膜片钳技术与离子通道药理学
- 格式:ppt
- 大小:4.19 MB
- 文档页数:76
膜片钳技术的发展与应用崔梦梦(生命科学学院 1241410026)摘要:膜片钳技术是在电压钳技术的基础上发展起来的,该技术的核心是能够记录单一离子通道的电流。
膜片钳可以测量到0.06pA的电流,它具有1um的空间分辨率和10us的时间分辨率。
作为先进的细胞电生理技术,膜片钳一直被奉为研究离子通道的“金标准”。
应用膜片钳技术可以证实细胞膜上离子通道的存在并能对其电生理特性、分子结构、药物作用机稍等进行深入的研究。
此外,将膜片钳技术与其他一些先进的技术结合,使其在药理学、病理学、神经科学、脑科学、细胞生物学和分子生物学等生物科学方面,,得到了越来越广泛的应用。
关键词:膜片钳;离子通道;发展与应用在细胞膜上存在有许多的离子通道,这些离子通道是细胞兴奋性的基础,对细胞内以及细胞之间的信息传递起着非常重要的作用。
为探究离子通道的功能和结构,许多电生理技术被发明创造。
英国学者Huxley和Katz最早应用电压钳来研究细胞膜上离子通道的电流变化,但由于该技术钳制的细胞膜面积很大,包含着大量随机开放和关闭着的离子通道,因而不能测定单一离子通道电流。
所以在1976年德国神经生物学家Erwin Neher和Bert Sakmann 建立起一种新的技术,即膜片钳技术,并且逐渐取代了电压钳技术。
随着膜片钳技术的不断完善,自1981年以来, 该技术已经在不同动物的肝、脾、胃肠、心肌、骨骼肌、神经系统、内分泌等各类细胞上应用并取得了研究成果。
膜片钳技术点燃了细胞和分子水平的生理学研究的革命之火,给生命科学研究带来了巨大的前进动力。
一、膜片钳技术的基本原理膜片钳技术是利用玻璃微电极尖端经抛光后贴附于神经元膜上,与玻璃微电极尖端相接的膜仅含1—3个离子通道,然后通过负压吸引将这片膜与周围的膜实行高阻封接,因此在电极尖端覆盖下的那片膜,在电学上已于膜的其他部分相互分隔。
电极尖端下的膜通道开放所产生的电流流进玻璃微电极吸管,通过一极其敏感的膜片钳放大器,就可测量得到单一离子通道电流。
南京药理学膜片钳电生理技术原理
南京药理学膜片钳电生理技术是一种电生理研究技术,主要用于研究神经细胞或肌细胞的离子通道、离子泵等生理学特征。
该技术通过精细的电极制备和膜片吸附技术,可以在微小范围内对细胞膜上的离子通道做直接测量,从而探测细胞膜电位和电流。
该技术的原理是在一条微细的玻璃电极制成的药理学膜片上吸附悬浮的细胞,使细胞的膜紧贴于药理学膜片的通道上。
然后使用电生理技术进行实验,测量当细胞膜上某个离子通道开放时,离子的电流就会通过药理学膜片钳的电极进入记录器中,从而获得离子通道的电流、电位等信息。
同时,通过改变细胞膜上的离子浓度或加入药物,可以研究离子通道的特性,如激动、抑制、选择性等方面的生理学特征。
南京药理学膜片钳电生理技术在研究神经和肌肉等细胞膜上离子通道的生理学特征方面具有广泛的应用,如研究钙离子、钠离子、钾离子等离子通道的生理学特征,探索离子通道的结构及其功能解析等方面。
.698.中国心血管病研究2007年9月第5卷第9期Chir№seJournalofCardiovasc“胁Rev如",Se,te舶er20D7,V01.5,Ⅳ0.9膜片钳技术在心血管及药理学研究中的应用李妙龄曾晓荣(审校)国家教育部重点项目资助(03109)作者单位:646000四川I省,泸州医学院心肌电生理学研究室中图分类号R331.3*8文献标识码A文章编号1672—5301(2007)09-0698-03膜片钳技术…是~种以记录通过细胞膜上的各种离子通道的离子电流来反映细胞膜上单一的或多个的离子通道活动的技术。
通过微电极与细胞膜之间形成紧密接触,采用电压钳或电流钳技术对生物膜上离子通道的电活动进行记录。
可测量1DA的电流灵敏度,1/s.m的空间分辨率和10us的时间分辨率,为从分子水平了解生物膜离子通道的开启和关闭、动力学选择性和通透性等膜信息提供了直接的手段。
膜片钳技术的发展不过20多年时间【2】,但却广泛的应用于心血管生理学、病理生理学及药理学的研究中,使人们对心血管系统生理调节、分子水平的病理学改变及药物的作用机制有了更深的认识和研究手段,解决了大量的理论和实际问题。
膜片钳技术应用的影响是深远的,它是一类应用范围非常广泛的电生理学技术,它给电生理学和细胞生物学以及神经生理学的发展乃至整个生物学研究带来了~场新的革命。
随着它的进一步发展,膜片钳与分子生物学、激光共聚焦等技术的结合应用拓宽了它的应用前景。
本文拟对膜片钳的基本原理和其在心血管及药理学研究中的应用作一综述。
1膜片钳技术基本原理膜片钳技术是用一尖端光洁,直径约1p,m的玻璃微管电极与细胞膜表面在负压吸引下紧密接触,引成千兆欧封接,将吸附在微电极尖端开口处的那小片膜与其余部分的膜在电学上完全隔离开来,使小片膜中只包含一个或数个通道蛋白质分子,在此基础上固定电位,这样便可研究单个离子通道的活动【3】。
对这一小片膜上的离子通道的离子电流进行检测记录,故称为小片膜电压钳位技术(简称膜片钳)。
膜片钳技术及其在神经科学研究中的应用膜片钳技术是一种在神经科学研究中广泛应用的技术,它可以用来记录和操纵神经元的电活动,为研究神经系统的功能和疾病提供重要的工具。
本文将介绍膜片钳技术的原理和应用,并探讨其在神经科学研究中的重要性。
膜片钳技术是一种通过在神经元的细胞膜上形成一个微小的孔洞,并利用微电极记录神经元内外的电位差的方法。
这种技术可以精确地记录神经元的动作电位,从而了解神经元的兴奋性和抑制性。
膜片钳技术的原理基于电生理学的基本原理,即神经元的电活动是由离子通道的开关控制的。
通过在神经元膜上形成一个微小的孔洞,可以通过微电极记录到神经元内外的电位差,从而了解离子通道的开关状态和神经元的电活动。
膜片钳技术在神经科学研究中有广泛的应用。
首先,它可以用来研究神经元的膜电位和动作电位。
研究人员可以通过在神经元膜上形成一个微小的孔洞,并利用膜片钳记录到神经元内外的电位差,从而了解神经元的电活动。
这对于研究神经元的兴奋性和抑制性非常重要,有助于理解神经元的工作原理和信息传递过程。
膜片钳技术还可以用来研究离子通道的功能。
离子通道是神经元膜上的蛋白质通道,它们控制着离子在神经元膜上的通透性,从而调节神经元的电活动。
通过利用膜片钳技术,研究人员可以记录到离子通道的电流,并分析离子通道的开关状态和功能特性。
这对于研究离子通道的结构和功能非常重要,有助于揭示离子通道与神经系统功能和疾病之间的关系。
膜片钳技术还可以用来研究突触传递和突触可塑性。
突触是神经元之间的连接点,通过突触传递神经信号。
膜片钳技术可以用来记录到突触传递的电位变化,并研究突触的功能特性和可塑性。
这对于理解神经系统的信息传递和学习记忆等高级功能非常重要。
在神经科学研究中,膜片钳技术的应用还包括单细胞蛋白质表达、药物筛选和基因编辑等方面。
通过将膜片钳技术与其他技术结合,研究人员可以进一步探索神经系统的功能和疾病机制,为神经科学研究提供更加全面和深入的理解。