图象信息,当t=分钟时甲乙两人相遇,甲的速度为米/分钟;(2)求出线段AB所表示的函数表达式.(3)当t为何值时,甲、乙两人相距2000米?考点三:方案问题7.某鲜花销售公司每月付给销售人员的工资有两种方案.方案一:没有底薪,只付销售提成;方案二:底薪加销售提成.如图中的射线l1,射线l2分别表示该鲜花销售公司每月按方案一,方案二付给销售人员的工资y1(单位:元)和y2(单位:元)与其当月鲜花销售量x(单位:千克)(x≥0)的函数关系.(1)分别求y1、y2与x的函数解析式(解析式也称表达式);(2)若该公司某销售人员今年3月份的鲜花销售量没有超过70千克,但其3月份的工资超过2000元.这个公司采用了哪种方案给这名销售人员付3月份的工资?1.(2021春•饶平县校级期末)小王花1200元从农贸市场购进批发价分别为每箱30元与50元的A、B两种水果进行销售,并分别以每箱35元与60元的价格售出,设购进A水果x箱,B水果y箱.(1)若小王将水果全部售出共赚了215元,则小王共购进A、B水果各多少箱?(2)若要求购进A水果的数量不得少于B水果的数量,则应该如何分配购进A、B水果的数量并全部售出才能获得最大利润,此时最大利润是多少?2.(2020秋•秦都区期末)某工厂新开发生产一种机器,每台机器成本y(万元)与生产数量x(台)之间满足一次函数关系(其中10≤x≤70,且x为整数),函数y与自变量x 的部分对应值如表:x(单位:台)1020 y(单位:万元/台)6055(1)求y与x之间的函数关系式;(2)市场调查发现,这种机器每月销售量z(台)与售价a(万元/台)之间满足如图所示的函数关系.若该厂第一个月生产这种机器40台,且都按同一售价全部售出,请求出该厂第一个月销售这种机器的总利润.(注:利润=售价﹣成本)3.(2020秋•浦东新区校级期末)有两段长度相等的河渠挖掘任务,分别交给甲、乙两个工程队同时进行挖掘.如图是反映所挖河渠长度y(米)与挖掘时间x(时)之间关系的部分图象.请解答下列问题:(1)乙队开挖到30米时,用了小时,开挖6小时,甲队比乙队多挖了米;(2)甲队在0≤x≤6的时段内,y与x之间的函数关系式是;(3)在开挖6小时后,如果甲、乙两队施工速度不变,完成总长110米的挖掘任务,乙队比甲队晚小时完成.4.(2021春•华容县期末)某玩具批发市场A、B玩具的批发价分别为每件30元和50元,张阿姨花1200元购进A、B两种玩具若干件,并分别以每件35元与60元价格出售.设购入A玩具为x件,B玩具为y件.(1)若张阿姨将玩具全部出售赚了220元,那么张阿姨购进A、B型玩具各多少件?(2)若要求购进A玩具的数量不得少于B玩具的数量,则怎样分配购进玩具A、B的数量并全部售出才能获得最大利润,此时最大利润为多少?5.(2020•老河口市模拟)2020年是全面建成小康社会目标实现之年,是全面打赢脱贫攻坚战收官之年.我市始终把产业扶贫摆在突出位置,建立了A,B两个扶贫种植基地.为了帮扶我市的扶贫产业,扶贫办联系了C,D两家肥料厂对我市共捐赠100吨肥料,将这100吨肥料平均分配到A,B两个种植基地.已知C厂捐赠的肥料比D厂捐赠的肥料的2倍少20吨,从C,D两厂将肥料运往A,B两地的费用如表:C厂D厂运往A地(元/吨)2220运往B地(元/吨)2022(1)求C,D两厂捐赠的肥料的数量各是多少吨;(2)设从C厂运往A地肥料x吨,从C,D两厂运输肥料到A,B两地的总运费为y元,求y与x的函数关系式,并求出最少总运费;(3)由于从D厂到B地开通了一条新的公路,使D厂到B地的运费每吨减少了a(0<a<6)元,这时怎样调运才能使总运费最少?1.(2020•广安)某小区为了绿化环境,计划分两次购进A,B两种树苗,第一次购进A种树苗30棵,B种树苗15棵,共花费1350元;第二次购进A种树苗24棵,B种树苗10棵,共花费1060元.(两次购进的A,B两种树苗各自的单价均不变)(1)A,B两种树苗每棵的价格分别是多少元?(2)若购买A,B两种树苗共42棵,总费用为W元,购买A种树苗t棵,B种树苗的数量不超过A种树苗数量的2倍.求W与t的函数关系式.请设计出最省钱的购买方案,并求出此方案的总费用.2.(2020•云南)众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到A地和B地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如下表:A地(元/辆)B地(元/辆)目的地车型大货车9001000小货车500700现安排上述装好物资的20辆货车中的10辆前往A地,其余前往B地,设前往A地的大货车有x辆,这20辆货车的总运费为y元.(1)这20辆货车中,大货车、小货车各有多少辆?(2)求y与x的函数解析式,并直接写出x的取值范围;(3)若运往A地的物资不少于140吨,求总运费y的最小值.3.(2021•青岛)某超市经销甲、乙两种品牌的洗衣液,进货时发现,甲品牌洗衣液每瓶的进价比乙品牌高6元,用1800元购进甲品牌洗衣液的数量是用1800元购进乙品牌洗衣液数量的.销售时,甲品牌洗衣液的售价为36元/瓶,乙品牌洗衣液的售价为28元/瓶.(1)求两种品牌洗衣液的进价;(2)若超市需要购进甲、乙两种品牌的洗衣液共120瓶,且购进两种洗衣液的总成本不超过3120元,超市应购进甲、乙两种品牌洗衣液各多少瓶,才能在两种洗衣液完全售出后所获利润最大?最大利润是多少元?4.(2021•宿迁)一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,两车在途中相遇时,快车恰巧出现故障,慢车继续驶往甲地,快车维修好后按原速继续行驶乙地,两车到达各地终点后停止,两车之间的距离s(km)与慢车行驶的时间t(h)之间的关系如图:(1)快车的速度为km/h,C点的坐标为.(2)慢车出发多少小时后,两车相距200km.5.(2020•广西)倡导垃圾分类,共享绿色生活.为了对回收的垃圾进行更精准的分类,某机器人公司研发出A型和B型两款垃圾分拣机器人,已知2台A型机器人和5台B型机器人同时工作2h共分拣垃圾3.6吨,3台A型机器人和2台B型机器人同时工作5h共分拣垃圾8吨.(1)1台A型机器人和1台B型机器人每小时各分拣垃圾多少吨?(2)某垃圾处理厂计划向机器人公司购进一批A型和B型垃圾分拣机器人,这批机器人每小时一共能分拣垃圾20吨.设购买A型机器人a台(10≤a≤45),B型机器人b台,请用含a的代数式表示b;(3)机器人公司的报价如下表:型号原价购买数量少于30台购买数量不少于30台A型20万元/台原价购买打九折B型12万元/台原价购买打八折在(2)的条件下,设购买总费用为w万元,问如何购买使得总费用w最少?请说明理由.6.(2020•德阳)推进农村土地集约式管理,提高土地的使用效率是新农村建设的一项重要举措.某村在小城镇建设中集约了2400亩土地,计划对其进行平整.经投标,由甲乙两个工程队来完成平整任务.甲工程队每天可平整土地45亩,乙工程队每天可平整土地30亩.已知乙工程队每天的工程费比甲工程队少500元,当甲工程队所需工程费为12000元,乙工程队所需工程费为9000元时,两工程队工作天数刚好相同.(1)甲乙两个工程队每天各需工程费多少元?(2)现由甲乙两个工程队共同参与土地平整,已知两个工程队工作天数均为正整数,且所有土地刚好平整完,总费用不超过110000元.①甲乙两工程队分别工作的天数共有多少种可能?②写出其中费用最少的一种方案,并求出最低费用.7.(2021•湘西州)2020年以来,新冠肺炎的蔓延促使世界各国在线教育用户规模不断增大.网络教师小李抓住时机,开始组建团队,制作面向A、B两个不同需求学生群体的微课视频.已知制作3个A类微课和5个B类微课需要4600元成本,制作5个A类微课和10个B类微课需要8500元成本.李老师又把做好的微课出售给某视频播放网站,每个A类微课售价1500元,每个B类微课售价1000元.该团队每天可以制作1个A类微课或者1.5个B类微课,且团队每月制作的B类微课数不少于A类微课数的2倍(注:每月制作的A、B两类微课的个数均为整数).假设团队每月有22天制作微课,其中制作A类微课a天,制作A、B两类微课的月利润为w元.(1)求团队制作一个A类微课和一个B类微课的成本分别是多少元?(2)求w与a之间的函数关系式,并写出a的取值范围;(3)每月制作A类微课多少个时,该团队月利润w最大,最大利润是多少元?1.(2021•玉泉区二模)甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项任务各需多少天?(2)设先由甲队施工x天,再由乙队施工y天,刚好完成筑路任务,求y与x之间的函数关系式.(3)在(2)的条件下,若每天需付给甲队的筑路费用为0.1万元,需付给乙队的筑路费用为0.2万元,且甲、乙两队施工的总天数不超过24天,则如何安排甲、乙两队施工的天数,使施工费用最少,并求出最少费用.2.(2021•富平县二模)甲、乙两家草莓采摘园的草莓品质相同,销售价格也相同.“五一”假期,两家均推出了优惠方案,甲采摘园的优惠方案:游客进园需购买60元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案:游客进园不需购买门票,采摘的草莓超过一定数量后,超过部分打折优惠.优惠期间,设某游客的草莓采摘量为x(千克),在甲采摘园所需总费用为y甲(元),在乙采摘园所需总费用为y乙(元),图中折线O﹣A﹣B 表示y乙与x之间的函数关系.(1)求y甲、y乙与x之间的函数关系式;(2)当游客采摘15千克的草莓时,你认为他在哪家草莓园采摘更划算?3.(2021•五华区校级模拟)截至3月20日,全国累计报告接种新型冠状病毒疫苗7495.6万剂次.为了满足市场需求,尽快让全国人民都打上疫苗,某公司计划新增10个大、小两种车间共同生产同一种新型冠状病毒疫苗,已知1个大车间和2个小车间每周能生产疫苗共35万剂,2个大车间和1个小车间每周能生产疫苗共40万剂,大车间生产1万剂疫苗的平均成本为80万元,小车间生产1万剂疫苗的平均成本为70万元.(1)该公司大车间、小车间每周分别能生产疫苗多少万剂?(2)设新增x个大车间,新增的10个车间每周生产疫苗的总成本为y万元,求y与x的函数解析式(也称关系式),并直接写出x的取值范围;(3)若新增的10个车间每周生产的疫苗不少于140万剂,新增的车间一共有哪几种新增方案,哪一种方案每周生产疫苗的总成本y最小?4.(2021•南关区校级一模)已知A,B两地之间有一条长240千米的公路.甲车从A地出发匀速开往B地,甲车出发半小时后,乙车从A地出发沿同一路线匀速追赶甲车,两车相遇后,乙车原路原速返回A地.两车之间的距离y(千米)与甲车行驶时间x(小时)之间的函数关系如图所示,请解答下列问题:(1)甲车的速度是千米/时,乙车的速度是千米/时,m=.(2)求乙车返回过程中,y与x之间的函数关系式.(3)当甲、乙两车相距160千米时,直接写出甲车的行驶时间.5.(2021•枣阳市模拟)为推进美丽乡村建设,改善人居环境,创建美丽家园.我市甲、乙两工厂积极生产了某种建设物资共800吨,甲工厂的生产量比乙工厂的2倍少100吨,这批建设物资将运往A地420吨,B地380吨,运费如表:(单位:元/吨)A B目的地生产厂甲2520乙1524(1)求甲、乙两厂各生产了这批建设物资多少吨?(2)设这批物资从甲工厂运往A地x吨,全部运往A,B两地的总运费为y元,求y与x之间的函数关系式,写出x的取值范围并设计使总运费最少的调运方案;(3)由于甲工厂到A地的路况得到了改善,缩短了运输距离和运输时间,运费每吨降低m元(0<m≤15),其余路线运费不变.若到A,B两市的总运费的最小值不小于14020元,求m的取值范围.6.(2021•广西模拟)某商店销售一种商品,经市场调查发现:当该商品的售价是50元时,可以销售100件,且利润为1000元;当该商品的售价是60元时,可以销售80件,且利润为1600元.(1)该商品的进价是多少元/件?(2)当用字母x表示商品的售价,用字母y表示商品的销售量时,发现本题中x,y的值总是满足关系式:y=kx+b,请同学们根据题目提供的数据求出k,b的值,并求出当售价为70元时,销售利润是多少?(3)在第2问的基础上,商品的销售量y与商品的售价x的关系保持不变,当商品的售价为80元时,每售出一件商品将捐赠a(a>0)元给希望工程,要使最大利润不小于1400,求出a的取值范围.7.(2021•开福区模拟)为加强校园文化建设,某校准备打造校园文化墙,需用甲、乙两种石材经市场调查,甲种石材的费用y(元)与使用面积x(m2)间的函数关系如图所示,乙种石材的价格为每平方米50元.(1)求y与x间的函数解析式;(2)若校园文化墙总面积共600m2,其中使用甲石材xm2,设购买两种石材的总费用为w元,请直接写出w与x间的函数解析式;(3)在(2)的前提下,若甲种石材使用面积多于300m2,且不超过乙种石材面积的2倍,那么应该怎样分配甲、乙两种石材的面积才能使总费用最少?最少总费用为多少元?。
一次函数的实际应用专题复习学习对象使用场景建议课时制作人2学生 教师 预科 同步复习 专题复习【对象】一次函数的实际应用【课程目标】1.能够从实际问题中抽象出函数模型,并根据题目中条件列出一次函数解析式;2.能通过函数图象获取信息,将提取的有效信息分析、整合、转化,解决一次函数的实际应用问题;3.能够理解一次函数与一元一次方程、二元一次方程组及一元一次不等式(组)之间的关系;4.能够规范书写一次函数的实际应用题的解答步骤,理解一次函数的实际应用中变量的取值要符合实际意义;5.掌握一次函数的实际应用的三大常考题型(方案问题,分段函数问题和行程问题).【先验知识】【导入】1.在持续高温无雨的季节,红星水库蓄水量数日内逐渐减少,干旱的天数t(天)与蓄水量v(万米)之间的关系如下图所示:请回答问题:(1)当干旱持续10天后,蓄水量为____________?如果再连续干旱20天后蓄水量为_________________?(2)当水库蓄水量小于400万立方米时,就属于严重干旱,会自动警报,那么干旱___________天后就会发出严重干旱警报?(3)根据这样的规律,持续____________天后水库就干涸了?【一次函数的实际应用】应用一次函数解决实际问题时,首先,要判断问题中的两个变量之间是不是一次函数关系;其次,当确定是一次函数关系时,可先求出一次函数表达式,再应用一次函数的相关知识去解决与其相关的实际问题.考点1:方案问题【知识讲解】:选择最佳方案是指某一问题中,符合条件的方案有多种,一般要利用数学知识经过分析猜想、判断,筛选出最佳方案.常涉及的问题类型有利润最大、路程最短、运费最少、效率最高等,常建立函数模型,结合方程(组)或不等式的知识进行求解.用一次函数选择最佳方案的一般步骤1)“析”:分析题意,弄清数量关系;2)“列”:列出函数解析式、不等式或方程;3)“求”:求出自变量在不同值对应的函数值的大小,或函数的最大(最小)值;4)“选”:结合实际需要选择最佳方案.【典型例题】1.(2020·河南·中考真卷)疫情期间为了满足口罩需求,某学校决定购进A,B两种型号的口罩.若购进A型口罩10盒,B型口罩5盒,共需1000元;若购进A型口罩4盒,B型口罩3盒,共需550元.(1)求A,B两种型号的口罩每盒各需多少元?(2)若该学校决定购进这两种型号的口罩共计200盒,考虑到实际需求,要求购进A型号口罩的盒数不超过B型口罩盒数的6倍,请为该学校设计出最省钱的方案,并说明理由.【分析】问题识别:二元一次方程组与一次函数的方案问题问题分析1:读题,①本题不知道两种型号的口罩的单价,故设两个未知数:设A型口罩x 元;B型口罩y元.②逐句将文字信息转化为数学表达式:“若购进A型口罩10盒,B型口罩5盒,共需1000元”转化为数学表达式:10x+5y=1000.“若购进A型口罩4盒,B型口罩3盒,共需550元”转化为数学表达式:4x+3y=550.解得:�x=25,y=150.问题分析2由“两种型号的口罩共计200盒”:设购买A型口罩a盒,则购买B型口罩(200−a)盒.逐句将文字信息转化为数学表达式:“要求购进A型号口罩的盒数不超过B型口罩盒数的6倍”,转化为数学表达式:m≤6(200−m),解得m≤17137由题意易知:总费用=A型口罩的总费用+B型口罩的总费用,设总费用为w列出数学表达式为:w=25m+150(200−m)=−125m+30000由一次函数w=-125m+30000的图象可知,w的值随着m的值的增大而减小,则当x取最大值时,w取最小值.【答案】解:(1)购进A型口罩每盒需x元,B型口罩每盒需y元,依题意,得:�10x+5y=1000,4x+3y=550,解得:�x=25,y=150.答:购进A型口罩每盒需25元,B型口罩每盒需150元.(2)设购进m盒A型口罩,则购进(200−m)盒B型口罩,依题意,得:m≤6(200−m),解得:m≤17137,设该学校购进这批口罩共花费w元,则w=25m+150(200−m)=−125m+30000,∵−125<0,∴w随m的增大而减小,又∵m≤17137,且m为整数,∴当m=171时,w取得最小值,此时200−m=29,∴最省钱的购买方案为:购进171盒A型口罩,29盒B型口罩.【强化练习】:1.(2020·福建·中考真卷)某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和都是100吨,且甲特产的销售量都不超过20吨.(1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?(2)求该公司一个月销售这两种特产所能获得的最大总利润.2.(2020·内蒙古·中考真卷)某商店销售A、B两种商品,A种商品的销售单价比B种商品的销售单价少40元,2件A种商品和3件B种商品的销售总额为820元.(1)求A种商品和B种商品的销售单价分别为多少元?(2)该商店计划购进A,B两种商品共60件,且A,B两种商品的进价总额不超过7800元.已知A种商品和B种商品的每件进价分别为110元和140元,应如何进货才能使这两种商品全部售出后总获利最多?【内容小结】解决方案问题的基本思路是:(1)先根据题意求出相关函数的表达式;(2)再根据自变量的取值范围及一次函数的增减性质(可结合一次函数图象)确定其最大值(或最小值).考点2:分段函数问题【知识讲解】:分段函数指的是对于一个变量在一个变化过程中,要用几个解析式表示,在图象上表示出来就是由几条线段(或射线)组成.解决分段函数问题时,一定要注意自变量的取值范围,因为自变量的取值不同,相对应的函数解析式不同,求得的结果不同.【典型例题】1. (2020·上海·中考真卷)小明从家步行到学校需走的路程为1800米.图中的折线OAB反映了小明从家步行到学校所走的路程s(米)与时间t(分钟)的函数关系,根据图象提供的信息,当小明从家出发去学校步行15分钟时,到学校还需步行________米.【分析】问题识别:分段函数问题问题分析:由题干中“图中的折线OAB反映了小明从家步行到学校所走的路程s(米)与时间t(分钟)的函数关系”可知:OA与OB是两段速度不同的匀速运动;由图象易知A(8,960)为折线OAB的拐点,其既在第一段函数上,也在第二段函数上,并且为第一、二段函数的分界;时间t小于8或者路程小于960时,在OA段所对应的函数上时间t大于8或者路程大于960时,在OB段所对应的函数上;所以若求“步行15分钟时,到学校还需步行________米”,需求出时间t为15分钟时对应的路程s为何值,即需要求出OB段所对应的函数解析式,利用待定系数法,设s=kt+b,将(8, 960),(20, 1800)代入,得:�8k+b=960,20k+b=1800,解得:�k=70,b=400,【答案】解:当8≤t≤20时,设s=kt+b,将(8, 960),(20, 1800)代入,得:�8k+b=960,20k+b=1800,解得:�k=70,b=400,∴s=70t+400;当t=15时,s=1450,则1800−1450=350(米),∴当小明从家出发去学校步行15分钟时,到学校还需步行350米,故答案为:350.【强化练习】1.(2019·新疆·中考真卷)某水果店以每千克8元的价格购进苹果若干千克,销售了部分苹果后,余下的苹果每千克降价4元销售,全部售完.销售金额y(元)与销售量x(千克)之间的关系如图所示,请根据图象提供的信息完成下列问题:(1)降价前苹果的销售单价是________元/千克;(2)求降价后销售金额y(元)与销售量x(千克)之间的函数解析式,并写出自变量的取值范围;(3)该水果店这次销售苹果盈利了多少元?2.(2020·湖北·中考真卷)一个容器有进水管和出水管,每分钟的进水量和出水量是两个常数.从某时刻开始4min内只进水不出水,从第4min到第24min内既进水又出水,从第24min开始只出水不进水,容器内水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则图中a的值是()A.32B.34C.36D.38【内容小结】解决分段函数问题的基本思路是:(1)根据图象确定有几段函数组成;(2)依据拐点及其坐标确定每一段对应的自变量及函数值的范围;(3)从函数图象中找出两对数据,即函数的两个点的坐标,然后利用待定系数法求得一次函数的表达式;(4)求解.考点3:行程问题【知识讲解】行程问题中建立一次函数表达式的方法:1)根据基本的量之间存在的关系列函数表达式,路程=速度x时间等.2)若题目中已明确给出两变量的函数关系,则可用待定系数法求出函数表达式;3)若题目中已明确给出两变量变化关系的图象,则可先由图象分辨出其函数类型,然后用待定系数法求出函数表达式.【典型例题】1.(行程问题):(2020·江苏·中考真卷)甲、乙两地的路程为290千米,一辆汽车早上8:00从甲地出发,匀速向乙地行驶,途中休息一段时间后.按原速继续前进,当离甲地路程为240千米时接到通知,要求中午12:00准时到达乙地.设汽车出发x小时后离甲地的路程为y千米,图中折线OCDE表示接到通知前y与x之间的函数关系.(1)根据图象可知,休息前汽车行驶的速度为________千米/小时;(2)求线段DE所表示的y与x之间的函数表达式;(3)接到通知后,汽车仍按原速行驶能否准时到达?请说明理由.【分析】问题识别:一次函数的行程问题问题分析1:数形结合,通过题干中条件“一辆汽车早上8:00从甲地出发,匀速向乙地行驶,途中休息一段时间后.按原速继续前进”及图象可知,汽车的运动状态分为三段:匀速行驶→休息→匀速行驶(速度不变).所以休息前的速度=路程÷时间,即80÷1=80(千米/小时)问题分析2:待定系数法求一次函数解析式,已知点D(1.5,80),需要求点E的坐标,由“匀速行驶→休息→匀速行驶(速度不变)”可知,休息后按原速继续前进行驶的时间为:(240−80)÷80=2(小时),则点E的坐标为(3.5,240),设线段DE所表示的y与x之间的函数表达式为y=kx+b,则:�1.5k+b=803.5k+b=240,解得�k=80b=−40问题分析3由“甲、乙两地的路程为290千米”及“即80÷1=80(千米/小时)”可得,290÷80+0.5=4.125>4【答案】(1)80(2)休息后按原速继续前进行驶的时间为:(240−80)÷80=2(小时),∴点E的坐标为(3.5, 240),设线段DE所表示的y与x之间的函数表达式为y=kx+b,则:�1.5k+b=803.5k+b=240,解得�k=80b=−40,∴线段DE所表示的y与x之间的函数表达式为:y=80x−40;(3)接到通知后,汽车仍按原速行驶,则全程所需时间为:290÷80+0.5=4.125(小时),12:00−8:00=4(小时),4.125>4,所以接到通知后,汽车仍按原速行驶不能准时到达.2.行程问题:(2020·湖北·中考真卷)甲乙两车从A城出发前往B城,在整个行程中,汽车离开A城的距离y与时刻t的对应关系如图所示,则下列结论错误的是()A.甲车的平均速度为60km/hB.乙车的平均速度为100km/hC.乙车比甲车先到B城D.乙车比甲车先出发1h【分析】问题识别一次函数的行程问题问题分析1:数形结合,通过题干中条件“甲乙两车从A城出发前往B城,在整个行程中,汽车离开A城的距离y与时刻t的对应关系如图所示”及图象可知,甲乙两车的出发时间,到达时间及对应的路程等,从图象上取值,可以间接求出甲乙两车的速度等.【答案】由图象知:A.甲车的平均速度为30010−5=60km/h,故A选项不合题意;B.乙车的平均速度为3009−6=100km/h,故B选项不合题意;C.甲10时到达B城,乙9时到达B城,所以乙比甲先到B城,故C选项不合题意;D.甲5时出发,乙6时出发,所以乙比甲晚出发1h,故此选项错误【强化练习】1.(2020·江苏·中考真卷)快车从甲地驶往乙地,慢车从乙地驶往甲地,两车同时出发并且在同一条公路上匀速行驶.图中折线表示快、慢两车之间的路程y(km)与它们的行驶时间x(h)之间的函数关系.小欣同学结合图象得出如下结论:①快车途中停留了0.5h;②快车速度比慢车速度多20km/h;③图中a=340;④快车先到达目的地.其中正确的是()A.①③B.②③C.②④D.①④2.(2020·辽宁·中考真卷)甲、乙两个探测气球分别从海拔5m和15m处同时出发,匀速上升60min.如图是甲、乙两个探测气球所在位置的海拔y(单位:m)与气球上升时间x(单位:min)的函数图象.(1)求这两个气球在上升过程中y关于x的函数解析式;(2)当这两个气球的海拔高度相差15m时,求上升的时间.3.小华端午节从家里出发,沿笔直道路匀速步行去妈妈经营的商店帮忙,妈妈同时骑三轮车从商店出发,沿相同路线匀速回家装载货物,然后按原路原速返回商店,小华到达商店比妈妈返回商店早5分钟,在此过程中,设妈妈从商店出发开始所用时间为t(分钟),图1表示两人之间的距离s(米)与时间t(分钟)的函数关系的图象;图2中线段AB表示小华和商店的距离y1(米)与时间t(分钟)的函数关系的图象的一部分,请根据所给信息解答下列问题:(1)填空:妈妈骑车的速度是________米/分钟,妈妈在家装载货物所用时间是________分钟,点M的坐标是________.(2)直接写出妈妈和商店的距离y2(米)与时间t(分钟)的函数关系式,并在图2中画出其函数图象;(3)求t为何值时,两人相距360米.【内容小结】解决行程函数问题的基本思路是:(1)读懂图象中的每一条线段所表示的一次函数的意义和每一个转折点(或交点)表示的实际意义;(2)依据拐点(或交点)及其坐标确定每一段所对应的自变量及函数值的范围;(3)从函数图象中找出两对数据,即函数的两个点的坐标,然后利用待定系数法求得一次函数的表达式;(4)求解.【链接中考】真题1:(2020·内蒙古·中考真卷)某商店销售A、B两种商品,A种商品的销售单价比B种商品的销售单价少40元,2件A种商品和3件B种商品的销售总额为820元.(1)求A种商品和B种商品的销售单价分别为多少元?(2)该商店计划购进A,B两种商品共60件,且A,B两种商品的进价总额不超过7800元.已知A种商品和B种商品的每件进价分别为110元和140元,应如何进货才能使这两种商品全部售出后总获利最多?真题2:(2020·湖北·中考真卷)受新冠肺炎疫情影响,一水果种植专业户有大量成熟水果无法出售.“一方有难,八方支援”某水果经销商主动从该种植专业户购进甲,乙两种水果进行销售.专业户为了感谢经销商的援助,对甲种水果的出售价格根据购买量给予优惠,对乙种水果按25元/千克的价格出售.设经销商购进甲种水果x千克,付款y元,y与x之间的函数关系如图所示.(1)直接写出当0≤x≤50和x>50时,y与x之间的函数关系式;(2)若经销商计划一次性购进甲,乙两种水果共100千克,且甲种水果不少于40千克,但又不超过60千克.如何分配甲,乙两种水果的购进量,才能使经销商付款总金额w(元)最少?(3)若甲,乙两种水果的销售价格分别为40元/千克和36元/千克.经销商按(2)中甲,乙两种水果购进量的分配比例购进两种水果共a千克,且销售完a千克水果获得的利润不少于1650元,求a的最小值.真题3:(2020·河南·中考真卷)暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求k1和b的值,并说明它们的实际意义;(2)求打折前的每次健身费用和k2的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.真题4:(2020黑龙江中考真题)为抗击疫情,支持武汉,某物流公司的快递车和货车每天往返于物流公司、武汉两地,快递车比货车多往返一趟,如图表示两车离物流公司的距离y(单位:千米)与快递车所用时间x(单位:时)的函数图象,已知货车比快递车早1小时出发,到达武汉后用2小时装卸货物,按原速、原路返回,货车比快递车最后一次返回物流公司晚1小时.(1)求ME的函数解析式;(2)求快递车第二次往返过程中,与货车相遇的时间.求两车最后一次相遇时离武汉的距离.(直接写出答案)【总结】一次函数的实际应用:1.方案问题:重点:利用一次函数的图象,确定其增减性,结合范围确定最值;易错点:自变量的取值(范围).2.分段问题:重点:确定几段函数,及问题中所问在哪一段函数上;关键点:拐点3.行程问题:重点:确定横纵坐标表示的实际意义及确定有几段函数,及问题中所问在哪一段函数上;关键点:拐点与交点.。
一次函数的实际应用一、利用函数的解析式解决问题1.某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植﹣亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z(元)会相应降低,且z与x之间也大致满足如图2所示的一次函数关系.(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?(2)分别求出政府补贴政策实施后,种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式;(3)要使全市这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值.2.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:x (元)15 20 25 …y (件)25 20 15 …若日销售量y是销售价x的一次函数.(1)求出日销售量y(件)与销售价x(元)的函数关系式;(2)求销售价定为30元时,每日的销售利润.3.如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式;(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?4.鞋子的“鞋码”和鞋长(cm)存在一种换算关系,下表是几组“鞋码”与鞋长换算的对应数值:(注:“鞋码”是表示鞋子大小的一种号码)鞋长(cm) 16 19 21 24鞋码(号) 22 28 32 38(1)设鞋长为x,“鞋码”为y,试判断点(x,y)在你学过的哪种函数的图象上;(2)求x、y之间的函数关系式;(3)如果某人穿44号“鞋码”的鞋,那么他的鞋长是多少?5.某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20m3时,按2元/m3计费;月用水量超过20m3时,其中的20m3仍按2元/m3收费,超过部分按2.6元/m3计费.设每户家庭用水量为xm3时,应交水费y元.(1)分别求出0≤x≤20和x>20时y与x的函数表达式;(2)小明家第二季度交纳水费的情况如下:月份四月份五月份六月份交费金额30元34元42.6元小明家这个季度共用水多少立方米?6.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1(km),出租车离甲地的距离为y2(km),客车行驶时间为x(h),y1,y2与x 的函数关系图象如图所示:(1)根据图象,直接写出y1,y2关于x的函数关系式.(2)分别求出当x=3,x=5,x=8时,两车之间的距离.(3)若设两车间的距离为S(km),请写出S关于x的函数关系式.(4)甲、乙两地间有A、B两个加油站,相距200km,若客车进入A站加油时,出租车恰好进入B站加油.求A加油站到甲地的距离.7.我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)的用户,每吨收水费a元;一月用水超过10吨的用户,10吨水仍按每吨a元收费,超过10吨的部分,按每吨b元(b>a)收费.设一户居民月用水x吨,应收水费y元,y与x之间的函数关系如图所示.(1)求a的值;某户居民上月用水8吨,应收水费多少元;(2)求b的值,并写出当x>10时,y与x之间的函数关系式;(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨?二、利用函数的增减性解决问题8.某饮料厂为了开发新产品,用A种果汁原料和B种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制x千克,两种饮料的成本总额为y元.(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出y与x之间的函数关系式.(2)若用19千克A种果汁原料和17.2千克B种果汁原料试制甲、乙两种新型饮料,下表是试验的相关数据;请你列出关于x且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使y值最小,最小值是多少?甲乙每千克饮料果汁含量果汁A 0.5千克0.2千克B 0.3千克0.4千克9.某厂工人小王某月工作的部分信息如下:信息一:工作时间:每天上午8:00~12:00,下午14:00~18:00,每月25天;信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件.生产产品件数与所用时间之间的关系见下表:生产甲产品数(件)生产乙产品数(件)所用时间(分)10 10 35030 20 850信息三:按件计酬,每生产一件甲产品可得1.50元,每生产一件乙产品可得2.80元.根据以上信息,回答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分;(2)小王该月最多能得多少元此时生产甲、乙两种产品分别多少件.10.“5.12”汶川特大地震灾害发生后,社会各界积极为灾区捐款捐物,某经销商在当月销售的甲种啤酒尚有2万元货款未收到的情况下,先将销售甲种啤酒全部应收货款的70%捐给了灾区,后又将该月销售乙种啤酒所得的全部货款的80%捐给了灾区.已知该月销售甲、乙两种啤酒共5000件,甲种啤酒每件售价为50元,乙种啤酒每件售价为35元,设该月销售甲种啤酒x件,共捐助救灾款y元.(1)该经销商先捐款元,后捐款元;(用含x的式子表示)(2)写出y与x的函数关系式,并求出自变量x的取值范围;(3)该经销商两次至少共捐助多少元?11.为支持四川抗震救灾,重庆市A、B、C三地现在分别有赈灾物资100吨、100吨、80吨,需要全部运往四川重灾地区的D、E两县.根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨.(1)求这批赈灾物资运往D、E两县的数量各是多少?(2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为x吨(x为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍.其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨.则A、B两地的赈灾物资运往D、E两县的方案有几种?请你写出具体的运送方案;(3)已知A、B、C三地的赈灾物资运往D、E两县的费用如下表:A地B地C地运往D县的费用(元/吨)220 200 200运往E县的费用(元/吨)250 220 210为及时将这批赈灾物资运往D、E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?12.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少此时,哪种方案对公司更有利?13.“5•12”四川汶川大地震的灾情牵动全国人民的心,某市A、B两个蔬菜基地得知四川C、D两个灾民安置点分别急需蔬菜240吨和260吨的消息后,决定调运蔬菜支援灾区.已知A蔬菜基地有蔬菜200吨,B蔬菜基地有蔬菜300吨,现将这些蔬菜全部调往C、D两个灾民安置点.从A地运往C、D两处的费用分别为每吨20元和25元,从B地运往C、D两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为x吨.(1)请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值;C D 总计A 200吨B x吨300吨总计240吨260吨500吨(2)设A、B两个蔬菜基地的总运费为w元,写出w与x之间的函数关系式,并求总运费最小的调运方案;(3)经过抢修,从B地到C处的路况得到进一步改善,缩短了运输时间,运费每吨减少m 元(m>0),其余线路的运费不变,试讨论总运费最小的调运方案.14.某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:A型利润B型利润甲店200 170乙店160 150(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W 关于x的函数关系式,并求出x的取值范围;(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A,B型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?一次函数的实际应用参考答案与试题解析一、利用函数的解析式解决问题1.某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植﹣亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z(元)会相应降低,且z与x之间也大致满足如图2所示的一次函数关系.(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?(2)分别求出政府补贴政策实施后,种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式;(3)要使全市这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值.【考点】二次函数的应用;一次函数的应用.【专题】压轴题.【分析】(1)根据题意可知直接计算这种蔬菜的收益额为3000×800=2400000(元);(2)设种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式分别为:y=kx+800,z=k1x+3000,并根据图象上点的坐标利用待定系数法求函数的解析式即可;(3)表示出蔬菜的总收益w(元)与x之间的关系式,w=﹣24x2+21600x+2400000,利用二次函数最值问题求最大值.【解答】解:(1)政府没出台补贴政策前,这种蔬菜的收益额为3000×800=2400000(元)(2)设种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式分别为:y=kx+800,z=k1x+3000,分别把点(50,1200),(100,2700)代入得,50k+800=1200,100k1+3000=2700,解得:k=8,k1=﹣3,种植亩数与政府补贴的函数关系为:y=8x+800每亩蔬菜的收益与政府补贴的函数关系为z=﹣3x+3000(x>0)(3)由题意:w=yz=(8x+800)(﹣3x+3000)=﹣24x2+21600x+2400000=﹣24(x﹣450)2+7260000,∴当x=450,即政府每亩补贴450元时,总收益额最大,为7260000元.【点评】主要考查利用一次函数和二次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解.利用二次函数的顶点坐标求最值是常用的方法之一.2.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:x (元)15 20 25 …y (件)25 20 15 …若日销售量y是销售价x的一次函数.(1)求出日销售量y(件)与销售价x(元)的函数关系式;(2)求销售价定为30元时,每日的销售利润.【考点】一次函数的应用.【专题】压轴题;图表型.【分析】(1)已知日销售量y是销售价x的一次函数,可设函数关系式为y=kx+b(k,b 为常数,且k≠0),代入两组对应值求k、b,确定函数关系式.(2)把x=30代入函数式求y,根据:(售价﹣进价)×销售量=利润,求解.【解答】解:(1)设此一次函数解析式为y=kx+b(k,b为常数,且k≠0).(1分)则.(2分)解得k=﹣1,b=40(4分)即一次函数解析式为y=﹣x+40(5分)(2)当x=30时,每日的销售量为y=﹣30+40=10(件)(6分)每日所获销售利润为(30﹣10)×10=200(元)(8分)【点评】本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题.3.如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式;(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?【考点】一次函数的应用.【专题】应用题;压轴题.【分析】(1)可设y=kx+b,因为由图示可知,x=4时y=10.5;x=7时,y=15,由此可列方程组,进而求解;(2)令x=4+7,求出相应的y值即可.【解答】解:(1)设y=kx+b(k≠0).(2分)由图可知:当x=4时,y=10.5;当x=7时,y=15.(4分)把它们分别代入上式,得(6分)解得k=1.5,b=4.5.∴一次函数的解析式是y=1.5x+4.5(x是正整数).(8分)(2)当x=4+7=11时,y=1.5×11+4.5=21(cm).即把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是21cm.(10分)【点评】本题意在考查学生利用待定系数法求解一次函数关系式,并利用关系式求值的运算技能和从情景中提取信息、解释信息、解决问题的能力.而它通过所有学生都熟悉的摞碗现象构造问题,将有关数据以直观的形象呈现给学生,让人耳目一新.从以上例子我们看到,数学就在我们身边,只要我们去观察、发现,便能找到它的踪影;数学是有用的,它可以解决实际生活、生产中的不少问题.4.鞋子的“鞋码”和鞋长(cm)存在一种换算关系,下表是几组“鞋码”与鞋长换算的对应数值:(注:“鞋码”是表示鞋子大小的一种号码)鞋长(cm) 16 19 21 24鞋码(号) 22 28 32 38(1)设鞋长为x,“鞋码”为y,试判断点(x,y)在你学过的哪种函数的图象上;(2)求x、y之间的函数关系式;(3)如果某人穿44号“鞋码”的鞋,那么他的鞋长是多少?【考点】一次函数的应用.【专题】压轴题;图表型.【分析】(1)可利用函数图象判断这些点在一条直线上,即在一次函数的图象上;(2)可设y=kx+b,把两个点的坐标代入,利用方程组即可求解;(3)令(2)中求出的解析式中的y等于44,求出x即可.【解答】解:(1)如图,这些点在一次函数的图象上;(2)设y=kx+b,由题意得,解得,∴y=2x﹣10.(x是一些不连续的值.一般情况下,x取16、16.5、17、17.5、26、26.5、27等);(3)y=44时,x=27.答:此人的鞋长为27cm.【点评】本题首先利用待定系数法确定一次函数的解析式,然后利用函数实际解决问题.5.某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20m3时,按2元/m3计费;月用水量超过20m3时,其中的20m3仍按2元/m3收费,超过部分按2.6元/m3计费.设每户家庭用水量为xm3时,应交水费y元.(1)分别求出0≤x≤20和x>20时y与x的函数表达式;(2)小明家第二季度交纳水费的情况如下:月份四月份五月份六月份交费金额30元34元42.6元小明家这个季度共用水多少立方米?【考点】一次函数的应用.【专题】应用题.【分析】(1)因为月用水量不超过20m3时,按2元/m3计费,所以当0≤x≤20时,y与x 的函数表达式是y=2x;因为月用水量超过20m3时,其中的20m3仍按2元/m3收费,超过部分按2.6元/m3计费,所以当x>20时,y与x的函数表达式是y=2×20+2.6(x﹣20),即y=2.6x ﹣12;(2)由题意可得:因为四月份、五月份缴费金额不超过40元,所以用y=2x计算用水量;六月份缴费金额超过40元,所以用y=2.6x﹣12计算用水量.【解答】解:(1)当0≤x≤20时,y与x的函数表达式是:y=2x;当x>20时,y与x的函数表达式是:y=2×20+2.6(x﹣20)=2.6x﹣12;(2)因为小明家四、五月份的水费都不超过40元,故0≤x≤20,此时y=2x,六月份的水费超过40元,x>20,此时y=2.6x﹣12,所以把y=30代入y=2x中得,2x=30,x=15;把y=34代入y=2x中得,2x=34,x=17;把y=42.6代入y=2.6x﹣12中得,2.6x﹣12=42.6,x=21.所以,15+17+21=53.答:小明家这个季度共用水53m3.【点评】本题是贴近社会生活的应用题,赋予了生活气息,使学生真切地感受到“数学来源于生活”,体验到数学的“有用性”.这样设计体现了《新课程标准》的“问题情景﹣建立模型﹣解释、应用和拓展”的数学学习模式.6.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1(km),出租车离甲地的距离为y2(km),客车行驶时间为x(h),y1,y2与x 的函数关系图象如图所示:(1)根据图象,直接写出y1,y2关于x的函数关系式.(2)分别求出当x=3,x=5,x=8时,两车之间的距离.(3)若设两车间的距离为S(km),请写出S关于x的函数关系式.(4)甲、乙两地间有A、B两个加油站,相距200km,若客车进入A站加油时,出租车恰好进入B站加油.求A加油站到甲地的距离.【考点】一次函数的应用.【分析】(1)可根据待定系数法来确定函数关系式;(2)可依照(1)得出的关系式,得出结果;(3)要根据图象中自变量的3种不同的取值范围,分类讨论;(4)根据(3)中得出的函数关系式,根据自变量的取值范围分别计算出A加油站到甲地的距离.【解答】解:(1)y1=60x(0≤x≤10),y2=﹣100x+600(0≤x≤6)(2)当x=3时,y1=180,y2=300,∴y2﹣y1=120,当x=5时y1=300,y2=100,∴y1﹣y2=200,当x=8时y1=480,y2=0,∴y1﹣y2=480.(3)当两车相遇时耗时为x,y1=y2,解得x=,S=y2﹣y1=﹣160x+600(0≤x≤)S=y1﹣y2=160x﹣600(<x≤6)S=60x(6<x≤10);(4)由题意得:S=200,①当0≤x≤时,﹣160x+600=200,∴x=,∴y1=60x=150.②当<x≤6时160x﹣600=200,∴x=5,∴y1=300,③当6<x≤10时,60x≥360不合题意.即:A加油站到甲地距离为150km或300km.【点评】本题通过考查一次函数的应用来考查从图象上获取信息的能力.借助函数图象表达题目中的信息,读懂图象是关键.注意自变量的取值范围不能遗漏.7.我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)的用户,每吨收水费a元;一月用水超过10吨的用户,10吨水仍按每吨a元收费,超过10吨的部分,按每吨b元(b>a)收费.设一户居民月用水x吨,应收水费y元,y与x之间的函数关系如图所示.(1)求a的值;某户居民上月用水8吨,应收水费多少元;(2)求b的值,并写出当x>10时,y与x之间的函数关系式;(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨?【考点】一次函数的应用;二元一次方程组的应用;分段函数.【分析】(1)由图中可知,10吨水出了15元,那么a=15÷10=1.5元,用水8吨,应收水费1.5×8元;(2)由图中可知当x>10时,有y=b(x﹣10)+15.把(20,35)代入一次函数解析式即可.(3)应先判断出两家水费量的范围.【解答】解:(1)a=15÷10=1.5.(1分)用8吨水应收水费8×1.5=12(元).(2分)(2)当x>10时,有y=b(x﹣10)+15.(3分)将x=20,y=35代入,得35=10b+15.b=2.(4分)故当x>10时,y=2x﹣5.(5分)(3)∵假设甲乙用水量均不超过10吨,水费不超过46元,不符合题意;假设乙用水10吨,则甲用水14吨,∴水费是:1.5×10+1.5×10+2×4<46,不符合题意;∴甲、乙两家上月用水均超过10吨.(6分)设甲、乙两家上月用水分别为x吨,y吨,则甲用水的水费是(2x﹣5)元,乙用水的水费是(2y﹣5)元,则(8分)解得:(9分)故居民甲上月用水16吨,居民乙上月用水12吨.(10分)【点评】本题主要考查了一次函数与图形的结合,应注意分段函数的计算方法.二、利用函数的增减性解决问题8.某饮料厂为了开发新产品,用A种果汁原料和B种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制x千克,两种饮料的成本总额为y元.(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出y与x之间的函数关系式.(2)若用19千克A种果汁原料和17.2千克B种果汁原料试制甲、乙两种新型饮料,下表是试验的相关数据;请你列出关于x且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使y值最小,最小值是多少?甲乙每千克饮料果汁含量果汁A 0.5千克0.2千克B 0.3千克0.4千克【考点】一元一次不等式组的应用.【专题】应用题;压轴题.【分析】(1)由题意可知y与x的等式关系:y=4x+3(50﹣x)化简即可;(2)根据题目条件可列出不等式方程组,推出y随x的增大而增大,根据实际求解.【解答】解:(1)依题意得y=4x+3(50﹣x)=x+150;(2)依题意得解不等式(1)得x≤30解不等式(2)得x≥28∴不等式组的解集为28≤x≤30∵y=x+150,y是随x的增大而增大,且28≤x≤30∴当甲种饮料取28千克,乙种饮料取22千克时,成本总额y最小,即y最小=28+150=178元.【点评】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.注意本题的不等关系为:甲种果汁不超过19,乙种果汁不超过17.2.9.某厂工人小王某月工作的部分信息如下:信息一:工作时间:每天上午8:00~12:00,下午14:00~18:00,每月25天;信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件.生产产品件数与所用时间之间的关系见下表:生产甲产品数(件)生产乙产品数(件)所用时间(分)10 10 35030 20 850信息三:按件计酬,每生产一件甲产品可得1.50元,每生产一件乙产品可得2.80元.根据以上信息,回答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分;(2)小王该月最多能得多少元此时生产甲、乙两种产品分别多少件.【考点】二元一次方程组的应用;一次函数的应用.【专题】压轴题;阅读型;图表型.【分析】(1)设生产一件甲种产品需x分,生产一件乙种产品需y分,利用待定系数法求出x,y的值.(2)设生产甲种产品用x分,则生产乙种产品用(25×8×60﹣x)分,分别求出甲乙两种生产多少件产品.【解答】解:(1)设生产一件甲种产品需x分,生产一件乙种产品需y分.由题意得:(2分)即:解这个方程组得:答:生产一件甲产品需要15分,生产一件乙产品需要20分.(4分)(2)设生产甲种产品共用x分,则生产乙种产品用(25×8×60﹣x)分.则生产甲种产品件,生产乙种产品件.(5分)∴w总额===0.1x+1680﹣0.14x=﹣0.04x+1680(7分)又,得x≥900,由一次函数的增减性,当x=900时w取得最大值,此时w=0.04×900+1680=1644(元)此时甲有(件),乙有:(件)(9分)答:小王该月最多能得1644元,此时生产甲、乙两种产品分别60,555件.【点评】通过表格当中的信息,我们可以利用列方程组来求出生产甲、乙两种产品的时间,然后利用列函数关系式表示出小王得到的总钱数,然后利用一次函数的增减性求出钱数的最大值.10.“5.12”汶川特大地震灾害发生后,社会各界积极为灾区捐款捐物,某经销商在当月销售的甲种啤酒尚有2万元货款未收到的情况下,先将销售甲种啤酒全部应收货款的70%捐给了灾区,后又将该月销售乙种啤酒所得的全部货款的80%捐给了灾区.已知该月销售甲、乙两种啤酒共5000件,甲种啤酒每件售价为50元,乙种啤酒每件售价为35元,设该月销售甲种啤酒x件,共捐助救灾款y元.(1)该经销商先捐款元,后捐款元;(用含x的式子表示)(2)写出y与x的函数关系式,并求出自变量x的取值范围;(3)该经销商两次至少共捐助多少元?【考点】一次函数的应用.【专题】压轴题.【分析】(1)根据题意可直接得出经销商先捐款50x•70%=35x元,后捐款35(5000﹣x)•80%或(140000﹣28x)元;(2)根据题意可列出式子为y=7x+140000,根据“50x﹣20000≥0”,“5000﹣x>0”求出自变量取值范围为400≤x<5000;(3)当x=400时,y最小值=142800.【解答】解:(1)50x•70%或35x,35(5000﹣x)•80%或(140000﹣28x);(2)y与x的函数关系式为:y=7x+140000,由题意得解得400≤x<5000,∴自变量x的取值范围是400≤x<5000;(3)∵y=7x+140000是一个一次函数,且7>0,400≤x<5000,∴当x=400时,y最小值=142800.答:该经销商两次至少共捐款142800元.【点评】主要考查利用一次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义求解.注意要根据自变量的实际范围确定函数的最值.11.为支持四川抗震救灾,重庆市A、B、C三地现在分别有赈灾物资100吨、100吨、80吨,需要全部运往四川重灾地区的D、E两县.根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨.(1)求这批赈灾物资运往D、E两县的数量各是多少?(2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为x吨(x为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍.其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨.则A、B两地的赈灾物资运往D、E两县的方案有几种?请你写出具体的运送方案;(3)已知A、B、C三地的赈灾物资运往D、E两县的费用如下表:A地B地C地运往D县的费用(元/吨)220 200 200运往E县的费用(元/吨)250 220 210为及时将这批赈灾物资运往D、E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?【考点】一元一次不等式组的应用;一次函数的应用.【专题】压轴题;方案型.【分析】(1)设这批赈灾物资运往D县的数量为a吨,运往E县的数量为b吨,得到一个二元一次方程组,求解即可.(2)根据题意得到一元二次不等式,再找符合条件的整数值即可.(3)求出总费用的函数表达式,利用函数性质可求出最多的总费用.【解答】解:(1)设这批赈灾物资运往D县的数量为a吨,运往E县的数量为b吨.(1分)由题意,得(2分)解得(3分)答:这批赈灾物资运往D县的数量为180吨,运往E县的数量为100吨.(4分)(2)由题意,得(5分)解得即40<x≤45.∵x为整数,∴x的取值为41,42,43,44,45.(6分)则这批赈灾物资的运送方案有五种.具体的运送方案是:方案一:A地的赈灾物资运往D县41吨,运往E县59吨;B地的赈灾物资运往D县79吨,运往E县21吨.。
一次函数第2课时一次函数的应用【知识梳理】知识点1 一次函数建模思想一次函数在现实生活中有着广泛的应用,在解答一次函数的应用题时,应从给定的信息中抽象出一次函数关系,理清哪个是自变量,哪个是自变量的函数,确定出一次函数,再利用一次函数的图象与性质求解,同时要注意自变量的取值范围.知识点2 实际问题中一次函数的最大(小)值在实际问题中,自变量的取值范围一般受到限制,一次函数的图象就由直线变成线段或射线,根据函数图象的性质,函数就存在最大值或最小值.针对练习1. 某油箱中存油20升,油从管道中匀速流出,流速为0.2升/分钟,则油箱中剩油量Q(升)与流出时间t(分钟)的函数关系式为( )A.Q=20+0.2tB.Q=20-0.2t(t≥0)C.Q=20-0.2tD.Q=20-0.2t(0≤t≤100)2. 小明从家到图书馆看报然后返回,他离家的距离y与离家的时间x之间的对应关系如图所示,如果小明在图书馆看报30分钟,那么他离家50分钟时离家的距离为.3. 某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数.已知行李质量为20 kg时需付行李费2元,行李质量为50 kg时需付行李费8元.(1)当行李的质量x超过规定时,求y与x之间的函数表达式;(2)求旅客最多可免费携带行李的质量.知识点3 常见类型1.求一次函数的解析式2.利用一次函数的图象与性质解决某些问题,如最值、方案设计等针对练习1.某市为节约水资源,制定了新的居民用水收费标准.按照新标准,用户每月缴纳的水费y(元)与每月用水量x(m3)之间的关系如图所示.(1)求y关于x的函数解析式;(2)若某用户二、三月份共用水40 m3(二月份用水量不超过25 m3),缴纳水费79.8售量x/吨元,则该用户二、三月份的用水量各是多少?2.我市某医药公司把一批药品运往外地,现有两种运输方式可供选择.方式一:使用快递公司的邮车运输,装卸收费400元,另外每公里再加收4元;方式二:使用快递公司的火车运输,装卸收费820元,另外每公里再加收2元;(1)请分别写出邮车、火车运输的总费用y 1(元)、y 2(元)与运输路程x(公里)之间的函数关系式;(2)你认为选用哪种运输方式较好,为什么?3.为促进节能减排,倡导节约用电,某市将实行居民生活用电阶梯电价方案,图中折线反映了每户居民每月用电电费y(元)与用电量x(度)间的函数关系.(1)根据图象,阶梯电价方案分为三个档次,请填写下表: 档次第一档 第二档 第三档 每月用电量x 度0<x≤140________________(2)小明家某月用电120度,需要交电费________元;(3)求第二档每月电费y(元)与用电量x(度)之间的函数关系式;(4)在每月用电量超过230度时,每多用1度电要比第二档多付电费m 元,小刚家某月用电290度交纳电费153元,求m 的值.【巩固训练】一.选择题1.某油箱容量为60 L 的汽车,加满汽油后行驶了100 km 时,油箱中的汽油大约消耗了,如果加满汽15油后汽车行驶的路程为x km ,油箱中剩油量为y L ,那么y 与x 之间的函数解析式和自变量的取值范围分别是()A.y =0.12x ,x >0B.y =60-0.12x ,x >0C.y =0.12x ,0≤x ≤500D.y =60-0.12x ,0≤x ≤5002.如图,反映了某公司的销售收入与销售量的关系,反映了该公司产品的销售成本与销售量的关系,1l 2l 金额y/元当该公司赢利时,销售量( )A .小于3吨 B.大于3吨 C.小于4吨 D. 大于4吨3..端午节前夕,在东昌湖举行的第七届全民健身运动会龙舟比赛中,甲、乙两队在500米的赛道上,所划行的路程y(m)与时间x(min)之间的函数关系如图所示.下列说法错误的是( )A.乙队比甲队提前0.25 min到达终点.B.当乙队划行110 m时,此时落后甲队15 mC.0.5 min后,乙队比甲队每分钟快40 mD.自1.5 min开始,甲队若要与乙队同时到达终点,甲队的速度需提高到255 m/min二.填空题4.某市政府为了增强城镇居民抵御大病风险的能力,积极完善城镇居民医疗保险制度,纳入医疗保险的居民大病住院医疗费用的报销比例标准如下表:医疗费用范围报销比例标准不超过800元不予报销超过800元且不超过3 000元的部分50%超过3 000元且不超过5 000元的部分60%超过5 000元的部分70%设享受医保的某居民一年的大病住院医疗费用为x元,按上述标准报销的金额为y元.请写出800<x≤3 000时,y关于x的函数关系式为.三.解答题5.“和谐号”火车从车站出发,在行驶过程中速度y(单位:m/s)与时间x(单位:s)的关系如图所示,其中线段BC∥x轴.请根据图象提供的信息解答下列问题:(1)当0≤x≤10,求y关于x的函数解析式;(2)求C点的坐标.6.某蒜薹(tái )生产基地喜获丰收,收获蒜薹200吨,经市场调查,可采用批发、零售、冷库储藏后销售三种方式,并且按这三种方式销售,计划每吨平均的售价及成本如下表.若经过一段时间,蒜薹按计划全部售出获得的总利润为y (元),蒜薹零售x (吨),且零售量是批发量的三分之一(1)求y 与x 之间的函数关系式;(2)由于受条件限制,经冷库储藏售出的蒜薹最多80吨,求该生产基地按计划全部售完蒜薹获得的最大利润.7.某工厂有甲种原料130 kg ,乙种原料144 kg.现用这两种原料生产出A ,B 两种产品共30件.已知生产每件A 产品需甲种原料5 kg ,乙种原料4 kg ,且每件A 产品可获利700元;生产每件B 产品需甲种原料3 kg ,乙种原料6 kg ,且每件B 产品可获利900元.设生产A 产品x 件(产品件数为整数件),根据以上信息解答下列问题:(1)生产A ,B 两种产品的方案有哪几种;(2)设生产这30件产品可获利y 元,写出y 关于x 的函数解析式,写出(1)中利润最大的方案,并求出最大利润.销售方式批发零售冷藏后销售售价(元/吨)300045005500成本(元/吨)70010001200。
一次函数的应用一次函数是高中数学中最基本的函数之一,它的应用非常广泛。
简单来说,一次函数就是指一个形如 $y = kx +b$ 的函数,其中,$k$ 和 $b$ 是常数,$x$ 和 $y$ 分别是自变量和因变量。
在实际生活中,一次函数的应用非常广泛。
以下是一些例子:1. 电影票价计算电影院的票价通常都是一次函数的形式。
假设某个电影院的票价为 $y = 15x + 25$,其中 $x$ 表示购买的票数,$y$ 表示所需支付的费用。
根据这个函数,我们可以算出如果购买 $3$ 张票,需要支付的费用为 $y = 15\times 3 + 25 = 70$ 元。
2. 车行里程计算汽车的油耗通常也可以用一次函数来表示。
假设某辆车的油耗为 $y = 0.1x + 10$,其中 $x$ 表示行驶的里程数(千米),$y$ 表示所需的汽油(升数)。
如果这辆车行驶了$100$ 公里,需要消耗的汽油量就是 $y = 0.1\times 100 + 10 = 20$ 升。
3. 银行利率计算银行的利率计算也可以用一次函数来表示。
假设某个银行的存款利率为 $y = 0.03x + 0.01$,其中 $x$ 表示存款的金额(万元),$y$ 表示所能获得的利息(万元)。
如果存款$200$ 万元,那么能够获得的利息就是 $y = 0.03\times 200+ 0.01 = 6.01$ 万元。
除了以上的实际应用,一次函数还有很多其他的数学应用,如经济学、物理学、工程学等等。
例如,在经济学中,一次函数可以用来表示市场供给和需求的关系,帮助决策者做出更明智的决策。
在物理学中,一次函数可以用来表示运动的速度与时间的关系,帮助科学家研究物理现象。
在工程学中,一次函数可以用来表示信号的传输、电路的特性等等,帮助工程师设计和优化工程设备。
总的来说,一次函数是我们生活中不可或缺的数学工具,它的应用非常广泛,涵盖多个领域。
理解一次函数的原理和应用,有助于我们更好地理解世界和解决实际问题。
第11讲一次函数的应用一、知识要点(一)一次函数的应用的常见题型(1)根据实际问题中给出的数据列相应的函数表达式,解决实际问题;(2)利用一次函数对实际问题中的方案进行比较;(3)结合实际问题的函数图象解决实际问题;(4)一次函数与几何图形结合的应用.(二)一般步骤:1、设定问题中的变量2、建立一次函数关系式3、确定自变量的取值范围4、利用函数性质解决问题5、作答二、经典回眸考点1 实际问题中的方案类问题例1 [2018·广州] 友谊商店A型号笔记本电脑的售价是a元/台,最近,该商店对A型号笔记本电脑举行促销活动,有两种优惠方案.方案一:每台按售价的九折销售.方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售.某公司一次性从友谊商店购买A型号笔记本电脑x台.(1)当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?(2)若该公司采用方案二购买更合算,求x的取值范围.变式 (2018·湖州)“绿水青山就是金山银山”,为了保护环境和提高果树产量,某果农计划从甲、乙两个仓库用汽车向A,B两个果园运送有机化肥,甲、乙两个仓库分别可运出80 t和100 t有机化肥;A,B两个果园分别需用110 t 和70 t有机化肥,两个仓库到A,B两个果园的路程如下表所示:考点2 实际问题中的行程类问题例题2 (2016·丽水)2016年3月27日“丽水半程马拉松竞赛”在莲都举行,某运动员从起点万地广场西门出发,途经紫金大桥,沿比赛路线回终点万地广场西门.设该运动员离开起点的路程s(km)与跑步时间t(min)之间的函数关系如图所示,其中从起点到紫金大桥的平均速度是0.3 km/min,用时35 min,根据图象提供的信息,解答下列问题:(1)求图中a的值;(2)组委会在距离起点2.1 km处设立一个拍摄点C,该运动员从第一次过点C到第二次过点C所用的时间为68 min.①求AB所在直线的函数表达式;②该运动员跑完赛程用时多少分钟?变式甲、乙两动点分别从线段AB的两端点同时出发,甲从点A出发,向终点B运动,乙从点B出发,向终点A运动.已知线段AB的长为90 cm,甲的速度为2.5 cm/s.设运动时间为x(s),甲、乙两点之间的距离为y (cm),y与x 的函数图象如图所示,则图中线段DE所表示的函数表达式为(写出自变量的取值范围).考点3 一次函数与几何图形结合的应用的面积是多少?是菱形,则点,四边形上一是的中点,是两点,轴分别交于轴与如图,直线例OAE OEDC AB D OB C B A y x x y ∆+=,433 3 变式 正方形 和 ,按如图所示方式放置,点A1,A2在直线y =x +1上,点C1,C2在x 轴上,已知点A1的坐标是(0,1),则点B2的坐标为 .三、课后作业1.(威海)甲、乙两辆摩托车同时从相距20km 的A ,B 两地出发,相向而行.图中l 1,l 2分别表示甲、乙两辆摩托车到A 地的距离s (km )与行驶时间t (h )的函数关系.则下列说法错误的是( )A .乙摩托车的速度较快B .经过0.3小时甲摩托车行驶到A ,B 两地的中点C .经过0.25小时两摩托车相遇D .当乙摩托车到达A 地时,甲摩托车距离A 地km2.(十堰)张师傅驾车从甲地到乙地,两地相距500千米,汽车出发前油箱有油25升,途中加油若干升,加油前、后汽车都以100千米/小时的速度匀速行驶,已知油箱中剩余油量y (升)与行驶时间t (小时)之间的关系如图所示.以下说法错误的是( )A .加油前油箱中剩余油量y (升)与行驶时间t (小时)的函数关系是y=-8t+25B .途中加油21升C .汽车加油后还可行驶4小时D .汽车到达乙地时油箱中还余油6升。
一次函数的应用举例及实际意义一次函数,也被称为线性函数,是数学中的基本函数之一。
它是指函数的表达式为 y = kx + b,其中 k 和 b 分别代表常数。
一次函数在现实生活中有着广泛的应用,本文将探讨一些具体的应用案例,并介绍其实际意义。
一、物理运动中的一次函数应用在物理学中,一次函数被广泛用于描述物体在匀速直线运动中的位置变化。
例如,当一个小车以恒定速度沿着直线行驶时,其位置与时间的关系可以用一次函数来表示。
设小车在时刻 t 时的位置为 x,速度为 v,则可以建立一次函数 x = vt + x0,其中 x0 代表小车的初始位置。
这个一次函数的实际意义在于可以准确地描述小车在不同时间点的位置,从而帮助我们预测车辆的行进轨迹和到达目的地所需的时间。
二、经济学中的一次函数应用在经济学中,一次函数被广泛应用于相关的数据分析和预测。
例如,假设某个企业的销售额与广告投入之间存在着线性关系,可以用一次函数来描述这种关系。
设销售额为 y,广告投入为 x,则可以建立一次函数 y = kx + b,其中 k 代表单位广告投入对销售额的影响程度,b 代表其他影响销售额的因素。
通过分析一次函数的斜率 k 和截距 b,可以判断广告投入对销售额的贡献度及其经济效益,为企业的决策提供依据。
三、人口增长模型中的一次函数应用在人口学领域,一次函数也常用于描述人口的增长模型。
人口增长通常可以用一个简单的一次函数进行近似,例如使用一次函数 P = at +b 来表示人口数量的变化,其中 P 代表人口数量,t 代表时间,a 和 b是常数。
通过观察一次函数的斜率a,我们可以了解到人口增长的速率,从而为制定人口政策提供参考。
四、交通规划中的一次函数应用在交通规划中,一次函数也有着重要的应用。
例如,在城市交通流量的研究中,可以用一次函数来描绘车辆流量与时间的关系。
假设车辆流量为 V,时间为 t,则可以建立一次函数 V = kt + c,其中 k 表示车辆流量的增长速率,c 表示初始的车辆流量。
一次函数的应用一、选择题(共10小题)1.(2013•竹溪县模拟)一辆汽车和一辆摩托车分别从A,B两地去同一城市,它们离A地的路程随时间变化的图象如图所示.则下列结论:(1)摩托车比汽车晚到1h;(2)A,B两地的路程为20km;(3)摩托车的速度为45km/h,汽车的速度为60km/h;(4)汽车出发1小时后与摩托车相遇,此时距B地40千米;(5)相遇前摩托车的速度比汽车的速度快.其中正确结论的个数是()A.2个B.3个C.4个D.5个2.(2002•南宁)以下是2002年3月12日《南国早报》刊登的南宁市自来水价格调整表:南宁市自来水价格调整表(部分)单位:元/立方米用水类别现行水价拟调整水价一、居民生活用水1、一户一表第一阶梯:月用水量0~30立方米/户第二阶梯:月用水量超过30立方米/户部分则调整水价后某户居民月用水量x(立万米)与应交水费y(元)的函数图象是()A.B.C.D.3.(2002•甘肃)受力面积为S(米2)(S为常数,S≠0)的物体,所受的压强P(帕)与压力F(牛)的函数关系为P=,则这个函数的图象是()A.B.C.D.4.(2003•无锡)为了节约用水,某市规定:每户居民每月用水不超过20立方米,按每立方米2元收费;超过20立方米,则超过部分按每立方米4元收费,某户居民五月份交水费72元,则该户居民五月份实际用水为()A.8立方米B.18立方米C.28立方米D.36立方米5.(2004•连云港)甲、乙两辆摩托车分别从A、B两地出发相向而行,图中l1、l2分别表示两辆摩托车与A地的距离s(千米)与行驶时间t(小时)之间的函数关系,则下列说法:①A、B两地相距24千米;②甲车比乙车行完全程多用了小时;③甲车的速度比乙车慢8千米/小时;④两车出发后,经过小时,两车相遇.其中正确的有()6.(2006•山西)小雨和弟弟进行百米赛跑,小雨比弟弟跑得快,如果两人同时起跑,小雨肯定赢.现在小雨让弟弟先跑若干米,图中l1,l2分别表示两人的路程与小雨追赶弟弟的时间的关系,由图中信息可知,下列结论中正确的是()A.小雨先到达终点B.弟弟的速度是8米/秒C.弟弟先跑了10米D.弟弟的速度是10米/秒7.(2008•金华)三军受命,我解放军各部队奋力抗战地救灾一线.现有甲、乙两支解放军小分队将救灾物资送往某重灾小镇,甲队先出发,从部队基地到小镇只有唯一通道,且路程为24km,如图是他们行走的路线关于时间的)函数图象,四位同学观察此函数图象得出有关信息,其中正确的个数是(8.(2005•日照)学校春季运动会期间,负责发放奖品的张也同学,在发放运动鞋(奖品)时,对运动鞋的鞋码统计如下表:如果获奖运动员李伟领取的奖品是43号(原鞋码)的运动鞋,则这双运动鞋的新鞋码是()新鞋码(y)225245 (280)原鞋码(x)3539 (46)A.270B.255C.260D.2659.(2005•荆门)参加保险公司的医疗保险,住院治疗的病人享受分段报销,保险公司制定的报销细则如下表.某人住院治疗后得到保险公司报销金额是1000元,那么此人住院的医疗费大约是()住院医疗费(元)报销率(%)不超过500元的部分0超过500~1000元的部分30超过1000~3000元的部分45…A.2879元B.2889元C.2899元D.2909元10.(2004•四川)汽车由重庆驶往相距400千米的成都,如果汽车的平均速度是100千米/时,那么汽车距成都的路程s(千米)与行驶时间t(小时)的函数关系用图象表示为()A.B.C.D.二、填空题(共3小题)(除非特别说明,请填准确值)11.(2013•上海)李老师开车从甲地到相距240千米的乙地,如果油箱剩余油量y(升)与行驶里程x(千米)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是_________升.12.(2013•武汉)设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回.设x秒后两车间的距离为y米,y关于x的函数关系如图所示,则甲车的速度是_________米/秒.13.(2013•随州)甲乙两地相距50千米.星期天上午8:00小聪同学在父亲陪同下骑山地车从甲地前往乙地.2小时后,小明的父亲骑摩托车沿同一路线也从甲地前往乙地,他们行驶的路程y(千米)与小聪行驶的时间x(小时)之间的函数关系如图所示,小明父亲出发_________小时时,行进中的两车相距8千米.三、解答题(共5小题)(选答题,不自动判卷)14.(2013•徐州)为增强公民的节约意识,合理利用天然气资源,某市自1月1日起对市区民用管道天然气价格进行调整,实行阶梯式气价,调整后的收费价格如表所示:每月用气量单价(元/m3)不超出75m3的部分超出75m3不超出125m3的部分a超出125m3的部分a+(1)若甲用户3月份的用气量为60m3,则应缴费_________元;(2)若调价后每月支出的燃气费为y(元),每月的用气量为x(m3),y与x之间的关系如图所示,求a的值及y 与x之间的函数关系式;(3)在(2)的条件下,若乙用户2、3月份共用气175m3(3月份用气量低于2月份用气量),共缴费455元,乙用户2、3月份的用气量各是多少15.(2013•湘潭)莲城超市以10元/件的价格调进一批商品,根据前期销售情况,每天销售量y(件)与该商品定价x(元)是一次函数关系,如图所示.(1)求销售量y与定价x之间的函数关系式;(2)如果超市将该商品的销售价定为13元/件,不考虑其它因素,求超市每天销售这种商品所获得的利润.16.(2013•湛江)周末,小明骑自行车从家里出发到野外郊游.从家出发1小时后到达南亚所(景点),游玩一段时间后按原速前往湖光岩.小明离家1小时50分钟后,妈妈驾车沿相同路线前往湖光岩,如图是他们离家的路程y (km)与小明离家时间x(h)的函数图象.(1)求小明骑车的速度和在南亚所游玩的时间;(2)若妈妈在出发后25分钟时,刚好在湖光岩门口追上小明,求妈妈驾车的速度及CD所在直线的函数解析式.17.(2013•盐城)水果店王阿姨到水果批发市场打算购进一种水果销售,经过还价,实际价格每千克比原来少2元,发现原来买这种水果80千克的钱,现在可买88千克.(1)现在实际购进这种水果每千克多少元(2)王阿姨准备购进这种水果销售,若这种水果的销售量y(千克)与销售单价x(元/千克)满足如图所示的一次函数关系.①求y与x之间的函数关系式;②请你帮王阿姨拿个主意,将这种水果的销售单价定为多少时,能获得最大利润最大利润是多少(利润=销售收入﹣进货金额)18.(2013•襄阳)某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x (x≥2)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球.设在A超市购买羽毛球拍和羽毛球的费用为y A(元),在B超市购买羽毛球拍和羽毛球的费用为y B(元).请解答下列问题:(1)分别写出y A、y B与x之间的关系式;(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算(3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.参考答案与试题解析一、选择题(共10小题)1.(2013•竹溪县模拟)一辆汽车和一辆摩托车分别从A,B两地去同一城市,它们离A地的路程随时间变化的图象如图所示.则下列结论:(1)摩托车比汽车晚到1h;(2)A,B两地的路程为20km;(3)摩托车的速度为45km/h,汽车的速度为60km/h;(4)汽车出发1小时后与摩托车相遇,此时距B地40千米;(5)相遇前摩托车的速度比汽车的速度快.其中正确结论的个数是()A.2个B.3个C.4个D.5个考点:一次函数的应用.分析:分别根据函数图象的实际意义可依次判断各个选项是否正确.解答:解:分析图象可知(1)4﹣3=1,摩托车比汽车晚到1h,正确;(2)因为汽车和摩托车分别从A,B两地去同一城市,从y轴上可看出A,B两地的路程为20km,正确;(3)摩托车的速度为(180﹣20)÷4=40km/h,汽车的速度为180÷3=60km/h,故(3)错误;(4)根据汽车出发1小时后行驶60km,摩托车1小时后行驶40km,加上20km,则两车行驶的距离相等,此时距B地40千米;故正确;(5)根据图形可得出两车是匀速行驶,相遇前摩托车的速度比汽车的速度快,错误.故正确的有3个.故选:B.点评:此题主要考查了函数图象的读图能力.要理解函数图象所代表的实际意义是什么才能从中获取准确的信息.2.(2002•南宁)以下是2002年3月12日《南国早报》刊登的南宁市自来水价格调整表:南宁市自来水价格调整表(部分)单位:元/立方米用水类别现行水价拟调整水价一、居民生活用水1、一户一表第一阶梯:月用水量0~30立方米/户第二阶梯:月用水量超过30立方米/户部分则调整水价后某户居民月用水量x(立万米)与应交水费y(元)的函数图象是()A.B.C.D.考点:一次函数的图象;一次函数的应用.专题:压轴题.分析:根据题意:函数的图象为分段函数,两段均为一次函数,且当x>30时,收费更高,故直线倾斜程度变大,据此作出选择.解答:解:根据图中信息,列出函数解析式得:①y=(0<x≤30);②y=(x﹣30)+×30=﹣(x>30).故选C.点评:本题要求学生根据题意,结合实际情况,判断函数的图象.3.(2002•甘肃)受力面积为S(米2)(S为常数,S≠0)的物体,所受的压强P(帕)与压力F(牛)的函数关系为P=,则这个函数的图象是()A.B.C.D.考点:一次函数的应用.分析:根据题意,因为S是常数,S≠0.故假设=K,则K也为常数且K≠0.又因为F≥0,故可知P=KF的图象是过原点的一条射线.解答:解:因为S为常数,S≠0,所以也是常数,假设=K,则K为常数且K≠0,则P=KF满足正比例函数的定义的形式,由F≥0,知这个函数的图象是过原点的一条射线.故选A.点评:本题重点考查了一次函数图象和实际应用相结合的问题,在做题时要明确常数为,考查了一次函数的定义及图象性质和自变量的取值范围.4.(2003•无锡)为了节约用水,某市规定:每户居民每月用水不超过20立方米,按每立方米2元收费;超过20立方米,则超过部分按每立方米4元收费,某户居民五月份交水费72元,则该户居民五月份实际用水为()A.8立方米B.18立方米C.28立方米D.36立方米考点:一次函数的应用.专题:压轴题.分析:20立方米时交40元,题中已知五月份交水费72元,即已经超过20立方米,所以在72元水费中有两部分构成,列方程即可解答.解答:解:设该用户居民五月份实际用水x立方米,故20×2+(x﹣20)×4=72,(2)用一次函数解决实际问题是近年中考中的热点问题.5.(2004•连云港)甲、乙两辆摩托车分别从A、B两地出发相向而行,图中l1、l2分别表示两辆摩托车与A地的距离s(千米)与行驶时间t(小时)之间的函数关系,则下列说法:①A、B两地相距24千米;②甲车比乙车行完全程多用了小时;③甲车的速度比乙车慢8千米/小时;④两车出发后,经过小时,两车相遇.其中正确的有()A.1个B.2个C.3个D.4个考点:函数的图象;一次函数的应用.专题:压轴题.分析:因为由图象可知,甲、乙行驶的路程都是24千米,行驶时间分别是小时、小时.可计算:乙的速度为24÷=48千米/小时,甲的速度为24÷=40千米/小时;用路程÷甲乙速度和=相遇时间.解答:解:∵对于乙t=0时,s=24,t=时,s=0,对于甲t=0时,s=0,t=时,s=24,∴A、B两地相距24千米,①正确.乙从B地到甲地用了小时,甲从A地到B地走了小时,﹣=小时,②正确.乙的速度为24÷=48千米/小时,甲的速度为24÷=40千米/小时,48﹣40=8千米/小时,③正确.两人经过24÷(48+40)=小时相遇,④正确.综上可知,四个说法都对.故选D.点评:本题需仔细分析图象,利用特殊点的意义即可解决问题.6.(2006•山西)小雨和弟弟进行百米赛跑,小雨比弟弟跑得快,如果两人同时起跑,小雨肯定赢.现在小雨让弟弟先跑若干米,图中l1,l2分别表示两人的路程与小雨追赶弟弟的时间的关系,由图中信息可知,下列结论中正确的是()A.小雨先到达终点B.弟弟的速度是8米/秒C.弟弟先跑了10米D.弟弟的速度是10米/秒考点:函数的图象;一次函数的应用.分析:根据图象得出两人的路程,时间及速度的相关信息,逐一判断.即弟弟在这10秒钟里跑了100﹣20=80米,所以弟弟的速度是8米/秒,D错误.故选B.点评:本题的解决需仔细分析图象,并从中找寻各种信息.7.(2008•金华)三军受命,我解放军各部队奋力抗战地救灾一线.现有甲、乙两支解放军小分队将救灾物资送往某重灾小镇,甲队先出发,从部队基地到小镇只有唯一通道,且路程为24km,如图是他们行走的路线关于时间的函数图象,四位同学观察此函数图象得出有关信息,其中正确的个数是()A.1B.2C.3D.4考点:一次函数的应用.专题:压轴题;阅读型;图表型.分析:本题主要考查的是分段函数的应用,应结合函数的图形,按不同的时间段进行逐段分析.解答:解:由图可知:甲、乙的起始时间分别为0h和2h;因此甲比乙早出发2小时;在3h﹣4h这一小时内,甲的函数图象与x轴平行,因此在行进过程中,甲队停顿了一小时;两个函数有两个交点:①甲行驶小时、乙行驶小时时,两函数相交,因此乙队出发小时后追上甲队;②甲行驶6小时、乙行驶4小时后,两函数相交,此时两者同时到达目的地.所以在整个行进过程中,乙队用的时间为4小时,行驶的路程为24千米,因此它的平均速度为6km/h.这四个同学的结论都正确,故选D.点评:本题考查了识别函数图象的能力,是一道较为简单的题,观察图象提供的信息,再分析这四位同学的结论.8.(2005•日照)学校春季运动会期间,负责发放奖品的张也同学,在发放运动鞋(奖品)时,对运动鞋的鞋码统计如下表:如果获奖运动员李伟领取的奖品是43号(原鞋码)的运动鞋,则这双运动鞋的新鞋码是()新鞋码(y)225245 (280)原鞋码(x)3539 (46)A.270B.255C.260D.265考点:一次函数的应用.专题:图表型.分析:由表格可知,给出了3对对应值,销售原鞋码每增加4,新鞋码增加20,即销售量与销售单价是一次函数关系,设y=kx+b,把表中的任意两对值代入即可求出y与x的关系.解答:解:由题中的表格知,y是x的一次函数,可设y与x的关系为y=kx+b,由题意得,解得,∴y与x之间的函数关系式为y=5x+50,当x=43时,y=265.故选D.点评:确定一个函数是否为一次函数,也可按如下步骤:描点、连线、猜测、验证,最后确定一次函数关系式.9.(2005•荆门)参加保险公司的医疗保险,住院治疗的病人享受分段报销,保险公司制定的报销细则如下表.某人住院治疗后得到保险公司报销金额是1000元,那么此人住院的医疗费大约是()住院医疗费(元)报销率(%)不超过500元的部分0超过500~1000元的部分30超过1000~3000元的部分45…A.2879元B.2889元C.2899元D.2909元考点:一次函数的应用.专题:压轴题;图表型.分析:不超过500元的部分,报销金额为0;500﹣1000元,最多可报销(1000﹣500)×30%=150;某人住院治疗保险公司报销金额为1000元,说明此人的住院医疗费超过1000,根据题意可列出一次函数进行求解.解答:解:若某人的住院医疗费不超过1000元,保险公司最多报销金额为:(1000﹣500)×30%=150元,根据保险公司报销的金额知:此人的住院医疗费超过1000元,依题意,可得:(1000﹣500)×30%+(x﹣1000)×45%=1000,解得:x=2889,故此人住院的医疗费大约是2889元.故选B.点评:本题主要是确定此人住院医疗费用的范围,列出一元一次方程进行求解.10.(2004•四川)汽车由重庆驶往相距400千米的成都,如果汽车的平均速度是100千米/时,那么汽车距成都的路程s(千米)与行驶时间t(小时)的函数关系用图象表示为()A.B.C.D.考点:一次函数的图象;一次函数的应用.分析:先根据题意列出s、t之间的函数关系式,再根据函数图象的性质和实际生活意义进行选择即可.解答:解:根据题意可知s=400﹣100t(0≤t≤4),∴与坐标轴的交点坐标为(0,400),(4,0).要注意x、y的取值范围(0≤t≤4,0≤y≤400).故选C.点评:主要考查了一次函数的图象性质,首先确定此函数为一次函数,然后根据实际意义,函数图象为一条线段,再确定选项即可.二、填空题(共3小题)(除非特别说明,请填准确值)11.(2013•上海)李老师开车从甲地到相距240千米的乙地,如果油箱剩余油量y(升)与行驶里程x(千米)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是2升.考点:一次函数的应用.分析:先运用待定系数法求出y与x之间的函数关系式,然后把x=240时带入解析式就可以求出y的值,从而得出剩余的油量.解答:解:设y与x之间的函数关系式为y=kx+b,由函数图象,得,解得:,则y=﹣x+.当x=240时,y=﹣×240+=2升.故答案为:2点评:本题考查了运用待定系数法求一次函数的运用,根据自变量求函数值的运用,解答时理解函数图象的含义求出一次函数的解析式是关键.12.(2013•武汉)设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回.设x秒后两车间的距离为y米,y关于x的函数关系如图所示,则甲车的速度是20米/秒.考点:一次函数的应用.分析:设甲车的速度是a米/秒,乙车的速度为b米/秒,根据函数图象反应的数量关系建立方程组求出其解即可.解答:解:设甲车的速度是a米/秒,乙车的速度为b米/秒,由题意,得,点评:本题是一道运用函数图象表示出来的行程问题,考查了追击问题的运用,路程=速度×时间的运用,解答时认真分析函数图象的含义是关键,根据条件建立方程组是难点.13.(2013•随州)甲乙两地相距50千米.星期天上午8:00小聪同学在父亲陪同下骑山地车从甲地前往乙地.2小时后,小明的父亲骑摩托车沿同一路线也从甲地前往乙地,他们行驶的路程y(千米)与小聪行驶的时间x(小时)之间的函数关系如图所示,小明父亲出发或小时时,行进中的两车相距8千米.考点:一次函数的应用.专题:压轴题;分类讨论.分析:根据图象求出小明和父亲的速度,然后设小明的父亲出发x小时两车相距8千米,再分相遇前和相遇后两种情况列出方程求解即可.解答:解:由图可知,小聪及父亲的速度为:36÷3=12千米/时,小明的父亲速度为:36÷(3﹣2)=36千米/时设小明的父亲出发x小时两车相距8千米,则小聪及父亲出发的时间为(x+2)小时根据题意得,12(x+2)﹣36x=8或36x﹣12(x+2)=8,解得x=或x=,所以,出发或小时时,行进中的两车相距8千米.故答案为:或.点评:本题考查了一次函数的应用,主要利用了路程、速度、时间三者之间的关系,从图中准确获取信息求出两人的速度是解题的关键,易错点在于要分两种情况求解.三、解答题(共5小题)(选答题,不自动判卷)14.(2013•徐州)为增强公民的节约意识,合理利用天然气资源,某市自1月1日起对市区民用管道天然气价格进行调整,实行阶梯式气价,调整后的收费价格如表所示:每月用气量单价(元/m3)不超出75m3的部分超出75m3不超出125m3的部分a超出125m3的部分a+(1)若甲用户3月份的用气量为60m3,则应缴费150元;(2)若调价后每月支出的燃气费为y(元),每月的用气量为x(m3),y与x之间的关系如图所示,求a的值及y 与x之间的函数关系式;(3)在(2)的条件下,若乙用户2、3月份共用气175m3(3月份用气量低于2月份用气量),共缴费455元,乙用户2、3月份的用气量各是多少考点:一次函数的应用.专题:压轴题.分析:(1)根据单价×数量=总价就可以求出3月份应该缴纳的费用;(2)结合统计表的数据)根据单价×数量=总价的关系建立方程就可以求出a值,再从0≤x≤75,75<x≤125和x>125运用待定系数法分别表示出y与x的函数关系式即可;(3)设乙用户2月份用气xm3,则3月份用气(175﹣x)m3,分3种情况:x>125,175﹣x≤75时,75<x≤125,175﹣x≤75时,当75<x≤125,75<175﹣x≤125时分别建立方程求出其解就可以.解答:解:(1)由题意,得60×=150(元);(2)由题意,得a=(325﹣75×)÷(125﹣75),a=,∴a+=3,设OA的解析式为y1=k1x,则有×75=75k1,∴k1=,∴线段OA的解析式为y1=(0≤x≤75);设线段AB的解析式为y2=k2x+b,由图象,得,解得,∴线段AB的解析式为:y2=﹣(75<x≤125);(385﹣325)÷3=20,故C(145,385),设射线BC的解析式为y3=k3x+b1,由图象,得,解得:,∴射线BC的解析式为y3=3x﹣50(x>125)(3)设乙用户2月份用气xm3,则3月份用气(175﹣x)m3,当x>125,175﹣x≤75时,3x﹣50+(175﹣x)=455,解得:x=135,175﹣135=40,符合题意;当75<x≤125,175﹣x≤75时,﹣+(175﹣x)=455,解得:x=145,不符合题意,舍去;当75<x≤125,75<175﹣x≤125时,﹣+(175﹣x)﹣=455,此方程无解.∴乙用户2、3月份的用气量各是135m3,40m3.点评:本题是一道一次函数的综合试题,考查了单价×数量=总价的运用,待定系数法求一次函数的解析式的运用,分段函数的运用,分类讨论思想在解实际问题的运用,解答时求出函数的解析式是关键.15.(2013•湘潭)莲城超市以10元/件的价格调进一批商品,根据前期销售情况,每天销售量y(件)与该商品定价x(元)是一次函数关系,如图所示.(1)求销售量y与定价x之间的函数关系式;(2)如果超市将该商品的销售价定为13元/件,不考虑其它因素,求超市每天销售这种商品所获得的利润.考点:一次函数的应用.分析:(1)由图象可知y与x是一次函数关系,又由函数图象过点(11,10)和(15,2),则用待定系数法即可求得y与x的函数关系式;(2)根据(1)求出的函数关系式,再求出每件该商品的利润,即可求得求超市每天销售这种商品所获得的利润.解答:解:(1)设y=kx+b(k≠0),由图象可知,,解得,故销售量y与定价x之间的函数关系式是:y=﹣2x+32;(2)超市每天销售这种商品所获得的利润是:W=(﹣2x+32)(13﹣10)=﹣6x+96,当x=13(元)时,超市每天销售这种商品所获得的利润是:W=﹣6×13+96=18(元).点评:此题考查了一次函数的应用问题,此题综合性较强,难度一般,解题的关键是理解题意,根据题意求得函数解析式,注意待定系数法的应用,注意数形结合思想的应用.16.(2013•湛江)周末,小明骑自行车从家里出发到野外郊游.从家出发1小时后到达南亚所(景点),游玩一段时间后按原速前往湖光岩.小明离家1小时50分钟后,妈妈驾车沿相同路线前往湖光岩,如图是他们离家的路程y (km)与小明离家时间x(h)的函数图象.(1)求小明骑车的速度和在南亚所游玩的时间;(2)若妈妈在出发后25分钟时,刚好在湖光岩门口追上小明,求妈妈驾车的速度及CD所在直线的函数解析式.考点:一次函数的应用.专题:压轴题.分析:(1)由函数图象的数据就可以求出小明汽车的速度及在南亚所游玩的时间为1小时;(2)先根据题意求出C点的坐标,然后运用待定系数法就可以求出CD的解析式及妈妈驾车的速度.解答:解:(1)由题意,得小明骑车的速度为:20÷1=20km/时,小明在南亚所游玩的时间为:2﹣1=1小时.(2)由题意,得小明从南亚所到湖光岩的时间为25﹣10=15分钟=小时,∴小明从家到湖光岩的路程为:20×(1+)=25km.∴妈妈的速度为:25÷=60km/时.C(,25).设直线CD的解析式为y=kx+b(k≠0),由题意,得,解得:,∴直线CD的解析式为y=60x﹣110.点评:本题是一道一次函数的综合试题,考查了行程问题的数量关系的运用,待定系数法求一次函数的解析式的运用,解答时理解清楚函数图象的意义是解答此题的关键.17.(2013•盐城)水果店王阿姨到水果批发市场打算购进一种水果销售,经过还价,实际价格每千克比原来少2元,发现原来买这种水果80千克的钱,现在可买88千克.(1)现在实际购进这种水果每千克多少元(2)王阿姨准备购进这种水果销售,若这种水果的销售量y(千克)与销售单价x(元/千克)满足如图所示的一次函数关系.①求y与x之间的函数关系式;②请你帮王阿姨拿个主意,将这种水果的销售单价定为多少时,能获得最大利润最大利润是多少(利润=销售收入﹣进货金额)。