2014年苏科版八年级上《全等三角形》期末复习试卷
- 格式:docx
- 大小:92.99 KB
- 文档页数:2
《全等三角形》单元测试题姓名 班级 得分一、填空题(4×10=40分)1、在△中,>>,且△≌△,则在△中,>>(填边)。
2、已知:△≌△A ′B ′C ′,∠∠A ′,∠∠B ′,∠70°,15,则∠C ′,A ′B ′。
3、如图1,△≌△,若,则∠的对应角是。
4、如图2,在△和△,,,当添加条件时,就可得到△≌△。
(只需填写一个你认为正确的条件)5、如图3,在△中,,⊥于D 点,E 、F 分别为、的中点,则图中共有全等三角形对。
6、如图4,,是△的高,且=,判定△≌△的依据是 .7、如图5,△中,∠90°,⊥于点D ,是∠的平分线,点E 到的距离等于3,则 .8、如图6,在△中,,,∠80°,则∠.AD E CB图4ABDE图图图图图9、P是∠平分线上一点,⊥于F,并分别交、于,则点到∠两边距离之和。
(填“>”,“<”或“=”)10、是△的边上的中线,=12,=8,则中线的取值范围是二、选择题:(每小题5分,共30分)11、下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线与对应角平分线分别相等,其中真命题的个数有( )A、3个B、2个C、1个D、0个12、如图7,已知点E在△的外部,点D在边上,交于F,若∠1=∠2=∠3,,则有( )A、△≌△B、△≌△C、△≌△D、△≌△13、下列条件中,不能判定△≌△A′B′C′的是( )A、′B′,∠∠A′,′C′B、′B′,∠∠A′,∠∠B′图C 、′B ′,∠∠A ′,∠∠C ′D 、∠∠A ′,∠∠B ′,∠∠C ′14、如图8所示,90E F ∠=∠=,B C ∠=∠,AE AF =,结论:①EM FN =;②CD DN =;③FAN EAM ∠=∠;④ACN ABM △≌△.其中正确的有( )A .1个B .2个C .3个D .4个 15、全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△和△A 1B 1C 1是全等(合同)三角形,点A 与点A 1对应,点B 与点B 1对应,点C 与点C 1对应,当沿周界A →B →C →A ,与A 1→B 1→A 1环绕时,若运动方向相同,则称它们是真正合同三角形(如图9),若运动方向相反,则称它们是镜面合同三角形(如图10),两个真正合同三角形都可以在平面内通过平移或旋转使它们重合,两个镜面合同三角形要重合,则必须将其中一个翻转180°(如图11),下列各组合同三角形中,是镜面合同三角形的是( )16、如图12,在△中,∠90°,平分∠交于D , 若64,且:9:7,则点D 到边的距离为( )A 、18B 、32C 、28D 、24三、解答下列各题:(17-18题各8-24题各ACDB 图12图12分,共80分)17、如图13,点A、B、C、D在同一条直线上,,,,求证:18、如图14,是∠的平分线,。
八上期末复习--全等三角形难题训练一、选择题1.下列说法正确的个数是()①三角形的三条高所在直线交于一点;②一个角的补角比这个角的余角大90°;③垂直于同一条直线的两条直线互相垂直;④两直线相交,同位角相等;⑤面积相等的两个正方形是全等图形;⑥已知两边及一角不能唯一作出三角形.A. 1个B. 2个C. 3个D. 4个2.已知:如图△ABC中,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF.其中正确的是()A. ①②③B. ①③④C. ①②④D. ①②③④3.如图,在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在边DC,CB上移动,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,若AD=2,线段CP的最小值是()D. √3A. √2B. √5−1C. √524.如图,正方形ABCD和正方形CEFG边长分别为a和b,正方形CEFG绕点C旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+2b2,其中正确结论有()A. 0个B. 1个C. 2个D. 3个5.如图,Rt△ACB中,∠ACB=90°,∠ABC的平分线BE分别交∠BAC的外角平分线AD、AC和BC的延长线于P,E,D.过P作PF⊥AD交AC的延长线于点H,交BC的延长线于点F,连接AF交DH于点G.则下列结论:①∠APB=45°;②PF=PA;③BD−AH=AB;④DG=AP+GH.其中正确的是()A. ①②③B. ①②④C. ②③④D. ①②③④6.如图,正方形ABCD中,AB=6,点E在边CD上,且CE=2DE,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF,下列结论:①△ABG≌△AFG;②BG=GC;③∠EAG=45°;④AG//CF;⑤S△ECG:S△AEG=2:5,其中正确结论的个数是()A. 2B. 3C. 4D. 5二、填空题7.如图△ABC,AB=AC=24厘米,∠B=∠C,BC=16厘米,点D为AB的中点.点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若点Q的运动速度为v厘米/秒,则当△BPD与△CQP全等时,v的值为______ 厘米/秒.8.如图,CA⊥AB,垂足为点A,AB=8,AC=4,射线BM⊥AB,垂足为点B,一动点E从A点出发以2厘米/秒的速度沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E离开点A后,运动______ 秒时,△DEB与△BCA全等.9.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,∠ABC=45°,∠BAC=75°,CD=5cm,则BF=______ .10.如图,已知:∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E、F,AB=6,AC=3,则BE=______.11.如图,在△ABC中,AB=4,AC=3,BC=5,△ABD、△ACE、△BCF都是等边三角形,则四边形AEFD的面积为______.12.如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面四个结论:①AS=AR;②QP//AR;③△BRP≌△QSP;④AP垂直平分RS.其中正确结论的序号是______(请将所有正确结论的序号都填上).三、解答题13.如图1,点A是线段BC上一点,△ABD,△AEC都是等边三角形,BE交AD于点M,CD交AE于N.(1)求证:BE=DC;(2)求证:△AMN是等边三角形;(3)将△ACE绕点A按顺时针方向旋转90°,其它条件不变,在图2中补出符合要求的图形,并判断(1)、(2)两小题结论是否仍然成立,并加以证明.14.如图,在等腰Rt△ABC中,,D为BC的中点,DE⊥AB,垂足为E,过点B作BF//AC交DE的延长线于点F,连接CF.(1)求证:AD⊥CF;(2)连接AF,试判断△ACF的形状,并说明理由。
ABECD(第5题)AB C D E (第4题) AFEAO D B C(第1题)ABFE DC(第6题)八年级数学上《全等三角形》全等三角形一、选择题1.如图,已知△ABC ≌△DCB ,且AB=DC ,则∠DBC 等于( ) A .∠A B .∠DCB C .∠ABC D .∠ACB2.已知△ABC ≌△DEF ,AB=2,AC=4,△DEF 的周长为偶数,则EF 的长为( )A .3B . 4C .5D .6二、填空题3.已知△ABC ≌△DEF ,∠A=50°,∠B=65°,DE=18㎝,则∠F=___°,AB=____㎝. 4.如图,△ABC 绕点A 旋转180°得到△AED ,则DE 与BC 的位置关系是___________,数量关系是___________. 三、解答题5.把△ABC 绕点A 逆时针旋转,边AB 旋转到AD ,得到△ADE ,用符号“≌”表示图中与△ABC 全等的三角形,并写出它们的对应边和对应角.6.如图,把△ABC 沿BC 方向平移,得到△DEF . 求证:AC ∥DF 。
7.如图,△ACF ≌△ADE ,AD =9,AE =4,求DF 的长.(第7题)AD B C (第2题) A FE CD B(第3题) A B C (第4题)一、选择题1. 如果△ABC 的三边长分别为3,5,7,△DEF 的三边长分别为3,3x -2,2x -1,若这两个三角形全等,则x 等于( )A .73B .3C .4D .5 二、填空题2.如图,已知AC=DB ,要使△ABC ≌△DCB ,还需知道的一个条件是________.3.已知AC=FD ,BC=ED ,点B ,D ,C ,E 在一条直线上,要利用“SSS”,还需添加条件___________,得△ACB ≌△_______.4.如图△ABC 中,AB=AC ,现想利用证三角形全等证明∠B=∠C ,若证三角形全等所用的公理是SSS 公理,则图中所添加的辅助线应是_____________________. 二、解答题5. 如图,A ,E ,C ,F 在同一条直线上,AB=FD ,BC =DE ,AE=FC .求证:△ABC ≌△FDE .6.如图,AB=AC ,BD=CD ,那么∠B 与∠C 是否相等?为什么?7.如图,AB=AC ,AD = AE ,CD=BE .求证:∠DAB=∠EAC .DC E FB A (第5题) (第6题) ABC D DCE BA (第7题)A C DB E F(第2题)A B E D C(第1题) ABCED(第6题)一、填空题 1.如图,AB =AC ,如果根据“SAS”使△ABE ≌△ACD ,那么需添加条件________________.2.如图,AB ∥CD ,BC ∥AD ,AB=CD ,BE=DF ,图中全等三角形有_____________对. 二、解答题4. 已知:如图,C 是AB 的中点,AD ∥CE ,AD=CE .求证:△ADC ≌△CEB .5. 如图, A ,C ,D ,B 在同一条直线上,AE=BF ,AD=BC ,AE ∥BF . 求证:FD ∥EC .6.已知:如图,AC ⊥BD ,BC=CE ,AC=DC . 求证:∠B+∠D=90°;(第4题) AB CD E DCF BAE(第5题)A B C DOA ECBDE D CB AAB FEDC(第4题)一、选择题1.下列说法正确的是( )A .有三个角对应相等的两个三角形全等B .有一个角和两条边对应相等的两个三角形全等C .有两个角和它们夹边对应相等的两个三角形全等D .面积相等的两个三角形全等 二、填空题 2.如图,∠B =∠DEF ,BC =EF, 要证△ABC ≌△DEF , (1)若以“SAS”为依据,还缺条件 ; (2)若以“ASA”为依据,还缺条件 . 3.如图,在△ABC 中,BD =EC ,∠ADB =∠AEC , ∠B =∠C ,则∠CAE = .三、解答题4.已知:如图,AB ∥CD ,OA=OC .求证:OB=OD5.已知:如图,AC ⊥CE ,AC=CE ,∠ABC=∠CDE=90°,求证:BD=AB+ED6.已知:如图,AB=AD ,BO=DO ,求证:AE=ACOE ADBC (第6题)(第3题)(第5题)(第2题)3421EDCBAA DB Co AB E DC F (第3题) (第5题)(第6题)(第4题)一、选择题1.已知△ABC 的六个元素,则下面甲、乙、丙三个三角形中和△ABC 全等的图形是( )A .甲和乙B .乙和丙C .只有乙D .只有丙 二、填空题2.如图,已知∠A=∠D ,∠ABC=∠DCB ,AB=6,则DC= .3.如图,已知∠A=∠C ,BE ∥DF ,若要用“AAS ”证△ABE ≌△CDF ,则还需添加的一个条件是 .(只要填一个即可)三、解答题 4.已知:如图,AB=CD ,AC=BD ,写出图中所有全等三角形,并注明理由.5.如图,如果AC =EF ,那么根据所给的数据信息,图中的两个三角形全等吗?请说明理由.6.如图,已知∠1=∠2,∠3=∠4,EC =AD , 求证:AB =BEDC B A (第2题)A B D F CE (第4题)一、选择题1.使两个直角三角形全等的条件是( )A .一个锐角对应相等B .两个锐角对应相等C .一条边对应相等D 。
教学设计2024秋季八年级数学上册第十二章全等三角形《复习题》教学目标(核心素养)1.知识与技能:学生能够熟练运用全等三角形的判定条件(SSS, SAS, ASA, AAS,HL)解决复杂图形的全等问题。
2.过程与方法:通过问题解决的过程,培养学生的逻辑推理能力、空间想象能力和数学建模能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养合作学习的精神,增强解决实际问题的信心。
教学重点•全等三角形判定条件的综合应用。
•利用全等三角形解决实际问题。
教学难点•在复杂图形中识别并构造全等三角形。
•灵活运用多种判定条件解决综合性问题。
教学资源•多媒体课件(包含全等三角形判定条件的动画演示、例题解析)•实物教具(如可拼接的三角形模型)•学生练习册•小组讨论题卡教学方法•讲授法:回顾全等三角形的判定条件。
•案例分析法:通过典型例题分析,强化知识应用。
•合作学习:小组讨论复杂图形的全等问题,促进思维碰撞。
•自主探究:学生独立完成练习,检验学习成果。
教学过程导入新课(5分钟)•情境引入:展示一个实际生活中的问题(如:如何利用尺子测量不能直接到达的两点间的距离),引导学生思考如何运用数学知识解决。
•回顾旧知:快速回顾全等三角形的五种判定条件,并请学生举例说明。
新课教学(30分钟)1.例题讲解(15分钟)•例题1:在复杂图形中识别并证明两个三角形全等。
•细化步骤:1.分析图形,找出可能的全等三角形。
2.选择合适的判定条件(如SSS),标出所需边长或角度。
3.计算或测量确认条件满足,写出证明过程。
4.多媒体展示解题过程,强调逻辑推理的严谨性。
•例题2:利用全等三角形解决实际问题(如测量距离)。
•细化步骤:1.分析问题,构建数学模型。
2.确定全等三角形的位置与关系。
3.应用全等条件进行推理,得出解决方案。
4.强调实际操作的注意事项。
2.小组讨论(10分钟)•分发小组讨论题卡,每组一题,要求识别并证明图形中的全等三角形,或利用全等三角形解决实际问题。
八年级数学《全等三角形》试卷(含答案)考试时间100分钟满分100分一、选择题(每题3分共30分)1、如图1;已知∠A=∠D;∠1=∠2;那么要得到△ABC≌△DEF;还应给出的条件是()A、∠E=∠BB、ED=BCC、AB=EFD、AF=CD2、如图2在△ABC中;D、E分别是边AC、BC上的点;若△ADB≌△EDB≌△EDC;则∠C的度数为()A、15°B、20°C、25°D、30°3、如图3所示;在△ABC中;∠B=∠C;AD为△ABC的中线;那么下列结论错误的是()A、△ABD≌△ACDB、AB=AC、AD是△ACD的高D、△ABC是等边三角形图1 图2 图34、如图4;已知△ABC的六个元素;则下面甲、乙、丙三个三角形中和△ABC 全等的图形是()A、甲和乙B、乙和丙C、只有乙D、只有丙图45、如图5;AO=BO;CO=DO;AD与BC交于E;则图中全等三角形的对数为()A、2对B、3对C、4对D、5对6、如图6;已知∠1=∠2;欲证△ABD≌△ACD;还必须从下列选项中补选一个;则错误的选项是()A、∠ADB=∠ADCB、∠B=∠CC、BD=CDD、AB=AC图5 图67、下列说法正确的有()①角平分线上任意一点到角两边的距离相等②到一个角两边的距离相等的点在这个角的平分线上③三角形三个角平分线的交点到三个顶点的距离相等④三角形三条角平分线的交点到三边的距离相等A、1个B、2个C、3个D、4个8、如果△ABC≌△DEF;△DEF的周长为13;DE=3;EF=4;则AC的长()A、13B、3C、4D、69、已知如图7;AC⊥BC;DE⊥AB;AD平分∠BAC;下面结论错误的是()A、BD+ED=BCB、DE平分∠ADBC、AD平分∠EDCD、ED+AC>AD10、如图8;某同学把一块三角形的玻璃打碎成了三块;现在要到玻璃店去配一块完全一样的玻璃;那么最省事的办法是()A、带①去B、带②去C、带③去D、带①②③去图7 图8二、填空(每题3分;共15分)11、如图9已知△OA`B`是△AOB 绕点O 旋转60°得到的;那么△OA`B`与△OAB 的 关系是 ;如果∠AOB=40°;∠B=50°;则∠A`OB`= ∠AOB`= 。
【苏科版】⼋年级上册数学《全等三⾓形》复习练习(含答案)⼋年级上册数学《全等三⾓形》复习练习(满分:120分时间:90分钟)⼀.选择题(每题3分,共24分)1.如图,若OA=OB,OC=OD,∠O=50°,∠D=35°,则∠AEC的度数为( )A.60°B.50°C.45°D.30°2.如图,⼩敏做了⼀个⾓平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在⾓的两边上,过点A,C画⼀条射线AE,AE就是∠PRQ的平分线.此⾓平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠P AE.则说明这两个三⾓形全等的依据是( )A.SASB.ASAC.AASD.SSS3.已知△A1B1C1与△A2B2C2的周长相等,现有两个判断:①若A1B1=A2B2,A1C1=A2C2,则△A1B1C1≌△A2B2C2;②若∠A1=∠A2,∠B1=∠B2,则△A1B1C1≌△A2B2C2.对于上述两个判断,下列说法正确的是( )A.①正确,②错误B.①错误,②正确C.①②都错误D.①②都正确4.如图,已知点A,D,C,F在同⼀条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加⼀个条件是( )A.∠BCA=∠FB.∠B=∠EC.B C∥EFD.∠A=∠EDF5.如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件的个数是( )A.4B.3C.2D.16.如图,△ABD与△ACE均为正三⾓形.若AB( )A.BE=CDB.BE>CDC.BED.⼤⼩关系不确定7.如图,在△ABC中,AB=AC,∠ABC,∠ACB的平分线BD,CE相交于点O,且BD交AC于点D,CE交AB于点E.某同学分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE.上述结论⼀定正确的是( )A.①②③B.②③④C.①③⑤D.①③④8.如图,已知△ABC和△DCE均是等边三⾓形,点B,C,E在同⼀条直线上,AE与BD相于点O,AE与CD相交于点G,AC与BD相交于点F,连接OC,FG,有下列结论:①AE=BD;②AG= BF;③F G∥BE;④∠BOC=∠EOC.其中正确结论的个数是( )A.1B.2C.3D.4⼆.填空题(每题2分,共20分)9.如图,为了使⼀扇旧⽊门不变形,⽊⼯师傅在⽊门的背⾯加钉了⼀根⽊条,这样做的道理是.10.如图,△ABC≌△DCB,点A,B的对应顶点分别为点D,C,如果AB=7 cm,BC=12cm,AC=9 cm,DO=2 cm,那么OC的长是cm.11.如图,在△ABC与△ADC中,已知AD=AB.在不添加任何辅助线的前提下,要使△ABC≌△ADC,只需再添加的⼀个条件可以是.12.两组邻边分别相等的四边形叫作“筝形”.如图,四边形ABCD是⼀个筝形,其中AD=CD,AB=CB,有如下结论:①AC⊥BD;②AO=CO=12AC;③△ABD≌△CBD.其中正确的结论是.(填序号)13.如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,B E⊥AD,垂⾜为点E.若四边形ABCD的⾯积为16,则BE= .14.如图,在△ABC中,A D⊥BC,C E⊥AB,垂⾜分别为点D,E,AD,CE交于点H.若EH=EB=3,AE=4,则CH= .15.如图,在Rt△ABC中,∠ACB=90°,BC=2 cm,C D⊥AB,垂⾜为点D.在AC上取⼀点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F.若EF=5 cm,则AE= cm.16.如图,A,B,C,D是四个村庄,B,D,C在⼀条东西⾛向公路的沿线上,BD=DC=lkm,村庄AC,AD间也有公路相连,且公路AD是南北⾛向,AC=3 km,只有AB之间由于间隔了⼀个⼩湖,所以⽆直接相连的公路.现决定在湖⾯上造⼀座斜拉桥,测得AE=1.2 km,BF=0.7 km,则建造的斜拉桥长⾄少为km.17.如图,坐标平⾯上,△ABC≌△DEF,其中A,B,C的对应顶点分别为D,E,F,且AB=BC.若A,B,C的坐标分别为(-3,1),(-6,-3),(-1,-3),D,E两点在y轴上,则点F到y轴的距离为.18.如图,线段AB=8cm,射线AN⊥AB,垂⾜为点A,点C是射线上⼀动点,分别以AC,BC为直⾓边作等腰直⾓三⾓形,得△ACD与△BCE,连接DE交射线AN于点M,则CM的长为.三.解答题(共76分)19.(本题12分) 如图,把⼤⼩为4×4的正⽅形⽅格分割成两个全等图形,如图1.请在下图中,沿着⽅格线画出四种不同的分法,把4×4的正⽅形⽅格分割成两个全等图形.20.(本题8分) 如图,△ABC和△EFD分别在线段BF的两侧,点C,D在线段BF上,AB=EF,BC=DF,AB∥EF.求证:AC=ED.21.(本题10分) 如图,已知CD⊥AB,BE⊥AC,垂⾜分别为点D,E,且BD=CE,BE交CD于点O.求证:AO平分∠BAC.22.(本题10分) 如图,在四边形ABCD 中,AB=AD,BC=DC,E为AC上的⼀动点(不与点A重合),在点E移动的过程中BE和DE是否相等? 若相等,请写出证明过程;若不相等,请说明理由.23.(本题10分) 如图,在四边形ABCD中,AD=DC,DF是∠ADC的平分线,AF∥BC,连接AC,CF.求证:CA是∠BCF的平分线.24.(本题12分) 两个⼤⼩不同的等腰直⾓三⾓形三⾓板按图1所⽰的位置放置.图2是由它抽象出的⼏何图形,AB=AC,AE=AD,∠BAC=∠EAD=90°,B,C,E在同⼀条直线上,连接DC.(1) 请找出图2中与△ABE全等的三⾓形,并给予证明(说明:结论中不得含有未标识的字母);(2) 求证:DC⊥BE.25.(本题14分)【问题背景】(1) 如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点,且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.⼩王同学探究此问题的⽅法是:延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是.【探索延伸】(2) 如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是边BC,CD上的点,且∠EAF=12∠BAD,上述结论是否仍然成⽴? 请说明理由.参考答案⼀.选择题1.A2.D3.D4.B5.B6.A7.D8.D (提⽰:可先证得△ACE≌△BCD和AGC△≌△BFC)⼆.填空题9.三⾓形具有稳定性10.7 11.BC=DC(或∠BAC=∠DAC) 12.①②③13.4 14.1 15.3 16.1.1 17.4 18.4 (提⽰:过点E作E H⊥AN,垂⾜为点H,可证得△ABC≌△HCE,∴CH=AB=8,EH=AC=CD.⼜∵E H⊥AN,C D⊥AN,∴E H∥CD,∴CM=MH,即CM=12CH=4)三.解答题19.四种不同的分法如图所⽰20.∵AB∥EF,∴∠B=∠F.在△ABC和△EFD中,BC=DF,∠B=∠F,AB=EF,∴△AB C≌△EFD,∴AC=ED21.∵O D⊥AB,OE⊥AC,∴∠BDO=∠CEO=90°.⼜∵∠BOD=∠COE,BD=CE,∴△BO D≌△COE,∴OD=OE.⼜由已知条件得△AOD和△AOE都是直⾓三⾓形,且OD=OE,OA=OA,∴Rt△AOD≌Rt△AOE,∴∠DAO=∠EAO,即AO平分∠BAC 22.相等.理由如下:在△ABC和△ADC中,AB=AD,AC=AC (公共边),BC=DC,∴△AB C≌△ADC,∴∠DAE=∠BAE.在△ADE和△ABE中,AB=AD,∠DAE=∠BAE,AE=AE,∴△ADE≌△ABE (SAS),∴BE=DE 23.∵DF是∠ADC的平分线,∴∠CDF=∠ADF.⼜∵AD=DC,DF=DF,∴△ADF≌△CDF,∴AF=CF,∴∠ACF=∠CAF.∵A F∥CB,∴∠CAF=∠ACB,∴∠ACF=∠ACB,即CA平分∠BCF24.(1) 图2中△AC D≌△ABE,∵△ABC与△AED均为等腰直⾓三⾓形,∴AB=AC,AE=AD,∠BAC=∠EAD=90°,∴∠BAC+∠CAE=∠EAD+∠CAE,即∠BAE=∠CAD,∴△ABE≌△ACD(2) 由(1)△ABE≌△ACD,得∠ACD=∠ABE=45°.⼜∵∠ACB=45°,∴∠BCD=∠ACB+∠ACD=90°,∴D C⊥BE25.(1) EF=BE+DF (2) 结论EF=BE+DF仍然成⽴理由:延长FD到点G,使DG=BE,连接AG,在△ABE和△ADG中,DG=BE,∠B=∠ADG,AB=AD,∴△ABE≌△ADG,∴AE=AG,∠BAE=∠DAG.∵∠EAF=12∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF.在△AEF和△GAF中,AE=AG,∠EAF=∠GAF,AF=AF,∴△AEF≌△AGF.∴EF=FG.∵FG=DG+DF,BE=DG,∴EF=BE+DF。
第一学期第一次阶段检测八年级数学阶段测试(试卷满分120分,考试时间100分钟)一.选择题(本大题共有8小题,每小题3分,共24分.)1.下面图案中是轴对称图形的有................... ................... ................... ( )A.1个B.2个C.3个D.4个2.点P 与点Q 关于直线m 成轴对称,则PQ 与m 的位置关系................... ......( )A.平行B.垂直C.平行或垂直D.不确定3.下列图形:①两个点;②线段;③角;④长方形;⑤两条相交直线;⑥三角形,其中一定是轴对称图形的有............................................................ ................... ..............( )A.5个B.3个C.4个D.6个4.在下列给出的条件中,不能判定两个三角形全等的是 ........ ...............( )A.两边一角分别相等B.两角一边分别相等C.一直角边和一锐角分别相等D.三边分别相等5.如图,已知点A ,D ,C ,F 在同一条直线上,AB =DE ,BC =EF ,要使△ABC ≌△DEF ,还需要添加一个条件是.................. .................. ................... .................... ................... ....................( )第6题 第7题A.∠BCA =∠FB. ∠B =∠EC.BC ∥EFD. ∠A =∠EDF6.如图,四边形ABCD 中,AC 垂直平分BD ,垂足为E ,下列结论不一定...成立的是( ) A.AB =AD B.AC 平分∠BCD ;C.AB =BD D.△BEC ≌△DEC7.如图,在△ABC 中,AD ⊥BC 于点D ,BD =CD ,若BC =5,AD =4,则图中阴影部分的面积为................... ................... ................... ....... .......... ..... .......... ..... ( )A.5B.10C.15D.208.将一正方形纸片按图1中(1).(2)的方式依次对折后,再沿(3)中的虚线裁剪,最后将(4)中的A B C DE F 第5题图 AB C D E纸片打开铺平,所得图案应该是下面图案中的...................()二.填空题(本大题共有10小题,每小题2分,共20分.)9.已知△ABC与△A′B′C′关于直线L对称,∠A=40°¸∠B′=50°,则∠C=____.10.△ABC≌△DEF,且△ABC的周长为12,若AB=5,EF=4,AC= .11.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=24°,∠2=36°,则∠3=.第11题第12题12.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1.2.3.4的四块),你认为将其中的第块带去,就能配一块与原来一样大小的三角形.13.如图,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=20cm,则△DEB的周长为cm.14.如图,FD⊥AO于D,FE⊥BO于E,下列条件:①OF是∠AOB的平分线;②DF=EF;③DO=EO;④∠OFD=∠OFE.其中能够证明△DOF≌△EOF的条件的个数有个.第13题第14题第15题15.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=°.16.如图,D为Rt△ABC斜边BC上的一点,且BD-AB,过点D作BC的垂线,交AC于点E,若AE=12cm,则DE的长为_______cm.17.如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为点D,E,AD与BE相交于点F,若BF=AC,则∠ABC=_______.18.如图,在Rt△ABC中,∠C=90°,AC=10,BC=5,线段PQ=AB,P,Q两点分别在AC和过点A且垂直于AC的射线AO上运动,当AP=_______时,△ABC与△QP A全等.三.解答题(本大题共9小题,共76分.)19.作图题:(8分)(1)画出ΔABC关于直线AC对称的ΔAB’C,AB(2)如图,两条公路OA 和OB 相交于O 点,在∠AOB 的内部有工厂C 和D ,现要修建一个货站P ,使货站P 到两条公路OA .OB 的距离相等,且到两工厂C .D 的距离相等,用直尺和圆规作出货站P 的位置.(要求:不写作法,保留作图痕迹,写出结论)20.(7分)如图,点B .F .C .E 在一条直线上,FB =CE ,AB ∥ED ,AC ∥F D.求证:AC =DF .21.(本题满分8分)如图,AD 是△ABC 一边上的高,AD =BD ,BE =AC ,∠C =75°,求∠ABE 的度数.22. (8分)已知:AB =AD ,BC =DE ,AC =AE ,(1)试说明:∠1=∠2.(2)若∠1=42°,求∠EDC 的度数.23.(7分)数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线,方法如下:根据以上情境,解决下列问题:①李老师用尺规作角平分线时,用到的三角形全等的判定方法是_________.②小聪的作法正确吗?请说明理由.A CD 1 2E B D C B E AF24.(本题8分)如图,把一个Rt △ACB (∠ACB =90°)绕着顶点B 按顺时针方向旋转60°,使得点C 旋转到边AB 上的一点D ,点A 旋转到点E 的位置.F ,G 分别是BD ,BE 上的点,BF =BG ,延长CF 与DG 交于点H .(1)求证:CF =DG ;(2)求∠FHG 的度数.25.(8分)如图,在△ABC 中,BE .CF 分别是AC .AB 两边上的高,在BE 上截取BD =AC ,在CF 的延长线上截取CG =AB ,连结AD .AG .(1)求证:AD =AG ;(2)AD 与AG 的位置关系如何?请说明理由.26(10分).如图1,在△ABC 中,∠BAC 为直角,点D 为射线BC 上一点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF .如图(1),则=∠BAD ∠_____ (2)若AB =AC ,①当点D 在线段BC 上时(与点B 不重合),如图2,问CF .BD 有怎样的关系?并说明理由.②当点D 在线段BC 的延长线上时,如图3,①中的结论是否仍然成立,直接写出结论.(10分)27.(12分).如图,已知正方形ABCD 中,边长为10cm ,点E 在AB 边上,BE =6cm .(1)如果点P 在线段BC 上以4cm /秒的速度由B 点向C 点运动,同时,点Q 在线段CD 上以acm /秒的速度由C 点向D 点运动,设运动的时间为t 秒,①CP 的长为 cm (用含t 的代数式表示);②若以E .B .P 为顶点的三角形和以P .C .Q 为顶点的三角形全等,求a 的值.(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿正G H FE D CB A方形ABCD四边运动.则点P与点Q会不会相遇?若不相遇,请说明理由.若相遇,求出经过多长时间点P与点Q第一次在正方形ABCD的何处相遇?参考答案25. 解(1)证明:∵BE⊥AC∴∠AEB=90°∴∠ABE+∠BAC=90°∵CF⊥AB∴∠AFC=∠AFG=90°∴∠ACF+∠BAC=90°,∠G+∠BAG=90°∴∠ABE=∠ACF∵BD=AC,CG=AB∴△ABD≌△GCA(SAS)∴AG=AD(2)∵△ABD≌△GCA∴∠BAD=∠G∴∠GAD=∠BAD+∠BAG=∠G+∠BAG=90°∴AG⊥AD26.证明:(1)①结合∠BAC=90°,AB=AC,得到∠BCF=∠ACB+∠ACF=90度.即CF⊥B D.当点D在BC的延长线上时①的结论仍成立.由正方形ADEF的性质可推出△DAB≌△F AC,所以CF=B D.②当点D在BC的延长线上时①的结论仍成立.由正方形ADEF得AD=AF,∠DAF=90度.∵∠BAC=90°,∴∠DAF=∠BAC,∴∠DAB=∠F AC,又∵AB=AC,∴△DAB≌△F AC,∴CF=BD,∠ACF=∠AB D.∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ACF=45°,∴∠BCF=∠ACB+∠ACF=90度.即CF⊥B D.(2)当∠ACB=45°时,CF⊥BD(如图).理由:过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°,∵∠ACB=45°,∠AGC=90°-∠ACB,∴∠AGC=90°-45°=45°,∴∠ACB=∠AGC=45°,∴AC=AG,∵∠DAG=∠F AC(同角的余角相等),AD=AF,∴△GAD≌△CAF,∴∠ACF=∠AGC=45°,∠BCF=∠ACB+∠ACF=45°+45°=90°,即CF⊥B C.27.。
八年级上册数学期末几何专题复习——三角形综合(全等与勾股定理)(四)1.如图,在等腰△ABC中,CH是底边上的高线,点P是线段CH上不与端点重合的任意一点,连接AP交BC于点E,连接BP交AC于点F.(1)证明:∠CAE=∠CBF;(2)证明:AE=BF;(3)以线段AE,BF和AB为边构成一个新的三角形ABG(点E与点F重合于点G),记△ABC和△ABG的面积分别为S△ABC 和S△ABG,如果存在点P,能使得S△ABC=S△ABG,求∠ACB的取值范围.2.如图,在等边三角形ABC中,点E是边AC上一定点,点D是直线BC上一动点,以DE 为一边作等边三角形DEF,连接CF.【问题解决】如图1,若点D在边BC上,求证:CE+CF=CD;【类比探究】如图2,若点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系?并说明理由.3.已知△ABC为等边三角形,点D为直线BC上一动点(点D不与点B,点C重合).以AD 为边作等边三角形ADE,连接CE.(1)如图1,当点D在边BC上时.①求证:△ABD≌△ACE;②直接判断结论BC=DC+CE是否成立(不需证明);(2)如图2,当点D在边BC的延长线上时,其他条件不变,请写出BC,DC,CE之间存在的数量关系,并写出证明过程.4.如图,在Rt△ABC和Rt△ABD中,∠C=∠BAD=90°,BD、AC交于点F,且AF=AD,作DE⊥AC于点E.(1)求证:∠CBF=∠ABF;(2)若AB﹣BC=4,AC=8,求BC的长;(3)求证:AE=CF.5.阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,AB=AC,点D在BC边上,∠DAB=∠ABD,BE⊥AD,垂足为E.求证:BC=2AE.小明探究发现,可以通过构造全等三角形来解决,在BC上截取BF=AE,连接AF,可证△ABF≌△BAE(如图2),从而使问题得到解决.(1)根据阅读材料回答:△ABF与△BAE全等的条件是(填“SSS”“SAS”“ASA”“AAS”或“HL”中的一个);参考小明思考问题的方法,解答下列问题:(2)如图3,△ABC是等边三角形,点P在BQ上,且∠APB=120°,CP=CQ,探究线段AP,BQ的数量关系,并证明你的结论.6.(1)如图1,已知以△ABC的边AB、AC分别向外作等腰直角△ABD与等腰直角△ACE,∠BAD=∠CAE=90°,连接BE和CD相交于点O,AB交CD于点F,AC交BE于点G,求证:BE=DC,且BE⊥DC.请补充完整证明“BE=DC,且BE⊥DC”的推理过程;证明:∵△ABD和△ACE都是等腰直角三角形(已知)∴AB=AD,AE=AC(等腰直角三角形定义)又∵∠BAD=∠CAE=90°(已知)∴∠BAD+∠BAC=(等式性质)即:∴△ABE≌△ADC()∴BE=DC(全等三角形的对应边相等)∠ABE=∠ADC(全等三角形的对应角相等)又∵∠BFO=∠DFA()∠ADF+∠DFA=90°(直角三角形的两个锐角互余)∴∠ABE+∠BFO=90°(等量代换)∴即BE⊥DC(2)探究:若以△ABC的边AB、AC分别向外作等边△ABD与等边△ACE,连接BE和CD 相交于点O,AB交CD于点F,AC交BE于G,如图2,则BE与DC还相等吗?若相等,请证明,若不相等,说明理由;并请求出∠BOD的度数?7.如图,在△ABC中,AB=AC,射线BD上有一点P,且∠BPC=∠BAC.(1)求证:∠APC=∠APD;(2)求证:AB+AC>PB+PC.8.已知:△ABC的高AD所在直线与高BE所在直线相交于点F,过点F作FG∥BC,交直线AB于点G.(1)如图1,若△ABC为锐角三角形,且∠ABC=45°.求证:①△BDF≌△ADC;②FG+DC=AD;(2)如图2,若∠ABC=135°,直接写出FG、DC、AD之间满足的数量关系.9.阅读探索题:(1)如图1,OP是∠MON的平分线,以O为圆心任意长为半径作弧,分别交射线ON、OM 于C、B两点,在射线OP上任取一点A(点O除外),连接AB、AC.求证:△AOB≌△AOC.(2)请你参考以上方法,解答下列问题:如图2,在 Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,试判断BC和AC、AD 之间的数量关系并证明.10.阅读理解:如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化到△ADF中即可判断.(1)AB、AD、DC之间的等量关系为;(2)完成(1)的证明.问题探究:如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.参考答案1.(1)证明:∵△ABC是等腰三角形,CH是底边上的高线,∴AC=BC,∠ACP=∠BCP.又∵CP=CP,∴△ACP≌△BCP.∴∠CAP=∠CBP,即∠CAE=∠CBF.(2)证明:∵在△ACE与△BCF中,,∴△ACE≌△BCF(ASA).∴AE=BF.(3)解:∵由(2)知△ABG是以AB为底边的等腰三角形,∴S△ABC =S△ABG.∴AE=AC.①当∠ACB为直角或钝角时,在△ACE中,不论点P在CH何处,均有AE>AC,所以结论不成立;②当∠ACB为锐角时,∠CAH=90°﹣∠ACB,而∠CAE<∠CAH,要使AE=AC,只需使∠ACB=∠CEA,此时,∠CAE=180°﹣2∠ACB,只须180°﹣2∠ACB<90°﹣∠ACB,解得:60°<∠ACB<90°.2.【问题解决】证明:在CD上截取CH=CE,如图1所示:∵△ABC是等边三角形,∴∠ECH=60°,∴△CEH是等边三角形,∴EH=EC=CH,∠CEH=60°,∵△DEF是等边三角形,∴DE=FE,∠DEF=60°,∴∠DEH+∠HEF=∠FEC+∠HEF=60°,∴∠DEH=∠FEC,在△DEH和△FEC中,,∴△DEH≌△FEC(SAS),∴DH=CF,∴CD=CH+DH=CE+CF,∴CE+CF=CD;【类比探究】解:线段CE,CF与CD之间的等量关系是FC=CD+CE;理由如下:∵△ABC是等边三角形,∴∠A=∠B=60°,过D作DG∥AB,交AC的延长线于点G,如图2所示:∵GD∥AB,∴∠GDC=∠B=60°,∠DGC=∠A=60°,∴∠GDC=∠DGC=60°,∴△GCD为等边三角形,∴DG=CD=CG,∠GDC=60°,∵△EDF为等边三角形,∴ED=DF,∠EDF=∠GDC=60°,∴∠EDG=∠FDC,在△EGD和△FCD中,,∴△EGD≌△FCD(SAS),∴EG=FC,∴FC=EG=CG+CE=CD+CE.3.解:(1)①∵△ABC和△ADE是等边三角形,∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE.∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠EAC.在△ABD和△ACE中,∴△ABD≌△ACE(SAS).②∵△ABD≌△ACE,∴BD=CE.∵BC=BD+CD,∴BC=CE+CD.(2)BC+CD=CE.∵△ABC和△ADE是等边三角形,∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE.∴∠BAC+∠DAC=∠DAE+∠DAC,∴∠BAD=∠EAC.在△ABD和△ACE中,∴△ABD≌△ACE(SAS).∴BD=CE.∵BD=BC+CD,∴CE=BC+CD;4.(1)证明:∵AF=AD,∴∠ADF=∠AFD,∵∠AFD=∠BFC,∴∠ADF=∠BFC,在Rt△CBF和Rt△ABD中,∴Rt△CBF~Rt△ABD,∴∠CBF=∠ABF.(2)解:设BC=x,∵AB﹣BC=4,∴AB=x+4,在Rt△ABC中,∵AC=8,∴(x+4)2﹣x2=64,整理,可得8x+16=64,解得x=6,∴BC的长是6.(3)证明:如图1,作FG⊥AB于点G,,∵∠CBF=∠ABF,∴FG=CF,∵∠FAG+∠DAE=90°,∠ADE+∠DAE=90°,∴∠FAG=∠ADE,∵∠AFG=90°﹣∠FAG,∠DAE=90°﹣∠ADE,∴∠AFG=∠DAE,在Rt△AFG和Rt△DAE中,∴Rt△AFG≌Rt△DAE,∴AE=FG,∵FG=CF,∴AE=CF.5.解:(1)在BC上截取BF=AE,连接AF,如图2所示:∵∠DAB=∠ABD,∴∠BAE=∠ABF,在△ABF和△BAE中,,∴△ABF≌△BAE(SAS),故答案为:SAS;(2)BQ=2AP,理由如下:在BP上截取点M,使BM=AP,连接CM,在QB上取点N,使QN=PM,连接CN,如图3所示:∵∠APB=120°,∴∠APQ=180°﹣120°=60°,∵△ABC是等边三角形,∴∠ABC=60°,AB=BC,∴∠APQ=∠ABC,即∠ABP+∠BAP=∠ABP+∠CBM,∴∠BAP=∠CBM,在△ABP和△BCM中,,∴△ABP≌△BCM(SAS),∴BP=CM,∠APB=∠BMC=120°,∴∠CMN=180°﹣120°=60°,∵CP=CQ,∴∠CPM=∠Q,在△PCM和△QCN中,,∴△PCM≌△QCN(SAS),∴CM=CN,∴△CMN是等边三角形∴CM=MN,∵BQ=BP+PM+MN+QN,∴BQ=2BM=2AP.6.(1)解:∠CAE+∠BAC,∠DAC=∠BAE,SAS,对顶角相等,∠BOF=∠DAF=90°;(2)证明:如图2,∵以AB、AC为边分别向外做等边△ABD和等边△ACE,∴AD=AB,AE=AC,∠ACE=∠AEC=60°,∠DAB=∠EAC=60°,∴∠DAB+∠BAC=∠EAC+∠BAC,∴∠DAC=∠BAE,在△DAC和△BAE中,,∴△DAC≌△BAE(SAS),∴CD=BE,∠BEA=∠ACD,∴∠BOC=∠ECO+∠OEC=∠DCA+∠ACE+∠OEC=∠BEA+∠ACE+∠OEC=∠ACE+∠AEC=60°+60°=120°.∴∠BOC=60°.7.解:(1)证明:∵AB=AC,∴∠ABC=∠ACB,∵∠BPC=∠BAC,∴A、P、B、C四点共圆,∴∠APC=∠ABC,∠APB+∠ACB=180°∴∠APC=∠ACB,∵∠APB+∠APD=180°∴∠ACB=∠APD(2)证明:如图,在射线PD上截取PE=PC,连接AE,在△PAE和△PAC中∴△PAE≌△PAC(SAS)∴AE=AC∵在△ABE中,AB+AE>BE∴AB+AC>PB+PC.8.解:(1)①证明:∵∠ADB=90°,∠ABC=45°,∴∠BAD=∠ABC=45°,∴AD=BD;∵∠BEC=90°,∴∠CBE+∠C=90°又∵∠DAC+∠C=90°,∴∠CBE=∠DAC;∵∠FDB=∠CDA=90°,∴△FDB≌△CDA(ASA)②∵△FDB≌△CDA,∴DF=DC;∵GF∥BC,∴∠AGF=∠ABC=45°,∴∠AGF=∠BAD,∴FA=FG;∴FG+DC=FA+DF=AD.(2)FG、DC、AD之间的数量关系为:FG=DC+AD.理由:∵∠ABC=135°,∴∠ABD=45°,△ABD、△AGF皆为等腰直角三角形,∴BD=AD,FG=AF=AD+DF;∵∠FAE+∠DFB=∠FAE+∠DCA=90°,又∵∠FDB=∠CDA=90°,BD=AD,∴△BDF≌△ADC(AAS);∴DF=DC,∴FG、DC、AD之间的数量关系为:FG=DC+AD.9.(1)证明:在△AOB和△AOC中,,∴△AOB≌△AOC(SAS).(2)在CB上截取CE=CA,∵CD平分∠ACB,∴∠ACD=∠BCD,在△ACD和△ECD中,,∴△ACD≌△ECD(SAS),∴∠CAD=∠CED=60°,∵∠ACB=90°,∴∠B=30°,∴∠EDB=30°,即∠EDB=∠B,∴DE=EB,∵BC=CE+BE,∴BC=AC+DE,∴BC=AC+AD.10.解:(1)如图①,延长AE交DC的延长线于点F,∵AB∥DC,∴∠BAF=∠F,∵E是BC的中点,∴CE=BE,在△AEB和△FEC中,∵,∴△AEB≌△FEC,∴AB=FC,∵AE是∠BAD的平分线,∴∠DAF=∠BAF,∴∠DAF=∠F,∴DF=AD,∴AD=DC+CF=DC+AB,故答案为:AD=AB+DC;(2)AB=AF+CF,如图②,延长AE交DF的延长线于点G,∵E是BC的中点,∴CE=BE,∵AB∥DC,∴∠BAE=∠G,在△AEB和△GEC中,,∴△AEB≌△GEC,∴AB=GC,∵AE是∠BAF的平分线,∴∠BAG=∠FAG,∵AB∥CD,∴∠BAG=∠G,∴∠FAG=∠G,∴FA=FG,∴AB=CG=AF+CF.。
1.2全等三角形一、选择题1. 已知图中的两个三角形全等,则∠α的度数是()A.72° B.60° C.58° D.50°2. 如图,△ABC≌△DEF,则此图中相等的线段有()A.1对B.2对C.3对D.4对3. 如图,△ABC≌△CDA,并且AB=CD,那么下列结论错误的是()A.∠1=∠2 B.AC=CA C.AC=BC D.∠D=∠B4. 如图所示,△ABC≌△EFD,那么()A.AB=EF,AC=DE,BC=DF B.AB=DF,AC=DE,BC=EFC.AB=DE,AC=EF,BC=DF D.AB=EF,AC=DF,BC=DE5. 如图,△ABC≌△BAD,A、C的对应点分别是B、D,若AB=9,BC=12,AC=7,则BD=()A.7 B.9 C.12 D.无法确定三、填空题6. (2014•淮安)如图,△ABD≌△CBD,若∠A=80°,∠ABC=70°,则∠ADC的度数为.7. 如图,△ABC≌△DEF,请根据图中提供的信息,写出x= .8. 如图,若△ABC≌△A1B1C1,且∠A=110°,∠B=40°,则∠C1= .9. 如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为°.10. 如图,已知△ABD≌△ACE,∠1=75°,则∠2= °.三、解答题11. 如图,在图中的两个三角形是全等三角形,其中A和D、B和E是对应点.(1)用符号“≌“表示这两个三角形全等(要求对应顶点写在对应位置上);(2)写出图中相等的线段和相等的角;(3)写出图中互相平行的线段,并说明理由.12. 如图所示,△ABC≌△ADE,AB=AD,AC=AE,BC的延长线交DA于点F,交DE于点G,∠AED=105°,∠CAD=15°,∠B=30°,求∠1的度数.参考答案1.2全等三角形一、选择题1.D2.D3.C4.A5.A三、填空题6.130°7.208. 30°9.30 10.75三、解答题11. 解:(1)△ABC≌△DEF;(2)AB=DE,BC=EF,AC=DF;∠A=∠D,∠B=∠E,∠ACB=∠DFE;(3)BC∥EF,AB∥DE,理由是:∵△ABC≌△DEF,∴∠A=∠D,∠ACB=∠DFE,∴AB∥DE,BC∥EF.12. 解:∵△ABC≌△ADE,∴∠AED=∠ACB=105°,∠D=∠B=30°,∴∠ACF=180°-∠ACB=180°-105°=75°,由三角形的内角和定理得,∠1+∠D=∠CAD+∠ACF,∴∠1+30°=15°+75°,解得∠1=60°.。
苏科版八年级数学上册《全等三角形》培优单元测试卷一、选择题(在每小题所给出的四个选项中恰有一项是符合题目要求的)1.下列条件中,不能判定△ABC≌△A′B′C′的是()A.AB=A′B′,∠A=∠A′,AC=A′C′B.AB=A′B′,∠A=∠A′,∠B=∠B′C.AB=A′B′,∠A=∠A′,∠C=∠C′D.∠A=∠A′,∠B=∠B′,∠C=∠C′2.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A.SAS B.ASA C.AAS D.SSS3.如图,△ABC和△DEF中,AB=DE、∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F4.如图,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则三个结论①AS=AR;②QP∥AR;③△BPR≌△QSP中()A.全部正确 B.仅①和②正确 C.仅①正确 D.仅①和③正确5.如图是一个风筝设计图,其主体部分(四边形ABCD)关于BD所在的直线对称,AC与BD相交于点O,且AB≠AD,则下列判断不正确的是()A.△ABD≌△CBD B.△ABC是等边三角形C.△AOB≌△COB D.△AOD≌△COD6.下列命题中,不正确的是()A.各有一个角为95°,且底边相等的两个等腰三角形全等B.各有一个角为40°,且底边相等的两个等腰三角形全等C.各有一个角为40°,且其所对的直角边相等的两个直角三角形全等D.各有一个角为40°,且有斜边相等的两个直角三角形全等二、填空题(不需写出解答过程,请把答案直接填写在相应位的置上)7.如图,在直角三角形ABC中,∠C=90°,AC=10cm,BC=5cm,一条线段PQ=AB,P、Q两点分别在AC和AC的垂线AX上移动,则当AP= 时,才能使△ABC和△APQ全等.8.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF,则下列结论:①DE=DF;②AD平分∠BAC;③AE=AD;④AB+AC=2AE中正确的是.9.如图,a∥b,点A在直线a上,点C在直线b上,∠BAC=90°,AB=AC,∠1=30°,则∠2的度数为.10.如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面四个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正确结论的序号是(请将所有正确结论的序号都填上).三、解答题(请在答题的指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)11.已知:如图,AB∥CD,E是AB的中点,CE=DE.求证:(1)∠AEC=∠BED;(2)AC=BD.12.如图,△ABC为等边三角形,D为边BA延长线上一点,连接CD,以CD为一边作等边三角形CDE,连接AE.(1)求证:△CBD≌△CAE.(2)判断AE与BC的位置关系,并说明理由.13.如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于P.(1)求证:△ABE≌△CAD;(2)求∠PBQ的度数.14.如图,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB 的中点.如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动.当一个点停止运动时时,另一个点也随之停止运动.设运动时间为t.(1)用含有t的代数式表示CP.(2)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;(3)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?《第1章全等三角形》参考答案与试题解析一、选择题(在每小题所给出的四个选项中恰有一项是符合题目要求的)1.下列条件中,不能判定△ABC≌△A′B′C′的是()A.AB=A′B′,∠A=∠A′,AC=A′C′B.AB=A′B′,∠A=∠A′,∠B=∠B′C.AB=A′B′,∠A=∠A′,∠C=∠C′D.∠A=∠A′,∠B=∠B′,∠C=∠C′【考点】全等三角形的判定.【分析】根据三角形全等的判定方法,SSS、SAS、ASA、AAS,逐一检验.【解答】解:A、符合SAS判定定理,故本选项错误;B、符合ASA判定定理,故本选项错误;C、符合AAS判定定理,故本选项错误;D、没有AAA判定定理,故本选项正确.故选D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.2.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A.SAS B.ASA C.AAS D.SSS【考点】全等三角形的应用.【分析】在△ADC和△ABC中,由于AC为公共边,AB=AD,BC=DC,利用SSS定理可判定△ADC≌△ABC,进而得到∠DAC=∠BAC,即∠QAE=∠PAE.【解答】解:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,即∠QAE=∠PAE.故选:D.【点评】本题考查了全等三角形的应用;这种设计,用SSS判断全等,再运用性质,是全等三角形判定及性质的综合运用,做题时要认真读题,充分理解题意.3.如图,△ABC和△DEF中,AB=DE、∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F【考点】全等三角形的判定.【分析】根据全等三角形的判定定理,即可得出答.【解答】解:∵AB=DE,∠B=∠DEF,∴添加AC∥DF,得出∠ACB=∠F,即可证明△ABC≌△DEF,故A、D都正确;当添加∠A=∠D时,根据ASA,也可证明△ABC≌△DEF,故B正确;但添加AC=DF时,没有SSA定理,不能证明△ABC≌△DEF,故C不正确;故选:C.【点评】本题考查了全等三角形的判定定理,证明三角形全等的方法有:SSS,SAS,ASA,AAS,还有直角三角形的HL定理.4.如图,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则三个结论①AS=AR;②QP∥AR;③△BPR≌△QSP中()A.全部正确 B.仅①和②正确 C.仅①正确 D.仅①和③正确【考点】角平分线的性质;全等三角形的判定与性质.【专题】压轴题.【分析】判定线段相等的方法可以由全等三角形对应边相等得出;判定两条直线平行,可以由“同位角相等,两直线平行”或“内错角相等,两直线平行”或“同旁内角互补,两直线平行”得出;判定全等三角形可以由SSS、SAS、ASA、AAS或HL得出.【解答】解:∵PR=PS,PR⊥AB于R,PS⊥AC于S,AP=AP∴△ARP≌△ASP(HL)∴AS=AR,∠RAP=∠SAP∵AQ=PQ∴∠QPA=∠SAP∴∠RAP=∠QPA∴QP∥AR而在△BPR和△QSP中,只满足∠BRP=∠QSP=90°和PR=PS,找不到第3个条件,所以无法得出△BPR ≌△QSP故本题仅①和②正确.故选B.【点评】本题涉及到全等三角形的判定和角平分线的判定,需要结合已知条件,求出全等三角形或角平分线,从而判定三个选项的正确与否.5.如图是一个风筝设计图,其主体部分(四边形ABCD)关于BD所在的直线对称,AC与BD相交于点O,且AB≠AD,则下列判断不正确的是()A.△ABD≌△CBD B.△ABC是等边三角形C.△AOB≌△COB D.△AOD≌△COD【考点】轴对称的性质;全等三角形的判定;等边三角形的判定.【分析】先根据轴对称的性质得出AB=BC,AD=CD,OA=OC,BD⊥AC,再根据全等三角形的判定定理即可得出结论.【解答】解:∵主体部分(四边形ABCD)关于BD所在的直线对称,AC与BD相交于点O,∴AB=BC,AD=CD,OA=OC,BD⊥AC,在△ABD与△CBD中,,∴△ABD≌△CBD,故A正确;在△AOB与△COB中,,∴△AOB≌△COB,故C正确;在△AOD与△COD中,,∴△AOD≌△COD,故D正确;△ABC是等腰三角形,故B错误.故选B.【点评】本题考查的是轴对称的性质,熟知如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线是解答此题的关键.6.下列命题中,不正确的是()A.各有一个角为95°,且底边相等的两个等腰三角形全等B.各有一个角为40°,且底边相等的两个等腰三角形全等C.各有一个角为40°,且其所对的直角边相等的两个直角三角形全等D.各有一个角为40°,且有斜边相等的两个直角三角形全等【考点】全等三角形的判定.【专题】证明题.【分析】根据全等三角形的判定定理:SAS,SSS,AAS,ASA对各个选项逐一分析即可【解答】解:A、∵各有一个角为95°,这个角只能是顶角,∴这两个等腰三角形全等,本选项正确;B、∵不知这个角是顶角还是底角,∴这两个等腰三角形不一定全等,故本选项错误;C、∵各有一个角为40°,∴此直角三角形各个角相等,再加上且其所对的直角边相等,∴两个直角三角形全等,本选项正确,D、∵各有一个角为40°,∴此直角三角形各个角相等,再加上有斜边相等,∴两个直角三角形全等,本选项正确,【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.二、填空题(不需写出解答过程,请把答案直接填写在相应位的置上)7.如图,在直角三角形ABC中,∠C=90°,AC=10cm,BC=5cm,一条线段PQ=AB,P、Q两点分别在AC和AC的垂线AX上移动,则当AP= 5cm或10cm 时,才能使△ABC和△APQ全等.【考点】全等三角形的判定.【分析】本题要分情况讨论:①Rt△APQ≌Rt△CBA,此时AP=BC=5cm,可据此求出P点的位置;②Rt△QAP≌Rt△BCA,此时AP=AC,P、C重合.【解答】解:∵PQ=AB,∴根据三角形全等的判定方法HL可知,①当P运动到AP=BC时,△ABC≌△QPA,即AP=BC=5cm;②当P运动到与C点重合时,△QAP≌△BCA,即AP=AC=10cm.【点评】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、HL.由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.8.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF,则下列结论:①DE=DF;②AD平分∠BAC;③AE=AD;④AB+AC=2AE中正确的是①②④.【考点】全等三角形的判定与性质;角平分线的性质.【分析】由HL证明Rt△BDE≌Rt△CDF,得出对应边相等DE=DF,得出AD平分∠BAC,①②正确;由AE>AD,得出③不正确,由全等三角形的对应边相等得出BE=CF,AE=AF,得出④正确,即可得出结果.【解答】解:∵DE⊥AB于E,DF⊥AC于F,∴∠E=∠DFC=90°,在Rt△BDE和Rt△CDF中,,∴Rt△BDE≌Rt△CDF(HL),∴DE=DF,①正确,∴AD平分∠BAC,②正确,∵在Rt△ADE中,AE是斜边,∴AE>AD,③不正确,∵Rt△BDE≌Rt△CDF,∴BE=CF,AE=AF,∴AB+AC=AB+AF+CF=AB+AE+BE=2AE,④正确;正确的是①②④.故答案为:①②④.【点评】本题考查了全等三角形的判定与性质、角平分线的判定;证明三角形全等得出对应边相等是解决问题的关键9.如图,a∥b,点A在直线a上,点C在直线b上,∠BAC=90°,AB=AC,∠1=30°,则∠2的度数为75°.【考点】平行线的性质.【专题】计算题;线段、角、相交线与平行线.【分析】由等腰直角三角形的性质求出∠ACB的度数,进而求出∠1+∠ACB的度数,再利用两直线平行内错角相等即可求出∠2的度数.【解答】解:∵∠BAC=90°,AB=AC,∴∠B=∠ACB=45°,∵∠1=30°,∴∠1+∠ACB=75°,∵a∥b,∴∠2=∠1+∠ACB=75°,故答案为:75°【点评】此题考查了平行线的性质,以及等腰直角三角形的性质,熟练掌握性质是解本题的关键.10.如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面四个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正确结论的序号是①②④(请将所有正确结论的序号都填上).【考点】全等三角形的判定与性质;线段垂直平分线的性质.【分析】根据角平分线性质即可推出①,根据勾股定理即可推出AR=AS,根据等腰三角形性质推出∠QAP=∠QPA,推出∠QPA=∠BAP,根据平行线判定推出QP∥AB即可;在Rt△BRP和Rt△QSP中,只有PR=PS.无法判断△BRP≌△QSP;连接RS,与AP交于点D,先证△ARD≌△ASD,则RD=SD,∠ADR=∠ADS=90°.【解答】解:①∵PR⊥AB,PS⊥AC,PR=PS,∴点P在∠A的平分线上,∠ARP=∠ASP=90°,∴∠SAP=∠RAP,在Rt△ARP和Rt△ASP中,由勾股定理得:AR2=AP2﹣PR2,AS2=AP2﹣PS2,∵AD=AD,PR=PS,∴AR=AS,∴①正确;②∵AQ=QP,∴∠QAP=∠QPA,∵∠QAP=∠BAP,∴∠QPA=∠BAP,∴QP∥AR,∴②正确;③在Rt△BRP和Rt△QSP中,只有PR=PS,不满足三角形全等的条件,故③错误;④如图,连接RS,与AP交于点D.在△ARD和△ASD中,,所以△ARD≌△ASD.∴RD=SD,∠ADR=∠ADS=90°.所以AP垂直平分RS,故④正确.故答案为:①②④.【点评】本题考查了等边三角形的性质和判定,全等三角形的性质和判定,平行线的性质和判定,角平分线性质的应用,熟练掌握全等三角形的判定和性质是解题的关键.三、解答题(请在答题的指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)11.(2015•无锡)已知:如图,AB∥CD,E是AB的中点,CE=DE.求证:(1)∠AEC=∠BED;(2)AC=BD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)根据CE=DE得出∠ECD=∠EDC,再利用平行线的性质进行证明即可;(2)根据SAS证明△AEC与△BED全等,再利用全等三角形的性质证明即可.【解答】证明:(1)∵AB∥CD,∴∠AEC=∠ECD,∠BED=∠EDC,∵CE=DE,∴∠ECD=∠EDC,∴∠AEC=∠BED;(2)∵E是AB的中点,∴AE=BE,在△AEC和△BED中,,∴△AEC≌△BED(SAS),∴AC=BD.【点评】本题主要考查了全等三角形的判定以及全等三角形的性质,关键是根据SAS证明全等.12.(2014秋•马鞍山期末)如图,△ABC为等边三角形,D为边BA延长线上一点,连接CD,以CD 为一边作等边三角形CDE,连接AE.(1)求证:△CBD≌△CAE.(2)判断AE与BC的位置关系,并说明理由.【考点】全等三角形的判定与性质;平行线的判定;等边三角形的性质.【分析】(1)根据等边三角形各内角为60°和各边长相等的性质可证∠ECA=∠DCB,AC=BC,EC=DC,即可证明△ECA≌△DCB;(2)根据△ECA≌△DCB可得∠EAC=60°,根据内错角相等,平行线平行即可解题.【解答】证明:(1)∵△ABC、△DCE为等边三角形,∴AC=BC,EC=DC,∠ACB=∠ECD=∠DBC=60°,∵∠ACD+∠ACB=∠DCB,∠ECD+∠ACD=∠ECA,∴∠ECA=∠DCB,在△ECA和△DCB中,,∴△ECA≌△DCB(SAS);(2)∵△ECA≌△DCB,∴∠EAC=∠DBC=60°,又∵∠ACB=∠DBC=60°,∴∠EAC=∠ACB=60°,∴AE∥BC.【点评】本题考查了全等三角形的判定,考查了全等三角形对应角相等的性质,本题中求证△ECA≌△DCB是解题的关键.13.(2015秋•无锡校级月考)如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于P.(1)求证:△ABE≌△CAD;(2)求∠PBQ的度数.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】(1)根据等边三角形的性质可得AB=AC,∠BAC=∠C=60°,然后利用“边角边”即可证明两三角形;(2)由SAS可得△ABE≌△CAD,进而得出对应角相等,再通过角之间的转化即可求解∠BPD的度数,进而求得结论.【解答】(1)证明:∵△ABC是等边三角形,∴AB=AC,∠BAC=∠C=60°,在△ABE与△CAD中,,∴△ABE≌△CAD(SAS);(2)由(1)知△ABE≌△CAD,∴∠ABE=∠CAD,∴∠BPQ=∠ABE+∠BAP=∠CAD+∠BAP=∠BAC=60°.∴∠PBQ=90°﹣∠BPQ=30°.【点评】本题考查了全等三角形的判定与性质,等边三角形的性质,熟练掌握这两个性质是解决问题的关键.14.(2013秋•仪征市期末)如图,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB 的中点.如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动.当一个点停止运动时时,另一个点也随之停止运动.设运动时间为t.(1)用含有t的代数式表示CP.(2)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;(3)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?【考点】全等三角形的判定;等腰三角形的性质.【专题】几何图形问题;动点型;分类讨论.【分析】(1)求出BP=3t,即可求出答案;(2)求出BP、CQ、CP,根据全等三角形的判定推出即可;(3)设当点Q的运动速度为x厘米/时,时间是t小时,能够使△BPD与△CQP全等,求出BD=5厘米,BP=3t厘米,CP=(8﹣3t)厘米,CQ=xt厘米,∠B=∠C,根据全等三角形的性质得出方程,求出方程的解即可.【解答】解:(1)∵点P在线段BC上以3厘米/秒的速度由B点向C点运动,∴BP=3t厘米,∵BC=8厘米,∴CP=(8﹣3t)厘米;(2)点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP全等,理由是:∵AB=AC=10厘米,点D为AB的中点,∴∠B=∠C,BD=5厘米,∵BP=CQ=3t厘米=3厘米,∴CP=8厘米﹣3厘米=5厘米=BD,在△DBP和△PCQ中,,∴△DBP≌△PCQ(SAS);(3)设当点Q的运动速度为x厘米/时,时间是t小时,能够使△BPD与△CQP全等,∵BD=5厘米,BP=3t厘米,CP=(8﹣3t)厘米,CQ=xt厘米,∠B=∠C,∴当BP=CQ,BD=CP或BP=CP,BD=CQ时,△BPD与△CQP全等,即①3t=xt,5=8﹣3t,解得:x=3(不合题意,舍去),②3t=8﹣3t,5=xt,解得:x=,即当点Q的运动速度为厘米/时时,能够使△BPD与△CQP全等.【点评】本题考查了全等三角形的判定和性质的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,用了分类讨论思想.。
八年级上册数学期末几何专题复习——三角形综合(全等与勾股定理)(二)1.如图,已知△ABC中,AB=6cm,∠B=∠C,BC=4cm,点D为AB的中点.若点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?2.(1)在等边三角形ABC中,①如图①,D,E分别是边AC,AB上的点且AE=CD,BD与EC交于点F,则∠BFE的度数是度;②如图②,D,E分别是边AC,BA延长线上的点且AE=CD,BD与EC的延长线交于点F,此时∠BFE的度数是度;(2)如图③,在△ABC中,AC=BC,∠ACB是锐角,点O是AC边的垂直平分线与BC的交点,点D,E分别在AC,OA的延长线上,AE=CD,BD与EC的延长线交于点F,若∠ACB =α,求∠BFE的大小.(用含α的代数式表示).3.如图,在等边△ABC中,点D是边AB上一点,E是BC延长线上一点,CE=DA,连接DE 交AC于点F,过点D作DG⊥AC于点G,过点D作DH∥BC交AC于点H.(1)求证:AG=AD;(2)求证:DF=EF;=2,求△DGF的面积.(3)若CF=CE,S△ADG4.如图,△ABC中,AB=AC,∠BAC=90°,点D是直线AB上的一动点(不和A,B重合),BE⊥CD于E,交直线AC于F.(1)点D在边AB上时,试探究线段BD,AB和AF的数量关系,并证明你的结论;(2)点D在AB的延长线或反向延长线上时,(1)中的结论是否成立?若不成立,请直接写出正确结论.5.已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于直线CE于点F,交CD于点G(如图1),求证:AE=CG;(2)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图2),找出图中与BE相等的线段,并证明.6.如图,在△ABC中,AB=AC=2,∠B=36°,点D在线段BC上运动(点D不与点B、C 重合),连接AD,作∠ADE=36°,DE交线段AC于点E.(1)当∠BDA=128°时,∠EDC=,∠AED=;(2)线段DC的长度为何值时,△ABD≌△DCE?请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数;若不可以,请说明理由.7.如图,在△AEC和△DFB中,∠E=∠F,点A、B、C、D在同一直线上,有如下三个关系式:①AE∥DF,②AB=CD,③CE=BF.(1)请用其中两个关系式作为条件,另一个作为结论,写出你认为正确的所有命题(用序号写出命题书写形式:“如果⊗、⊗,那么⊗”)(2)选择(1)中你写出的一个命题,说明它正确的理由.8.(1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD.求证:EF=BE+FD;(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?(3)如图3,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.9.已知四边形ABCD中,∠A=∠C=90°,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN 绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E,F.当∠MBN绕B点旋转到AE=CF时(如图1),易证AE+CF=EF;当∠MBN绕B点旋转到AE≠CF时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE,CF,EF又有怎样的数量关系?请写出你的猜想,不需证明.10.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,(1)求证:AD平分∠BAC;(2)已知AC=20,BE=4,求AB的长.参考答案1.解:(1)全等,理由如下:∵t=1秒,∴BP=CQ=1×1=1厘米,∵AB=6cm,点D为AB的中点,∴BD=3cm.又∵PC=BC﹣BP,BC=4cm,∴PC=4﹣1=3cm,∴PC=BD.∵∠B=∠C,∴△BPD≌△CPQ;(2)∵v P≠v Q,∴BP≠CQ,又∵△BPD≌△CPQ,∠B=∠C,则BP=CP=2,BD=CQ=3,∴点P,点Q运动的时间为:t=2秒,∴v Q=1.5cm/s;2.解:(1)如图①中,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=60°,∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD,∴∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°.故答案为60.(2)如图②中,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=60°,∴∠CAE=∠BCD=′120°∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD=∠DCF,∴∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°.故答案为60.(3)如图③中,∵点O是AC边的垂直平分线与BC的交点,∴OC=OA,∴∠EAC=∠DCB=180°﹣α,∵AC=BC,AE=CD,∴△AEC≌△CDB,∴∠E=∠D,∴∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.3.(1)证明:∵△ABC是等边三角形,∴∠A=60°,∵DG⊥AC,∴∠AGD=90°,∠ADG=30°,∴AG=AD;(2)解:∵DH∥BC,∴∠ADH=∠B,∠AHD=∠ACB,∠FDH=∠E,∵△ABC是等边三角形,∴∠B=∠ACB=∠A=60°,∴∠A=∠ADH=∠AHD=60°,∴△ADH是等边三角形,∴DH=AD,∵AD=CE,∴DH=CE,在△DHF和△ECF中,,∴△DHF≌△ECF(AAS),∴DF=EF;(3)∵△ABC是等边三角形,DG⊥AC,AD=DH,∴AG=GH,∵△DHF≌△ECF,∴HF=CF,∵CF=CE,DH=CE,∴HF=AH,∴GF=3AG,∵△DGF和△ADG等高,∴S△DGF =3S△ADG=6.4.解:(1)AB=FA+BD.证明:如图1,∵BE⊥CD即∠BEC=90°,∠BAC=90°,∴∠F+∠FBA=90°,∠F+∠FCE=90°.∴∠FBA=∠FCE.∵∠FAB=180°﹣∠DAC=90°,∴∠FAB=∠DAC.在△FAB和△DAC中,.∴△FAB≌△DAC(ASA).∴FA=DA.∴AB=AD+BD=FA+BD.(2)(1)中的结论不成立.点D在AB的延长线上时,AB=AF﹣BD;点D在AB的反向延长线上时,AB=BD﹣AF.理由如下:①当点D在AB的延长线上时,如图2.同理可得:FA=DA.则AB=AD﹣BD=AF﹣BD.②点D在AB的反向延长线上时,如图3.同理可得:FA=DA.则AB=BD﹣AD=BD﹣AF.5.(1)证明:∵点D是AB中点,AC=BC,∠ACB=90°,∴CD⊥AB,∠ACD=∠BCD=45°,∴∠CAD=∠CBD=45°,∴∠CAE=∠BCG,又∵BF⊥CE,∴∠CBG+∠BCF=90°,又∵∠ACE+∠BCF=90°,∴∠ACE=∠CBG,在△AEC和△CGB中,∴△AEC≌△CGB(ASA),∴AE=CG,(2)解:BE=CM.证明:∵CH⊥HM,CD⊥ED,∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,∴∠CMA=∠BEC,又∵∠ACM=∠CBE=45°,在△BCE和△CAM中,,∴△BCE≌△CAM(AAS),∴BE=CM.6.解:(1)∵AB=AC,∴∠C=∠B=36°,∵∠ADE=36°,∠BDA=128°,∵∠EDC=180°﹣∠ADB﹣∠ADE=16°,∴∠AED=∠EDC+∠C=16°+36°=52°,故答案为:16°;52°;(2)当DC=2时,△ABD≌△DCE,理由:∵AB=2,DC=2,∴AB=DC,∵∠C=36°,∴∠DEC+∠EDC=144°,∵∠ADE=36°,∴∠ADB+∠EDC=144°,∴∠ADB=∠DEC,在△ABD和△DCE中,,∴△ABD≌△DCE(AAS);(3)当∠BDA的度数为108°或72°时,△ADE的形状是等腰三角形,①当DA=DE时,∠DAE=∠DEA=72°,∴∠BDA=∠DAE+∠C=72°+36°=108°;②当AD=AE时,∠AED=∠ADE=36°,∴∠DAE=108°,此时,点D与点B重合,不合题意;③当EA=ED时,∠EAD=∠ADE=36°,∴∠BDA=∠EAD+∠C=36°+36°=72°;综上所述,当∠BDA的度数为108°或72°时,△ADE的形状是等腰三角形.7.解:(1)如果①②,那么③;如果①③,那么②;(2)若选择如果①②,那么③,证明:∵AE∥DF,∴∠A=∠D,∵AB=CD,∴AB+BC=BC+CD,即AC=DB,在△ACE和△DBF中,,∴△ACE≌△DBF(AAS),∴CE=BF;若选择如果①③,那么②,证明:∵AE∥DF,∴∠A=∠D,在△ACE和△DBF中,,∴△ACE≌△DBF(AAS),∴AC=DB,∴AC﹣BC=DB﹣BC,即AB=CD.8.证明:(1)延长EB到G,使BG=DF,连接AG.∵∠ABG=∠ABC=∠D=90°,AB=AD,∴△ABG≌△ADF.∴AG=AF,∠1=∠2.∴∠1+∠3=∠2+∠3=∠EAF=∠BAD.∴∠GAE=∠EAF.又∵AE=AE,∴△AEG≌△AEF.∴EG=EF.∵EG=BE+BG.∴EF=BE+FD(2)(1)中的结论EF=BE+FD仍然成立.(3)结论EF=BE+FD不成立,应当是EF=BE﹣FD.证明:在BE上截取BG,使BG=DF,连接AG.∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,∴∠B=∠ADF.∵AB=AD,∴△ABG≌△ADF.∴∠BAG=∠DAF,AG=AF.∴∠BAG+∠EAD=∠DAF+∠EAD=∠EAF=∠BAD.∴∠GAE=∠EAF.∵AE=AE,∴△AEG≌△AEF.∴EG=EF∵EG=BE﹣BG∴EF=BE﹣FD.9.解:∵AB⊥AD,BC⊥CD,AB=BC,AE=CF,在△ABE和△CBF中,,∴△ABE≌△CBF(SAS);∴∠ABE=∠CBF,BE=BF;∵∠ABC=120°,∠MBN=60°,∴∠ABE=∠CBF=30°,∴AE=BE,CF=BF;∵∠MBN=60°,BE=BF,∴△BEF为等边三角形;∴AE+CF=BE+BF=BE=EF;图2成立,图3不成立.证明图2.延长DC至点K,使CK=AE,连接BK,在△BAE和△BCK中,则△BAE≌△BCK,∴BE=BK,∠ABE=∠KBC,∵∠FBE=60°,∠ABC=120°,∴∠FBC+∠ABE=60°,∴∠FBC+∠KBC=60°,∴∠KBF=∠FBE=60°,在△KBF和△EBF中,∴△KBF≌△EBF,∴KF=EF,∴KC+CF=EF,即AE+CF=EF.图3不成立,AE、CF、EF的关系是AE﹣CF=EF.10.(1)证明:∵DE⊥AB,DF⊥AC,∴∠E=∠DFC=90°,∴在Rt△BED和Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),∴DE=DF,∵DE⊥AB,DF⊥AC,∴AD平分∠BAC;(2)解:∵∠AED=∠AFD=90°,AD=AD,DE=DF,∴Rt△ADE≌Rt△ADF(HL)∴AE=AF,∵AC=20,CF=BE=4,∴AE=AF=20﹣4=16,∴AB=AE﹣BE=16﹣4=12.。
苏科版数学八年级上册《第1章全等三角形》单元测试题考试分值:120;考试时间:100分钟一.选择题(共10小题,满分40分)1.(4分)如图所示正方形网格中,连接AB、AC、AD,观测∠1+∠2+∠3=()A.120°B.125°C.130°D.135°2.(4分)长为l的一根绳,恰好可围成两个全等三角形,则其中一个三角形的最长边x的取值范围为()A.B.C.D.3.(4分)如图,在Rt△ABC中,∠C=90°,AC=12cm,BC=6cm,一条线段PQ=AB,P,Q两点分别在线段AC和AC的垂线AX上移动,若△ABC和△APQ全等,则AP的值为()A.6cm B.12cm C.12cm或6cm D.以上答案都不对4.(4分)如图,已知△ABC≌△CDA,∠B=∠D,则下列结论中正确的是()①AB=CD,BC=DA.②∠BAC=∠DCA,∠ACB=∠CAD.③AB∥CD,BC∥DA.A.①B.②C.①③D.①②③5.(4分)下列说法正确的是()A.全等三角形是指周长和面积都一样的三角形B.全等三角形的周长和面积都一样C.全等三角形是指形状相同的两个三角形D.全等三角形的边都相等6.(4分)如图,已知点D在AC上,点B在AE上,△ABC≌△DBE,且∠BDA=∠A,若∠A:∠C=5:3,则∠DBC=()A.30°B.25°C.20°D.15°7.(4分)如图所示,△ABC≌△EDF,DF=BC,AB=ED,AE=20,AF=5,则AC的长为()A.20 B.5 C.10 D.158.(4分)下列不能判定三角形全等的是()A.如图(1),线段AD与BC相交于点O,AO=DO,BO=CO.△ABO与△BCO B.如图(2),AC=AD,BC=BD.△ABC与△ABDC.如图(3),∠A=∠C,∠B=∠D.△ABO与△CDOD.如图(4),线段AD与BC相交于点E,AE=BE,CE=DE,AC=BD.△ABC与△BAD9.(4分)如图,在四边形ABCD中,AD∥BC,若∠DAB的角平分线AE交CD于E,连接BE,且BE边平分∠ABC,则以下命题不正确的个数是①BC+AD=AB;②E为CD中点;=S四边形ABCD;⑤BC=CE.()③∠AEB=90°;④S△ABEA.0个B.1个C.2个D.3个10.(4分)一块三角形玻璃样板不慎被小强同学碰破,成了四片完整四碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是()A.带其中的任意两块去都可以B.带1、2或2、3去就可以了C.带1、4或3、4去就可以了D.带1、4或2、4或3、4去均可二.填空题(共5小题,满分20分)11.(4分)如图,已知△ACF≌△DBE,∠E=∠F,AD=9cm,BC=5cm,AB的长为cm.12.(4分)如图:已知DE=AB,∠D=∠A,请你补充一个条件,使△ABC≌△DEF,并说明你判断的理由:或.13.(4分)七巧板是我们祖先的一项卓越创造,它虽然只有七块,但是可以拼出多种多样的图形,如图就是一个七巧板,七块刚好拼成一个正方形,图中全等的三角形有对.14.(4分)在△ABC和△DEF中,AB=4,∠A=35°,∠B=70°,DE=4,∠D=°,∠E=70°,根据判定△ABC≌△DEF.15.(4分)如图,AB,D相交于点O,已知OC=OA,请你补充的一个条件或使△AOD≌△COB.三.解答题(共5小题,满分60分)16.(10分)如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E、F,BE=CF.(1)图中有几对全等的三角形请一一列出;(2)选择一对你认为全等的三角形进行证明.17.(12分)如图,在△ABC和△DCB中AC与BD相交于点O,AB=DC.(1)请你再添加一个条件,使得△ABC≌△DCB;(2)根据(1)中你所添加的条件,求证:△ABC≌△DCB;(3)△OBC的形状是.(直接写出结论,不需证明)18.(12分)如图所示,一个四边形纸片ABCD,∠B=∠D=90°,把纸片按如图所示折叠,使点B落在AD边上的B′点,AE是折痕.(1)试判断B′E与DC的位置关系;(2)如果∠C=130°,求∠AEB的度数.19.(12分)如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.20.(14分)点D是等边△ABC(即三条边都相等,三个角都相等的三角形)边BA上任意一点(点D与点B不重合),连接DC.(1)如图1,以DC为边在BC上方作等边△DCF,连接AF,猜想线段AF与BD的数量关系?请说明理由.(2)如图2,若以DC为边在BC上方、下方分别作等边△DCF和等边△DCF′,连接AF、BF′,探究AF、BF′与AB有何数量关系?请说明理由.参考答案一.选择题1.D.2.A.3.C.4.D.5.B.6.C.7.D.8.C.9.B.10.D.二.填空题11.2.12.∠B=∠E或∠ACB=∠DFE或AF=CD.13.3.14.35,ASA.15.OB=DO或∠A=∠C.三.解答题16.解:(1)3对.分别是:△ABD≌△ACD;△ADE≌△ADF;△BDE≌△CDF.(2)△BDE≌△CDF.证明:∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°.又D是BC的中点,∴BD=CD.在Rt△BDE和Rt△CDF中,,∴△BDE≌△CDF(HL).17.解:(1)添加∠ABC=∠DCB,(2)证明如下:∵AB=DC,∠ABC=∠DCB,BC=CB,∴△ABC≌△DCB(SAS).(3)由(2)知△ABC≌△DCB,∴∠ACB=∠DBC,∴△OBC的形状是等腰三角形.18.解:(1)由于AB′是AB的折叠后形成的,∠AB′E=∠B=∠D=90°,∴B′E∥DC;(2)∵折叠,∴△ABE≌△AB′E,∴∠AEB′=∠AEB,即∠AEB=∠BEB′,∵B′E∥DC,∴∠BEB′=∠C=130°,∴∠AEB=∠BEB′=65°.19.证明:(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS);(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF到G,使得FG=FB,∵AF⊥BG,∴∠AFG=∠AFB=90°,在△AFB和△AFG中,,∴△AFB≌△AFG(SAS),∴AB=AG,∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,∵∠GCA=∠DCA=45°,在△CGA和△CDA中,,∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.20.解:(1)BD=AF,理由:∵△ABC和△DCF都是等边三角形,∴BC=AC,CD=CF,∠ACB=∠DCF=60°,∴∠BCD=∠ACF,在△BCD和△ACF中,,∴△BCD≌△ACF(SAS),∴BD=AF;(2)AB=AF+BF′,理由:∵△ABC和△DCF都是等边三角形,∴BC=AC,CF′=CD,∠F′CD=∠BCA=90°,∴∠F′CB=∠DCA,在△F′CB和△DCA中,,∴△F′CB≌△DCA(SAS),∴BF′=DA,由(1)知,BD=AF,∵AB=BD+AD,∴AB=AF+BF′.。
第1章 全等三角形检测题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.要测量河两岸相对的两点错误!未找到引用源。
的距离,先在错误!未找到引用源。
的垂线错误!未找到引用源。
上取两点错误!未找到引用源。
,使错误!未找到引用源。
,再作出错误!未找到引用源。
的垂线错误!未找到引用源。
,使错误!未找到引用源。
在一条直线上(如图所示),可以说明△错误!未找到引用源。
≌△错误!未找到引用源。
,得错误!未找到引用源。
,因此测得错误!未找到引用源。
的长就是错误!未找到引用源。
的长,判定△错误!未找到引用源。
≌△错误!未找到引用源。
最恰当的理由是( )A.边角边B.角边角C.边边边D.边边角2.如图所示,两个全等的等边三角形的边长为1 m ,一个微型机器人由A 点开始按ABCDBEA 的顺序沿等边三角形的边循环运动,行走 2 012 m 停下,则这个微型机器人停在( ) A.点A 处 B .点B 处 C.点C 处 D.点E 处3.如图,已知AB ∥CD ,AD ∥BC ,AC 与BD 交于点O ,AE ⊥BD 于点E ,CF ⊥BD 于点F ,那么图中全等的三角形有( )A.5对B.6对C.7对D.8对 4.下列命题中正确的是( )A.全等三角形的高相等B.全等三角形的中线相等C.全等三角形的角平分线相等D.全等三角形对应角的平分线相等5.如图所示,点B 、C 、E 在同一条直线上,△ABC 与△CDE 都是等边三角形,则下列结论不一定成立的是( )A.△ACE ≌△BCDB.△BGC ≌△AFCC.△DCG ≌△ECFD.△ADB ≌△CEA6.如图所示,错误!未找到引用源。
分别表示△ABC 的三边长,则下面与△错误!未找到引用源。
一定全等的三角形是( )7.已知:如图所示,B 、C 、D 三点在同一条直线上,AC =CD ,∠B = ∠E =90°,AC ⊥CD ,则不正第5题图第2题图第6题图第3题图第1题图确的结论是( )A .∠A 与∠D 互为余角B .∠A =∠2C .△ABC ≌△CED D .∠1=∠28.如图所示,两条笔直的公路错误!未找到引用源。
苏科版数学八年级上学期期末测试卷学校________ 班级________ 姓名________ 成绩________第Ⅰ卷(选择题共30分一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列运算正确的是()A. 2 B.|﹣3|=﹣3 C.±2 D. 32.传统佳节“春节”临近,剪纸民俗魅力四射,对称现象无处不在.观察下面的四幅剪纸,其中不是轴对称图形的是()A.B.C.D.3.如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC4.点A(3,5)关于x轴的对称点的坐标为()A.(3,﹣5) B.(﹣3,﹣5) C.(﹣3,5) D.(﹣5,3)5.已知一次函数y=﹣2x+3,当0≤x≤5时,函数y的最大值是()A.0 B.3 C.﹣3 D.﹣76.下列各组数中,是勾股数的为()A.1,1,2 B.1.5,2,2.5 C.7,24,25 D.6,12,137.如图,已知一次函数y=kx+b的图象经过点A(5,0)与B(0,﹣4),那么关于x的不等式kx+b<0的解集是()A.x<5 B.x>5 C.x<﹣4 D.x>﹣48.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()A.4cm B.3cm C.2cm D.1cm9.如图是由8个全等的小矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连接P A、PB,那么使△ABP为等腰直角三角形的点P的个数是()A.2个B.3个C.4个D.5个10.已知一次函数y=(m﹣1)x的图象上两点A(x1,y1),B(x2,y2),当x1>x2时,有y1<y2,那么m的取值范围是() A.m>0 B.m<0 C.m>1 D.m<1第Ⅱ卷(非选择题共120)注意事项:1.第Ⅱ卷分填空题和解答题.2.第Ⅱ卷所有题目的答案,考生须用0.5毫米黑色签字笔答在试卷规定的区域内.二、填空题(本大题共10小题,每小题3分,共30分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.若一个数的立方根是﹣3,则这个数是.12.如图,已知:AB=AC,D是BC边的中点,则∠1+∠C=度.13.若12.6389823,则.(精确到0.01).14.小刚画了一张对称的脸谱,他对妹妹说:“如果我用(1,4)表示一只眼,用(2,2)表示嘴,那么另一只眼的位置可以表示成.15.将函数y=5x的图象沿y轴向下平移3个单位长度,所得直线的函数表达式为.16.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为.17.如图,点O为线段AB上的任意一点(不与A,B重合),分别以AO,BO为一腰在AB的同侧作等腰△AOC和△BOD,OA=OC,OB=OD,∠AOC与∠BOD都是锐角,且∠AOC=∠BOD,AD与BC相交于点P,∠COD=110°,则∠APB=°.18.如图,直线y=x+6与x轴、y轴分别交于点A和点B,x轴上有一点C(﹣4,0),点P为直线一动点,当PC+PO 值最小时点P的坐标为.三.解答题(共10小题,满分96分)19.(1)已知:2(x﹣3)2=50,求x;(2)计算:20.在如图所示的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在正方形网格的格点(网格线的交点)上.(1)请在如图所示的网格平面内作出平面直角坐标系,使点A坐标为(1,3)点B坐标为(2,1);(2)请作出△ABC关于y轴对称的△A'B'C',并写出点C'的坐标;(3)判断△ABC的形状.并说明理由.21.已知y﹣1与x+2成正比例,且x=﹣1时,y=3.(1)求y与x之间的关系式;(2)它的图象经过点(m﹣1,m+1),求m的值.22.如图,在△ABC中,AB=AC,DE是边AB的垂直平分线,交AB于E、交AC于D,连接BD.(1)若∠A=40°,求∠DBC的度数;(2)若△BCD的周长为16cm,△ABC的周长为26cm,求BC的长.23.如图,已知△ABC中,AB=AC,BD=CE,(1)求证:△ABE≌△ACD.(2)如果∠BAC=75°,∠BAD=30°,求∠DAE的度数.24.在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.(1)求证:△ABP≌△ACQ;(2)请判断△APQ是什么形状的三角形?试说明你的结论.25.为倡导绿色出行,某共享单车近期登陆徐州,根据连续骑行时长分段计费:骑行时长在2h以内(含2h)的部分,每0.5h计费1元(不足0.5h按0.5h计算);骑行时长超出2h的部分,每小时计费4元(不足1h按1h计算).根据此收费标准,解决下列问题:(1)连续骑行5h,应付费多少元?(2)若连续骑行xh(x>2且x为整数) 需付费y元,则y与x的函数表达式为;(3)若某人连续骑行后付费24元,求其连续骑行时长的范围.26.一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量y(升)关于加满油后已行驶的路程x(千米)的函数图象.(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;(2)求y关于x的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.27.基本图形:在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE.探索:(1)连接EC,如图①,试探索线段BC,CD,CE之间满足的等量关系,并证明结论;(2)连接DE,如图②,试探索线段DE,BD,CD之间满足的等量关系,并证明结论;联想:(3)如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=3,CD=1,则AD的长为.28.阅读下面材料:小明遇到这样一个问题:如图1,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,试判断BC和AC、AD之间的数量关系.小明发现,利用轴对称做一个变化,在BC上截取CA′=CA,连接DA′,得到一对全等的三角形,从而将问题解决(如图2).请回答:(1)在图2中,小明得到的全等三角形是△≌△;BC和AC、AD之间的数量关系是.(2)参考小明思考问题的方法,解决问题:如图3,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9.求AB的长.(3)如图4,在平面直角坐标系中,直线y=﹣x+4交x轴于点A,交y轴于点B,C是OA的中点,D为AB上一点,且∠DCA=∠BCO,连接OD,CD,求.答案与解析第Ⅰ卷(选择题共30分)一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列运算正确的是()A. 2 B.|﹣3|=﹣3 C.±2 D. 3[答案]A[解析]A、2,此选项计算正确;B、|﹣3|=3,此选项计算错误;C、2,此选项计算错误;D、不能进一步计算,此选项错误;故选:A.[点睛]本题主要考查算术平方根,解题的关键是掌握算术平方根和立方根的定义、绝对值性质.2.传统佳节“春节”临近,剪纸民俗魅力四射,对称现象无处不在.观察下面的四幅剪纸,其中不是轴对称图形的是()A.B.C.D.[答案]C[解析]A、是轴对称图形,不符合题意;B、是轴对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,符合题意;D、是轴对称图形,不符合题意.故选:C.[点睛]此题主要考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.3.如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC[答案]C[解析]A、∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS,即能推出△ABC≌△DCB,故本选项错误;B、∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,符合ASA,即能推出△ABC≌△DCB,故本选项错误;C、∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,故本选项正确;D、AB=DC,∠ABC=∠DCB,BC=BC,符合SAS,即能推出△ABC≌△DCB,故本选项错误;故选:C.[点睛]本题考查了全等三角形的性质和判定,等腰三角形的性质的应用,能正确根据全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定方法有SAS,ASA,AAS,SSS.4.点A(3,5)关于x轴的对称点的坐标为()A.(3,﹣5) B.(﹣3,﹣5) C.(﹣3,5) D.(﹣5,3)[答案]A[解析]点A(3,5)关于x轴的对称点的坐标为:(3,﹣5).故选:A.[点睛]此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的符号是解题关键.5.已知一次函数y=﹣2x+3,当0≤x≤5时,函数y的最大值是()A.0 B.3 C.﹣3 D.﹣7[答案]B[解析]∵一次函数y=﹣2x+3中k=﹣2<0,∴y的值随x的值增大而减小,∴在0≤x≤5范围内,x=0时,函数值最大﹣2×0+3=3.故选:B.[点睛]一次函数y=kx+b的图象的性质:①当k>0,y的值随x的值增大而增大;②当k<0,y的值随x的值增大而减小.6.下列各组数中,是勾股数的为()A.1,1,2 B.1.5,2,2.5 C.7,24,25 D.6,12,13[答案]C[解析]A、∵12+12≠22,∴不是勾股数,此选项错误;B、1.5和2.5不是整数,此选项错误;C、∵72+242=252,∴是勾股数,此选项正确;D、∵62+122≠132,∴不是勾股数,此选项错误.故选:C.[点睛]此题考查了勾股数,说明:①三个数必须是正整数,例如:2.5、6、6.5满足a2+b2=c2,但是它们不是正整数,所以它们不是够勾股数.②一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.③记住常用的勾股数再做题可以提高速度.如:3,4,5;6,8,10;5,12,13;…7.如图,已知一次函数y=kx+b的图象经过点A(5,0)与B(0,﹣4),那么关于x的不等式kx+b<0的解集是()A.x<5 B.x>5 C.x<﹣4 D.x>﹣4[答案]A[解析]由题意可得:一次函数y=kx+b中,y<0时,图象在x轴下方,x<5,则关于x的不等式kx+b<0的解集是x<5,故选:A.[点睛]此题主要考查了一次函数与一元一次不等式,关键是掌握数形结合思想.认真体会一次函数与一元一次不等式之间的内在联系.8.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()A.4cm B.3cm C.2cm D.1cm[答案]C[解析]连接AM、AN、过A作AD⊥BC于D,∵在△ABC中,AB=AC,∠A=120°,BC=6cm,∴∠B=∠C=30°,BD=CD=3cm,∴AB2cm=AC,∵AB的垂直平分线EM,∴BE AB cm同理CF cm,∴BM2cm,同理CN=2cm,∴MN=BC﹣BM﹣CN=2cm,故选:C.[点睛]本题考查了线段垂直平分线性质,等腰三角形的性质,含30度角的直角三角形性质,解直角三角形等知识点的应用,主要考查学生综合运用性质进行推理和计算的能力.9.如图是由8个全等的小矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连接P A、PB,那么使△ABP为等腰直角三角形的点P的个数是()A.2个B.3个C.4个D.5个[答案]B[解析]如图所示,使△ABP为等腰直角三角形的点P的个数是3,故选:B.[点睛]本题考查了等腰直角三角形的判定,正确的找出符合条件的点P是解题的关键.10.已知一次函数y=(m﹣1)x的图象上两点A(x1,y1),B(x2,y2),当x1>x2时,有y1<y2,那么m的取值范围是() A.m>0 B.m<0 C.m>1 D.m<1[答案]D[解析]∵一次函数y=(m﹣1)x的图象上两点A(x1,y1),B(x2,y2),且x1>x2时,有y1<y2∴m﹣1<0∴m<1故选:D.[点睛]本题考查了一次函数图象上点的坐标特征,利用一次函数增减性解决问题是本题的关键.第Ⅱ卷(非选择题共120分)注意事项:1.第Ⅱ卷分填空题和解答题.2.第Ⅱ卷所有题目的答案,考生须用0.5毫米黑色签字笔答在试卷规定的区域内.二、填空题(本大题共10小题,每小题3分,共30分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.若一个数的立方根是﹣3,则这个数是.[答案]﹣27.[解析]∵(﹣3)3=﹣27,∴﹣27的立方根是﹣3.∴这个数是﹣27.故答案为:﹣27.[点睛]本题主要考查的是立方根的定义,掌握立方根的定义是解题的关键.12.如图,已知:AB=AC,D是BC边的中点,则∠1+∠C=度.[答案]90[解析]∵AB=AC,∴∠B=∠C,∵D是BC边的中点,∴AD⊥BC,∴∠1+∠B=90°,∴∠1+∠C=90°.故答案为:90.[点睛]本题考查了等腰三角形的性质;等腰三角形底边上的中线、高线以及顶角的平分线三线合一的熟练应用是正确解答本题的关键.13.若12.6389823,则.(精确到0.01).[答案]12.64.[解析]∵12.6389823,∴12.64.故答案为:12.64.[点睛]考查了立方根,近似数,关键是熟练掌握四舍五入法求近似数.14.小刚画了一张对称的脸谱,他对妹妹说:“如果我用(1,4)表示一只眼,用(2,2)表示嘴,那么另一只眼的位置可以表示成.[答案](3,4).[解析]∵用(1,4)表示一只眼,用(2,2)表示嘴,∴另一只眼的位置可以表示成:(3,4).故答案为:(3,4).[点睛]此题主要考查了坐标确定位置,利用点的对称性得出对应点坐标是解题关键.15.将函数y=5x的图象沿y轴向下平移3个单位长度,所得直线的函数表达式为[答案]y=5x﹣3.[解析]将函数y=5x的图象沿y轴向下平移3个单位长度,所得直线的函数表达式为:y=5x﹣3,故答案为:y=5x﹣3.[点睛]本题考查了一次函数图象与几何变换,利用函数图象的平移规律是解题关键.16.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为[答案]40°或100°[解析]△ABC,AB=AC.有两种情况:(1)顶角∠A=40°,(2)当底角是40°时,∵AB=AC,∴∠B=∠C=40°,∵∠A+∠B+∠C=180°,∴∠A=180°﹣40°﹣40°=100°,∴这个等腰三角形的顶角为40°和100°.故答案为:40°或100°.[点睛]本题考查了等腰三角形的性质和三角形的内角和定理的理解和掌握,能对有的问题正确地进行分类讨论.17.如图,点O为线段AB上的任意一点(不与A,B重合),分别以AO,BO为一腰在AB的同侧作等腰△AOC和△BOD,OA=OC,OB=OD,∠AOC与∠BOD都是锐角,且∠AOC=∠BOD,AD与BC相交于点P,∠COD=110°,则∠APB=145°.[答案]145.[解析]如图,∵∠AOC=∠BOD,∴∠AOC+∠COD=∠BOD+∠COD,∴∠AOD=∠COB,在△AOD和△COB中,,∴△AOD≌△COB.∵∠COD=110°,∠AOC=∠BOD,∴∠AOC=∠BOD=(180°﹣110°)÷2=35°,∵△AOD≌△COB,∴∠OAD=∠OCB,∴∠CMP=∠AMO,∴∠CPM=∠AOC=35°,∴∠APB=180°﹣∠CPM=180°﹣35°=145°.故答案为:145.[点睛]本题考查了全等三角形的性质与判定,解决本题的关键是证明△AOD≌△COB.18.如图,直线y=x+6与x轴、y轴分别交于点A和点B,x轴上有一点C(﹣4,0),点P为直线一动点,当PC+PO 值最小时点P的坐标为[答案](,)[解析]如图,作点C关于直线y=x+6的对称点C′,连接AC′,OC′交直线y=x+6于点P,则点P即为所求,∵直线y=x+6与x轴、y轴分别交于点A和点B,∴A(﹣6,0),B(0,6),∴∠BAO=45°.∵CC′⊥AB,∴∠ACC′=45°.∵点C,C′关于直线AB对称,∴AB是线段CC′的垂直平分线,∴△ACC′是等腰直角三角形,∴AC=AC′=2,∴C′(﹣6,2).设直线OC′的解析式为y=kx(k≠0),则2=﹣6k,解得k,∴直线OC′的解析式为y x,∴,解得,∴P(,).故答案为:(,).[点睛]本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.三.解答题(共10小题)19.(1)已知:2(x﹣3)2=50,求x;(2)计算:[分析](1)直接利用平方根的定义计算得出答案;(2)直接利用立方根以及绝对值的性质分别化简得出答案.[解析](1)(x﹣3)2=25,则x﹣3=±5,解得:x=8或x=﹣2;(2)原式=2﹣3﹣(1)=﹣1 1.[点睛]此题主要考查了实数运算,正确化简各数是解题关键.20.在如图所示的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在正方形网格的格点(网格线的交点)上.(1)请在如图所示的网格平面内作出平面直角坐标系,使点A坐标为(1,3)点B坐标为(2,1);(2)请作出△ABC关于y轴对称的△A'B'C',并写出点C'的坐标;(3)判断△ABC的形状.并说明理由.[分析](1)根据点A及点C的坐标,易得y轴在C的右边一个单位,x轴在C的下方3个单位,建立直角坐标系即可;(2)根据对称轴垂直平分对应点连线,可得各点的对称点,顺次连接即可;(3)根据勾股定理的逆定理判断即可;[解析](1)如图所示:(2)如图所示:△A'B'C'即为所求:C'的坐标为(﹣5,5);(3)∵AB2=1+4=5,AC2=4+16=20,BC2=9+16=25,∴AB2+AC2=BC2,∴△ABC是直角三角形.[点睛]本题考查了轴对称作图的知识及直角坐标系的建立,解答本题的关键是掌握轴对称的性质,准确作图.21.已知y﹣1与x+2成正比例,且x=﹣1时,y=3.(1)求y与x之间的关系式;(2)它的图象经过点(m﹣1,m+1),求m的值.[答案](1)根据y﹣1与x+2成正比例,设y﹣1=k(x+2),把x与y的值代入求出k的值,即可确定出关系式;(2)把点(m﹣1,m+1)代入一次函数解析式求出m的值即可.[解析](1)根据题意:设y﹣1=k(x+2),把x=﹣1,y=3代入得:3﹣1=k(﹣1+2),解得:k=2.则y与x函数关系式为y=2(x+2)+1=2x+5;(2)把点(m﹣1,m+1)代入y=2x+5得:m+1=2(m﹣1)+5解得m=﹣2.[点睛]此题考查了待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键.22.如图,在△ABC中,AB=AC,DE是边AB的垂直平分线,交AB于E、交AC于D,连接BD.(1)若∠A=40°,求∠DBC的度数;(2)若△BCD的周长为16cm,△ABC的周长为26cm,求BC的长.[分析](1)首先计算出∠ABC的度数,再根据线段垂直平分线上任意一点,到线段两端点的距离相等可得AD =BD,进而可得∠ABD=∠A=40°,然后可得答案;(2)根据线段垂直平分线的性质可得AD=DB,AE=BE,然后再计算出AC+BC的长,再利用△ABC的周长为26cm可得AB长,进而可得答案.[解析](1)∵AB=AC,∴∠ABC=∠C,∠A=40°,∴∠ABC70°,∵DE是边AB的垂直平分线,∴DA=DB,∴∠DBA=∠A=40°,∴∠DBC=∠ABC﹣∠DBA=70°﹣40°=30°;(2)∵△BCD的周长为16cm,∴BC+CD+BD=16,∴BC+CD+AD=16,∴BC+CA=16,∵△ABC的周长为26cm,∴AB=26﹣BC﹣CA=26﹣16=10,∴AC=AB=10,∴BC=26﹣AB﹣AC=26﹣10﹣10=6cm.[点睛]此题主要考查了线段垂直平分线的性质,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.23.如图,已知△ABC中,AB=AC,BD=CE,(1)求证:△ABE≌△ACD.(2)如果∠BAC=75°,∠BAD=30°,求∠DAE的度数.[分析](1)由等腰三角形的性质可得∠B=∠C,由BD=CE可得BE=CD,根据“SAS”可证△ABE≌△ACD;(2)根据全等三角形的性质可得∠BAE=∠CAD,可得∠BAD=∠CAE=30°,即可求∠DAE的度数.[解答]证明:(1)∵AB=AC∴∠B=∠C∵BD=CE∴BE=CD,且AB=AC,∠B=∠C,∴△ABE≌△ACD(SAS)(2)由(1)得,△ABE≌△ACD∴∠BAE=∠CAD∴∠BAD=∠CAE=30°∴∠DAE=150[点睛]本题考查了全等三角形的判定和性质,等腰三角形的性质,熟练运用全等三角形的判定是本题的关键.24.在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.(1)求证:△ABP≌△ACQ;(2)请判断△APQ是什么形状的三角形?试说明你的结论.[分析](1)根据等边三角形的性质可得AB=AC,再根据SAS证明△ABP≌△ACQ;(2)根据全等三角形的性质得到AP=AQ,再证∠P AQ=60°,从而得出△APQ是等边三角形.[解答]证明:(1)∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,在△ABP和△ACQ中,,∴△ABP≌△ACQ(SAS),(2)∵△ABP≌△ACQ,∴∠BAP=∠CAQ,AP=AQ,∵∠BAP+∠CAP=60°,∴∠P AQ=∠CAQ+∠CAP=60°,∴△APQ是等边三角形.[点睛]本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,考查了正三角形的判定,本题中求证△ABP≌△ACQ是解题的关键.25.为倡导绿色出行,某共享单车近期登陆徐州,根据连续骑行时长分段计费:骑行时长在2h以内(含2h)的部分,每0.5h计费1元(不足0.5h按0.5h计算);骑行时长超出2h的部分,每小时计费4元(不足1h按1h计算).根据此收费标准,解决下列问题:(1)连续骑行5h,应付费多少元?(2)若连续骑行xh(x>2且x为整数) 需付费y元,则y与x的函数表达式为y=4x﹣4;(3)若某人连续骑行后付费24元,求其连续骑行时长的范围.[分析](1)连续骑行5h,要分两个阶段计费:前两个小时,按每个小时2元计算,后3个小时按每个小时计算,可得结论;(2)根据超过2h的计费方式可得:y与x的函数表达式;(3)根据题意可知:里程超过2个小时,根据(2)的表达式可得结果.[解析](1)当x=5时,y=2×2+4×(5﹣2)=16,∴应付16元;(2)y=4(x﹣2)+2×2=4x﹣4;故答案为:y=4x﹣4;(3)当y=24,24=4x﹣4,x=7,∴连续骑行时长的范围是:6<x≤7.[点睛]本题是一次函数的应用,考查了分段函数的知识,属于基础题,解答本题的关键是仔细审题,得出各段的收费标准.26.一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量y(升)关于加满油后已行驶的路程x(千米)的函数图象.(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;(2)求y关于x的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.[分析](1)由图象可知:汽车行驶400千米,剩余油量30升,行驶时的耗油量为0.1升/千米,则汽车行驶400千米,耗油400×0.1=40(升),故加满油时油箱的油量是40+30=70升.(2)设y=kx+b(k≠0),把(0,70),(400,300)坐标代入可得:k=﹣0.1,b=70,求出解析式,当y=5 时,可得x=650.[解析](1)由图象可知:汽车行驶400千米,剩余油量30升,∵行驶时的耗油量为0.1升/千米,则汽车行驶400千米,耗油400×0.1=40(升)∴加满油时油箱的油量是40+30=70升.(2)设y=kx+b(k≠0),把(0,70),(400,30)坐标代入可得:k=﹣0.1,b=70∴y=﹣0.1x+70,当y=5 时,x=650即已行驶的路程的为650千米.[点睛]该题是根据题意和函数图象来解决问题,考查学生的审题识图能力和待定系数法求解析式以及根根解析式求值.27.基本图形:在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE.探索:(1)连接EC,如图①,试探索线段BC,CD,CE之间满足的等量关系,并证明结论;(2)连接DE,如图②,试探索线段DE,BD,CD之间满足的等量关系,并证明结论;联想:(3)如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=3,CD=1,则AD的长为2.[分析](1)结论:BC=DC+EC.证明△BAD≌△CAE(SAS)即可解决问题.(2)结论:BD2+CD2=DE2.由△BAD≌△CAE,推出BD=CE,∠ACE=∠B,可得∠DCE=90°,利用勾股定理即可解决问题.(3)法一:构造如图所示图形,△ADE是等腰直角三角形,易得△ABE≌△ACD,BE=CD,∠BEA=∠ADC=45°,再得△BED是直角三角形,得,所以AD=2.法二:作AE⊥AD,使AE=AD,连接CE,DE.由△BAD≌△CAE(SAS),推出BD=CE=3,由∠ADC=45°,∠EDA=45°,可得∠EDC=90°,再利用勾股定理即可解决问题.[解析](1)结论:BC=DC+EC.理由:如图①中,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE,∴BC=BD+CD=EC+CD,即:BC=DC+EC;(2)结论:BD2+CD2=DE2.理由:连接CE,由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B,∴∠DCE=90°,∴CE2+CD2=ED2.(3)法一:构造如图所示图形,△ADE是等腰直角三角形,易得△ABE≌△ACD,BE=CD,∠BEA=∠ADC=45°,再得△BED是直角三角形,得,所以AD=2.法二:作AE⊥AD,使AE=AD,连接CE,DE.∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=3,∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE,∵∠DAE=90°,∴AD2+AE2=DE2∴AD=2.故答案为2.[点睛]本题属于几何变换综合题,考查了等腰直角三角形的性质,旋转变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.28.阅读下面材料:小明遇到这样一个问题:如图1,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,试判断BC和AC、AD之间的数量关系.小明发现,利用轴对称做一个变化,在BC上截取CA′=CA,连接DA′,得到一对全等的三角形,从而将问题解决(如图2).请回答:(1)在图2中,小明得到的全等三角形是△ADC≌△A′DC;BC和AC、AD之间的数量关系是BC=AC+AD.(2)参考小明思考问题的方法,解决问题:如图3,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9.求AB的长.(3)如图4,在平面直角坐标系中,直线y=﹣x+4交x轴于点A,交y轴于点B,C是OA的中点,D为AB上一点,且∠DCA=∠BCO,连接OD,CD,求.[分析](1)由CD平分∠ACB知∠ACD=∠A′CD,结合CA=CA′,CD=CD即可判定△ADC≌△A′DC;由全等性质知AC=A′C,AD=A′D,再证A′B=AD可得答案;(2)在AB上截取AE=AD,连接CE,先证△ADC≌△AEC得AE=AD=9,CE=CD=10=BC,作CF⊥AB,设EF=BF=x,利用勾股定理求得x=6,根据AB=AE+EF+FB可得答案;(3)在BC上取D′,使得CD=CD′,先证△ACD≌△OCD′得AD=OD′,∠CAD=∠COD′,再证△OBD′≌△AOD得BD′=OD,根据BC=BD′+CD′=OD+CD代入求解可得.[解析](1)在图2中,∵CD平分∠ACB,∴∠ACD=∠A′CD,∵CA=CA′,CD=CD,∴△ADC≌△A′DC(SAS),即小明得到的全等三角形是△ADC≌△A′DC,∴AC=A′C,AD=A′D,∠A=∠CA′D=60°,∵∠ACB=90°,∠A=60°,∴∠B=30°,∴∠A′DB=∠B=30°,∴A′D=A′B,∴A′B=AD,∵BC=A′C+A′B,∴BC=AC+AD,故答案为:ADC,A′DC,BC=AC+AD.(2)在AB上截取AE=AD,连接CE,如图3所示:∵AC平分∠BAD,∴∠DAC=∠EAC.在△AEC和△ADC中,∵∴AE=AD=9,CE=CD=10=BC,过点C作CF⊥AB于点F,∴EF=BF,设EF=BF=x.在Rt△CFB中,∠CFB=90°,由勾股定理得CF2=CB2﹣BF2=102﹣x2,在Rt△CF A中,∠CF A=90°,由勾股定理得CF2=AC2﹣AF2=172﹣(9+x)2.∴102﹣x2=172﹣(9+x)2.解得:x=6,∴AB=AE+EF+FB=9+6+6=21,∴AB的长为21.(3)在BC上取D′,使得CD=CD′,∵C是OA中点,∴CO=CA,∵∠ACD=∠OCD′,∴△ACD≌△OCD′(SAS),∴AD=OD′,∠CAD=∠COD′,∵y=﹣x+4与x轴的交点A(4,0),与y轴的交点B(0,4),∴OA=OB=4,∠OAB=∠OBA=45°=∠COD′,∴∠BOD′=∠OAD=45°,在△OBD′和△AOD中,∵,∴BD′=OD,则BC=BD′+CD′=OD+CD,∴1.[点睛]本题是一次函数的综合问题,解题的关键是掌握全等三角形的判定与性质,勾股定理的运用及一次函数图象上点的坐标特征等知识点.。
全等三角形的判定重难点易错点解析题一 题面:(1)已知:如图,E 、C 两点在线段BF 上,BE =CF ,AB ∥DE ,请你添加一个条件,使得△ABC ≌△DEF ,并证明.DFBC A E(2)如图,OB ⊥AB ,OC ⊥AC ,垂足为B 、C ,请你再添加一个条件,使AO 平分∠BAC ,并证明.CBAO全等三角形判定的条件: SSS 、SAS 、ASA 、AAS 、HL 注意:SSA 条件分类直接条件:边相等、角相等、公共边、…… 间接条件:平行、部分公共边、……金题精讲题一题面:如图,D在AB上,E在AC上,且∠B=∠C,那么补充下列一个条件后,仍无法判定△ABE≌△ACD的是()A.AD=AE B.∠AEB=∠ADC C.BE=CD D.AB=ACE BA CD全等三角形的判定题二题面:如图,已知CA=CD,∠1=∠2.(1)请你添加一个条件使△A BC≌△DEC.(2)添加条件后请证明△ABC≌△DEC.2 1DEB CA全等判定条件的收集题三题面:如图,∠A=∠D=90°,请你再添加一个条件,使△ABC≌△DCB,并证明.你有多少种添加条件的方法呢?DCBA直角三角形的判定题四题面:如图,∠B=∠C,在不增加辅助线的情况下,(1)添加一个适当的条件,使△ABD≌△A CE,(2)在(1)的条件下,△BOE和△COD全等吗?如果全等,请证明.DOBCAE全等判定的条件思维拓展题一题面:如图,有两个三角锥ABCD 、EFGH ,其中甲、乙、丙、丁分别表示△ABC ,△ACD ,△EFG ,△EGH .若∠ACB =∠CAD =∠EFG =∠EGH =70°,∠BAC =∠ACD =∠EGF =∠EHG =50°,则下列叙述何者正确( ) A .甲、乙全等,丙、丁全等 B .甲、乙全等,丙、丁不全等 C .甲、乙不全等,丙、丁全等 D .甲、乙不全等,丙、丁不全等全等的判定讲义参考答案重难点易错点解析题一答案:(1)AC∥DF,ASA;AB=DE,SAS;∠ACB=∠DFC,ASA;∠A=∠D,AAS.(2)OB=OC,HL;A B=AC,HL;∠AOB=∠AOC,AAS;∠OAB =∠O AC,AAS.金题精讲题一答案:B题二答案:CB=CE SAS ∠B=∠E AAS ∠A=∠D ASA题三答案: 2条边2个角都可以题四答案:添加任意一条边全等AAS思维拓展答案:B【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
苏科版八年级数学上册第1章《全等三角形》单元测试一、选择题t1.在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么△ABC中与这个角对应的角是()hA.∠A B.∠B C.∠C D.∠D Y2.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()6A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°O3.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()5A.SSS B.SAS C.AAS D.ASA I4.如图,已知AB∥DC,AD∥BC,BE=DF,则图中全等的三角形有()aA.3对B.4对C.5对D.6对h5.在△ABC和△DEF中,已知AB=DE,∠A=∠D,若补充下列条件中的任意一条,就能判定△ABC≌△DEF的是()P①AC=DF②BC=EF③∠B=∠E④∠C=∠F.6A.①②③B.②③④C.①③④D.①②④y6.在△ABC中,∠A=90°,CD平分∠ACB,DE⊥BC于点E,若AB=6,则DE+DB=()6A.4B.5C.6D.787.根据下列已知条件,能唯一画出△ABC的是()ZA.AB=3,BC=4,AC=8B.AB=4,BC=3,∠A=30°kC.∠A=60°,∠B=45°,AB=4D.∠C=90°,AB=648.如图是人字型金属屋架的示意图,该屋架由BC、AC、BA、AD四段金属材料焊接而成,其中A、B、C、D四点均为焊接点,且AB=AC,D为BC的中点,假设焊接所需的四段金属材料已截好,并已标出BC段的中点D,那么,如果焊接工身边只有可检验直角的角尺,而又为了准确快速地焊接,他应该首先选取的两段金属材料及焊接点是()0A.AD和BC,点D B.AB和AC,点A C.AC和BC,点C D.AB和AD,点A A9.如图,已知OQ平分∠AOB,点P为OQ上任意一点,点N为OA上一点,点M为OB上一点,若∠PNO+∠PMO=180°,则PM和PN的大小关系是()fA.PM>PN B.PM<PN C.PM=PN D.不能确定A10.如图,已知点C是∠AOB的平分线上一点,点P、P′分别在边OA、OB上.如果要得到OP=OP′,需要添加以下条件中的某一个即可,请你写出所有可能的结果的序号为()=①∠OCP=∠OCP′;②∠OPC=∠OP′C;③PC=P′C;④PP′⊥OC.=A.①②B.④③C.①②④D.①④③二、填空题11.如图,△ABC≌△ADE,∠B=100°,∠BAC=30°,那么∠AED=度.12.如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是(填上你认为适当的一个条件即可).13.如图,AE=BF,AD∥BC,AD=BC,则有△ADF≌,且DF=.14.如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若根据“HL”判定,还需要加条件,若加条件∠B=∠C,则可用判定.15.把两根钢条AA′、BB′的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),如图,若测得AB=5厘米,则槽宽为米.16.如图,AD=AE,BE=CD,∠1=∠2=100°,∠BAE=60°,那么∠CAE=.17.如图,∠A=∠E,AC⊥BE,AB=EF,BE=10,CF=4,则AC=.18.如图,∠C=90°,AC=10,BC=5,AM⊥AC,点P和点Q从A点出发,分别在射线AC和射线AM上运动,且Q点运动的速度是P点运动速度的2倍,当点P运动至处时,△ABC与△APQ全等.19.AD是△ABC的边BC上的中线,AB=12,AC=8,则边BC的取值范围是;中线AD的取值范围是.20.如图,BD是∠ABC的角平分线,DE⊥AB于E,△ABC的面积是30cm2,AB=18cm,BC=12cm,则DE= cm.三、解答题21.已知:如图,∠ABC=∠DCB,BD、CA分别是∠ABC、∠DCB的平分线.求证:AB=DC.22.两块完全相同的三角形纸板ABC和DEF,按如图所示的方式叠放,阴影部分为重叠部分,点O 为边AC和DF的交点,不重叠的两部分△AOF与△DOC是否全等?为什么?23.如图,∠DCE=90°,CD=CE,AD⊥AC,BE⊥AC,垂足分别为A、B.求证:AD+AB=BE.24.如图,是一个用六根竹条连接而成的凸六边形风筝骨架,考虑到骨架的稳定性、对称性、实用性等因素,请再加三根竹条与其顶点连接.要求:在图(1)、(2)中分别加三根竹条,设计出两种不同的连接方案.(用直尺连接)25.已知:如图①,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=50°(1)求证:①AC=BD;②∠APB=50°;(2)如图②,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=α,则AC与BD间的等量关系为,∠APB的大小为26.如图①A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,B F⊥AC,若AB=CD.(1)图①中有对全等三角形,并把它们写出来;(2)求证:BD与EF互相平分于G;(3)若将△ABF的边AF沿GA方向移动变为图②时,其余条件不变,第(2)题中的结论是否成立,如果成立,请予证明.《第1章全等三角形》参考答案与试题解析一、选择题1.在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么△ABC中与这个角对应的角是()A.∠A B.∠B C.∠C D.∠D【考点】全等三角形的性质.【分析】只要牢记三角形只能有一个钝角就易解了.【解答】解:∵一个三角形中只能有一个钝角.∴100°的角只能是等腰三角形中的顶角.∴∠B=∠C是底角,∠A是顶角∴△ABC中与这个角对应的角是∠A.故选A.【点评】本题考查的知识点为:全等的三角形的对应角相等,知道一个三角形中只能有一个钝角是解决本题的关键.2.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°【考点】全等三角形的判定.【分析】要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA 后则不能.【解答】解:A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;C、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故C选项符合题意;D、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故D选项不符合题意;故选:C.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.3.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA【考点】全等三角形的应用.【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选D.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.4.如图,已知AB∥DC,AD∥BC,BE=DF,则图中全等的三角形有()A.3对B.4对C.5对D.6对【考点】全等三角形的判定.【分析】根据全等三角形的判定方法进行判断.全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件.【解答】解:∵AB∥DC,AD∥BC,∴∠DAC=∠BCA,∠CDB=∠ABD,∠DCA=∠BAC,∠ADB=∠CBD,又∵BE=DF,∴由∠ADB=∠CBD,DB=BD,∠ABD=∠CDB,可得△ABD≌△CDB;由∠DAC=∠BCA,AC=CA,∠DCA=∠BAC,可得△ACD≌△CAB;∴AO=CO,DO=BO,由∠DAO=∠BCO,AO=CO,∠AOD=∠COB,可得△AOD≌△COB;由∠CDB=∠ABD,∠COD=∠AOB,CO=AO,可得△COD≌△AOB;由∠DCA=∠BAC,∠COF=∠AOE,CO=AO,可得△AOE≌△COF;由∠CDB=∠ABD,∠DOF=∠BOE,DO=BO,可得△DOF≌△BOE;故选(D)【点评】本题主要考查了全等三角形的判定与性质的运用,解题时注意:若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,或者是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.5.在△ABC和△DEF中,已知AB=DE,∠A=∠D,若补充下列条件中的任意一条,就能判定△ABC≌△DEF的是()①AC=DF②BC=EF③∠B=∠E④∠C=∠F.A.①②③B.②③④C.①③④D.①②④【考点】全等三角形的判定.【分析】根据已知条件,已知一角和一边,所以要证两三角形全等,可以根据角边角、角角边、边角边判定定理添加条件,再根据选项选取答案.【解答】解:如图,∵AB=DE,∠A=∠D,∴根据“边角边”可添加AC=DF,根据“角边角”可添加∠B=∠E,根据“角角边”可添加∠C=∠F.所以补充①③④可判定△ABC≌△DEF.故选C.【点评】本题主要考查三角形全等的判定,根据不同的判定方法可选择不同的条件,所以对三角形全等的判定定理要熟练掌握并归纳总结.6.在△ABC中,∠A=90°,CD平分∠ACB,DE⊥BC于点E,若AB=6,则DE+DB=()A.4B.5C.6D.7【考点】角平分线的性质.【分析】根据角平分线上的点到角的两边距离相等可得AD=DE,然后根据AD+DB=AB等量代换即可得解.【解答】解:∵∠A=90°,CD平分∠ACB,DE⊥BC,∴AD=DE,∵AD+DB=AB,∴DE+DB=AB=6.故选C.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.7.根据下列已知条件,能唯一画出△ABC的是()A.AB=3,BC=4,AC=8B.AB=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4D.∠C=90°,AB=6【考点】全等三角形的判定.【专题】作图题;压轴题.【分析】要满足唯一画出△ABC,就要求选项给出的条件符合三角形全等的判定方法,不符合判定方法的画出的图形不一样,也就是三角形不唯一,而各选项中只有C选项符合ASA,是满足题目要求的,于是答案可得.【解答】解:A、因为AB+BC<AC,所以这三边不能构成三角形;B、因为∠A不是已知两边的夹角,无法确定其他角的度数与边的长度;C、已知两角可得到第三个角的度数,已知一边,则可以根据ASA来画一个三角形;D、只有一个角和一个边无法根据此作出一个三角形.故选C.【点评】此题主要考查了全等三角形的判定及三角形的作图方法等知识点;能画出唯一三角形的条件一定要满足三角形全等的判定方法,不符合判定方法的画出的三角形不确定,当然不唯一.8.如图是人字型金属屋架的示意图,该屋架由BC、AC、BA、AD四段金属材料焊接而成,其中A、B、C、D四点均为焊接点,且AB=AC,D为BC的中点,假设焊接所需的四段金属材料已截好,并已标出BC段的中点D,那么,如果焊接工身边只有可检验直角的角尺,而又为了准确快速地焊接,他应该首先选取的两段金属材料及焊接点是()A.AD和BC,点D B.AB和AC,点A C.AC和BC,点C D.AB和AD,点A【考点】全等三角形的应用.【分析】根据全等三角形的判定定理SSS推知△ABD≌△ACD,则∠ADB=∠ADC=90°.【解答】解:根据题意知,∵在△ABD与△ACD中,,∴△ABD≌△ACD(SSS),∴∠ADB=∠ADC=90°,∴AD⊥BC,根据焊接工身边的工具,显然是AD和BC焊接点D.故选:A.【点评】本题考查了全等三角形的应用.巧妙地借助两个三角形全等,寻找角与角间是数量关系.9.如图,已知OQ平分∠AOB,点P为OQ上任意一点,点N为OA上一点,点M为OB上一点,若∠PNO+∠PMO=180°,则PM和PN的大小关系是()A.PM>PN B.PM<PN C.PM=PN D.不能确定【考点】角平分线的性质;全等三角形的判定与性质.【分析】作PE⊥OB于E,PF⊥OA于F,根据角平分线的性质定理证明PE=PF,根据三角形全等的判定定理证明△PFN≌△PEM,得到答案.【解答】解:作PE⊥OB于E,PF⊥OA于F,∵OQ平分∠AOB,∴PE=PF,∵∠PNO+∠PNA=180°,∠PNO+∠PMO=180°,∴∠PNA=∠PMO,在△PFN和△PEM中,,∴△PFN≌△PEM,∴PM=PN.故选:C.【点评】本题考查的是角平分线的性质和全等三角形的判定和性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.10.如图,已知点C是∠AOB的平分线上一点,点P、P′分别在边OA、OB上.如果要得到OP=OP′,需要添加以下条件中的某一个即可,请你写出所有可能的结果的序号为()①∠OCP=∠OCP′;②∠OPC=∠OP′C;③PC=P′C;④PP′⊥OC.A.①②B.④③C.①②④D.①④③【考点】全等三角形的判定与性质.【分析】根据所加条件,结合已知条件,能够证明OP和OP′所在的三角形全等即可.【解答】解:①若加∠OCP=∠OCP′,则根据ASA可证明△OPC≌△OP′C,得OP=OP′;②若加∠OPC=∠OP′C,则根据AAS可证明△OPC≌△OP′C,得OP=OP′;③若加PC=P′C,则不能证明△OPC≌△OP′C,不能得到OP=OP′;④若加PP′⊥OC,则根据ASA可证明△OPC≌△OP′C,得OP=OP′.故选C.【点评】此题考查全等三角形的判定和性质,熟练掌握判定方法是关键.二、填空题11.如图,△ABC≌△ADE,∠B=100°,∠BAC=30°,那么∠AED=50度.【考点】全等三角形的性质.【分析】先运用三角形内角和定理求出∠C,再运用全等三角形的对应角相等来求∠AED.【解答】解:∵在△ABC中,∠C=180﹣∠B﹣∠BAC=50°,又∵△ABC≌△ADE,∴∠AED=∠C=50°,∴∠AED=50度.故填50【点评】本题考查的是全等三角形的性质,全等三角形的对应边相等,对应角相等.是需要识记的内容.12.如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是∠B=∠C(填上你认为适当的一个条件即可).【考点】全等三角形的判定.【专题】开放型.【分析】根据题意,易得∠AEB=∠AEC,又AE公共,所以根据全等三角形的判定方法容易寻找添加条件.【解答】解:∵∠1=∠2,∴∠AEB=∠AEC,又AE公共,∴当∠B=∠C时,△ABE≌△ACE(AAS);或BE=CE时,△ABE≌△ACE(SAS);或∠BAE=∠CAE时,△ABE≌△ACE(ASA).【点评】此题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.13.如图,AE=BF,AD∥BC,AD=BC,则有△ADF≌△BCE,且DF=CE.【考点】全等三角形的判定与性质.【专题】常规题型.【分析】由题中条件可由ASA判定△ADF≌△BCE,进而得出DF=CE.【解答】解:∵AE=BF,∴AF=BE,∵AD∥BC,∴∠A=∠D,又AD=BC,∴△ADF≌△BCE,∴DF=CE.故答案为:△BCE,CE.【点评】本题主要考查了全等三角形的判定及性质,能够熟练掌握.14.如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若根据“HL”判定,还需要加条件AB=AC,若加条件∠B=∠C,则可用AAS判定.【考点】直角三角形全等的判定.【分析】要使△ABD≌△ACD,且利用HL,已知AD是直边,则要添加对应斜边;已知两角及一对应边相等,显然根据的判定为AAS.【解答】解:添加AB=AC∵AD⊥BC,AD=AD,AB=AC∴△ABD≌△ACD已知AD⊥BC于D,AD=AD,若加条件∠B=∠C,显然根据的判定为AAS.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15.把两根钢条AA′、BB′的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),如图,若测得AB=5厘米,则槽宽为0.05米.【考点】全等三角形的应用.【专题】计算题.【分析】连接AB,A′B′,根据O为AB′和BA′的中点,且∠A′OB′=∠AOB即可判定△OA′B′≌△OAB,即可求得A′B′的长度.【解答】解:连接AB,A′B′,O为AB′和BA′的中点,∴OA′=OB,OA=OB′,∵∠A′OB′=∠AOB∴△OA′B′≌△OAB,即A′B′=AB,故A′B′=5cm,5cm=0.05m.故答案为0.05.【点评】本题考查了全等三角形在实际生活中的应用,考查了全等三角形的证明和对应边相等的性质,本题中求证△OA′B′≌△OAB是解题的关键.16.如图,AD=AE,BE=CD,∠1=∠2=100°,∠BAE=60°,那么∠CAE=40°.【考点】全等三角形的判定与性质;等腰三角形的性质.【分析】求出BD=CE和∠B的度数,根据SAS推出△ADB≌△AEC,推出∠C=∠B=40°,根据三角形内角和定理求出即可.【解答】解:∵BE=CD,∴BE﹣DE=CD﹣DE,∴BD=CE,∵∠2=100°,∠BAE=60°,∴∠B=∠2﹣∠BAE=40°,∵在△ADB和△AEC中∴△ADB≌△AEC,∴∠C=∠B=40°,∵∠2+∠C+∠CAE=180°,∴∠CAE=180°﹣100°﹣40°=40°,故答案为:40°.【点评】本题考查了全等三角形的性质和判定,三角形的外角性质,三角形内角和定理的应用,解此题的关键是求出△ADB≌△AEC,注意:全等三角形的对应边相等,对应角相等.17.如图,∠A=∠E,AC⊥BE,AB=EF,BE=10,CF=4,则AC=6.【考点】全等三角形的判定与性质.【分析】由AAS证明△ABC≌△EFC,得出对应边相等AC=EC,BC=CF=4,求出EC,即可得出AC的长.【解答】解:∵AC⊥BE,∴∠ACB=∠ECF=90°,在△ABC和△EFC中,,∴△ABC≌△EFC(AAS),∴AC=EC,BC=CF=4,∵EC=BE﹣BC=10﹣4=6,∴AC=EC=6;故答案为:6.【点评】本题考查了全等三角形的判定与性质;证明三角形全等得出对应边相等是解决问题的关键.18.如图,∠C=90°,AC=10,BC=5,AM⊥AC,点P和点Q从A点出发,分别在射线AC和射线AM上运动,且Q点运动的速度是P点运动速度的2倍,当点P运动至P点运动到AC中点处时,△ABC 与△APQ全等.【考点】全等三角形的判定.【分析】本题要分情况讨论:①Rt△APQ≌Rt△CBA,此时AP=BC=5cm,可据此求出P点的位置.②Rt △QAP≌Rt△BCA,此时AP=AC,P、C重合.【解答】解:根据三角形全等的判定方法HL可知:①当P运动到AP=BC时,∵∠C=∠QAP=90°,在Rt△ABC与Rt△QPA中,,∴Rt△ABC≌Rt△QPA(HL),即AP=BC=5,即P点运动到AC中点;故答案为:P点运动到AC中点.【点评】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.19.AD是△ABC的边BC上的中线,AB=12,AC=8,则边BC的取值范围是4<BC<20;中线AD的取值范围是2<AD<10.【考点】全等三角形的判定与性质;三角形三边关系.【专题】计算题.【分析】BC边的取值范围可在△ABC中利用三角形的三边关系进行求解,而对于中线AD的取值范围可延长AD至点E,使AD=DE,得出△ACD≌△EBD,进而在△ABE中利用三角形三边关系求解.【解答】解:如图所示,在△ABC中,则AB﹣AC<BC<AB+AC,即12﹣8<BC<12+8,4<BC<20,延长AD至点E,使AD=DE,连接BE,∵AD是△ABC的边BC上的中线,∴BD=CD,又∠ADC=∠BDE,AD=DE∴△ACD≌△EBD,∴BE=AC,在△ABE中,AB﹣BE<AE<AB+BE,即AB﹣AC<AE<AB+AC,12﹣8<AE<12+8,即4<AE<20,∴2<AD<10.故此题的答案为4<BC<20,2<AD<10.【点评】本题主要考查了全等三角形的判定及性质以及三角形的三边关系问题,能够理解掌握并熟练运用.20.如图,BD是∠ABC的角平分线,DE⊥AB于E,△ABC的面积是30cm2,AB=18cm,BC=12cm,则DE= 2cm.【考点】角平分线的性质.【分析】过点D,作DF⊥BC,垂足为点F,根据BD是∠ABC的角平分线,得DE=DF,根据等高的三角形的面积之比等于其底边长之比,得△BDC与△BDA的面积之比,再求出△BDA的面积,进而求出DE.【解答】解:如图,过点D,作DF⊥BC,垂足为点F∵BD是∠ABC的角平分线,DE⊥AB,∴DE=DF∵△ABC的面积是30cm2,AB=18cm,BC=12cm,∴S=•DE•AB+•DF•BC,即×18×DE+×12×DE=30,△ABC∴DE=2(cm).故填2.【点评】本题考查了角平分线的性质;解题中利用了“角的平分线上的点到角的两边的距离相等”、等高的三角形的面积之比等于其底边长之比,三角形的面积计算公式等知识.三、解答题21.已知:如图,∠ABC=∠DCB,BD、CA分别是∠ABC、∠DCB的平分线.求证:AB=DC.【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据角平分线性质和已知求出∠ACB=∠DBC,根据ASA推出△ABC≌△DCB,根据全等三角形的性质推出即可.【解答】证明:∵AC平分∠BCD,BD平分∠ABC,∴∠DBC=∠ABC,∠ACB=∠DCB,∵∠ABC=∠DCB,∴∠ACB=∠DBC,∵在△ABC与△DCB中,,∴△ABC≌△DCB(ASA),∴AB=DC.【点评】本题考查了全等三角形的性质和判定和角平分线性质的应用,关键是推出△ABC≌△DCB,题目比较好,难度适中.22.两块完全相同的三角形纸板ABC和DEF,按如图所示的方式叠放,阴影部分为重叠部分,点O 为边AC和DF的交点,不重叠的两部分△AOF与△DOC是否全等?为什么?【考点】全等三角形的判定.【专题】证明题.【分析】根据题意AB=BD,AC=DF,∠A=∠D,AB=BD,AC=DF可得AF=DC,利用AAS即可判定△AOF≌△DOC.【解答】答:△AOF≌△DOC.证明:∵两块完全相同的三角形纸板ABC和DEF,∴AB=DB,BF=BC,∴AB﹣BF=BD﹣BC,∴AF=DC∵∠A=∠D,∠AOF=∠DOC,即,∴△AOF≌△DOC(AAS).【点评】此题主要考查学生对全等三角形判定定理的理解和掌握,解答此题的关键是根据题意得出AF=DC,AO=DO.23.如图,∠DCE=90°,CD=CE,AD⊥AC,BE⊥AC,垂足分别为A、B.求证:AD+AB=BE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】利用同角的余角相等得到一对角相等,再由一对直角相等,CD=CE,利用AAS得到三角形ECB与三角形CDA全等,利用全等三角形对应边相等得到BC=AD,BE=AC,由AB+BC=AC=BE,等量代换即可得证.【解答】证明:∵∠ECB+∠DCA=90°,∠DCA+∠D=90°,∴∠ECB=∠D,在△ECB和△CDA中,,∴△ECB≌△CDA(AAS),∴BC=AD,BE=AC,∴AD+AB=AB+BC=AC=BE.【点评】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.24.如图,是一个用六根竹条连接而成的凸六边形风筝骨架,考虑到骨架的稳定性、对称性、实用性等因素,请再加三根竹条与其顶点连接.要求:在图(1)、(2)中分别加三根竹条,设计出两种不同的连接方案.(用直尺连接)【考点】利用轴对称设计图案.【专题】方案型.【分析】本题主要是利用轴对称图形的性质来画,本题为开放题答案不唯一.【解答】解:.【点评】本题主要考查了轴对称图形的性质.25.已知:如图①,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=50°(1)求证:①AC=BD;②∠APB=50°;(2)如图②,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=α,则AC与BD间的等量关系为AC=BD,∠APB的大小为α【考点】全等三角形的判定与性质.【分析】(1)根据∠AOB=∠COD=50°求出∠AOC=∠BOD,根据SAS推出△AOC≌△BOD,根据全等三角形的性质得出AC=BD,∠CAO=∠DBO,根据三角形内角和可知∠CAO+∠AOB=∠DBO+∠APB,推出∠APB=∠AOB即可.(2)根据∠AOB=∠COD=50°求出∠AOC=∠BOD,根据SAS推出△AOC≌△BOD,根据全等三角形的性质得出AC=BD,∠CAO=∠DBO,根据三角形内角和可知∠CAO+∠AOB=∠DBO+∠APB,推出∠APB=∠AOB即可.【解答】证明:(1)∵∠AOB=∠COD=50°,∴∠AOC=∠BOD,在△AOC和△BOD中,∴△AOC≌△BOD,∴AC=BD,∠CAO=∠DBO,根据三角形内角和可知∠CAO+∠AOB=∠DBO+∠APB,∴∠APB=∠AOB=50°.(2)解:AC=BD,∠APB=α,理由是:)∵∠AOB=∠COD=50°,∴∠AOC=∠BOD,在△AOC和△BOD中,∴△AOC≌△BOD,∴AC=BD,∠CAO=∠DBO,根据三角形内角和可知∠CAO+∠AOB=∠DBO+∠APB,∴∠APB=∠AOB=α,故答案为:AC=BD,α.【点评】本题考查了全等三角形的性质和判定的应用,解此题的关键是求出△AOC≌△BOD,注意:全等三角形的对应边相等,对应角相等.26.如图①A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,B F⊥AC,若AB=CD.(1)图①中有3对全等三角形,并把它们写出来△AFB≌△DEC,△DEG≌△BFG,△AGB≌△CGD;(2)求证:BD与EF互相平分于G;(3)若将△ABF的边AF沿GA方向移动变为图②时,其余条件不变,第(2)题中的结论是否成立,如果成立,请予证明.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)利用A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,B F⊥AC,若AB=CD 可判断全等三角形的个数.(2)先根据DE⊥AC,B F⊥AC,AE=CF,求证△ABF≌△CDE,再求证△DEG≌△BFG,即可.(3)先根据DE⊥AC,B F⊥AC,AE=CF,求证△ABF≌△CED,再求证△BFG≌△DEG,即可得出结论.【解答】解:(1)图①中有3对全等三角形,它们是△AFB≌△DEC,△DEG≌△BFG,△AGB≌△CGD.(2)∵DE⊥AC,BF⊥AC,∴∠AFB=∠CED=90°∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在Rt△ABF和Rt△CDE中,,∴Rt△ABF≌Rt△CED(HL),∴ED=BF.由∠AFB=∠CED=90°得DE∥BF,∴∠EDG=∠GBF,∵∠EGD和∠FGB是对顶角,ED=BF,△DEG≌△BFG,∴EG=FG,DG=BG,所以BD与EF互相平分于G;(3)第(2)题中的结论成立,理由:∵AE=CF,∴AE﹣EF=CF﹣EF,即AF=CE,∵DE⊥AC,BF⊥AC,∴∠AFB=∠CED=90°,在Rt△ABF和Rt△CDE中,,∴Rt△ABF≌Rt△CED(HL),∴BF=ED.∵∠BFG=∠DEG=90°,∴BF∥ED,∴∠FBG=∠EDG,∴△BFG≌△DEG,∴FG=GE,BG=GD,即第(2)题中的结论仍然成立.【点评】此题主要考查学生对全等三角形的判定与性质的理解和掌握,此题难度并不大,但是需要证明多次全等,步骤繁琐,是一道综合性较强的中档题.。
第4题 第5题 第6题 第7题
A O C B
D A 'O 'C 'B '
D '第8题 第9题 第10题 第11题
期末复习——全等三角形
1.已知,△ABC ≌△DEF ,△ABC 的周长为12cm ,AB=4cm ,BC=5cm ,则DE= ,EF= ,DF= .
2.已知△ABC 和△DEF 全等,且AB=6,AC=8,BC=10,∠A=90°,则△DEF 中最小边的长度是 , 最大角的度数是 .
3.在△ABC 和DEF 中,给出下列四组条件:
①AB=DE,BC=EF,AC=DF ; ②AB=DE,∠B=∠E,BC=EF ;
③∠B=∠E,BC=EF,∠C=∠F ; ④∠A=∠D, ∠B=∠E,∠C=∠F ;
其中,能使△ABC ≌△DEF 的条件共有 ( )
A.1组
B.2组
C.3组
D.4组
4.如图,已知点D 在AB 上,∠B= ∠DEC, AB=DE, 要想推出△ABC ≌ △DEC ,
(1)若以“SAS”为依据,还缺条件___________; (2)若以“ASA”为依据,还缺条件__________;
(3)若以“AAS”为依据,还缺条件___________
5.如图,∠B=∠D=90°,OA =OC.当添加条件 时,就可以得到△ABO ≌△CDO,此时的依据是_______。
6. 如图, AB=12, CA ⊥AB 于A, DB ⊥AB 于B, 且AC=4m, P 点从B 向A 运动, 每分钟走1m, Q 点从B 向D 运动, 每分钟走2m,P 、Q 两点同时出发, 运动______分钟后△CAP 与△PQB 全等.
7.△ABC 是格点三角形(顶点在网格线的交点处),则在图中能够作出与△ABC 全等的且有一条公共边的格点三角形(不含△ABC )的个数是________
8.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是____________
9.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带________去,那么这两块三角形的玻璃完全一样的依据是________.
10.用直尺和圆规作一个角等于已知角的示意图如右图,则说明A O B AOB '''=∠∠的依据是_______________
11.如图,将两根钢条AA ',BB '的中点O 连在一起,使AA ',BB '可以绕着点O 自由
转动,就做成了一个测量工件,根据△OAB ≌△OA B '',则得到A B ''的长等于内槽宽AB ,那么判定△OAB ≌△OA B ''的理由是____________
12.要想使一个六边形活动支架ABCDEF 稳固且不变形,至少需要增加__________根木条才能固定。
13.如图,已知△ABC ,利用直尺和圆规,根据下列要求作图(保留作图痕迹,不要求写作法),并根据要求填空:
(1)作∠ABC 的平分线BD 交AC 于点D ;
(2)作线段BD 的垂直平分线交AB 于点E ,交BC 于点F .
(3)在(1)、(2)条件下,连接DE,线段DE 与线段BF
的关系为 .
14.如图,△ABC 与△DCB 中,AC 与BD 交于点E ,且∠A=∠D ,AB=DC .
(1)求证:△ABE ≌DCE ;
(2)当∠AEB=50°,求∠EBC 的度数.
15.已知:如图,∠1=∠2,∠3=∠4.求证:∠AEB=∠AED.
16.如图,已知△ABC,BE 、CF 为高,CP=AB,BD=AC,试找出与AP 相等的线段?并说明理由。
4321E D C B A。