2018高考数学大一轮复习 第六章 不等式、推理与证明教师用书 文
- 格式:doc
- 大小:2.19 MB
- 文档页数:83
第四节 基本不等式1.了解基本不等式的证明过程.2.会用基本不等式解决简单的最大(小)值问题.知识点一 基本不等式 1.基本不等式ab ≤a +b2(1)基本不等式成立的条件:____________. (2)等号成立的条件:当且仅当______时取等号. 2.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为______,几何平均数为____,基本不等式可叙述为:________________________________ __________.3.几个重要的不等式a 2+b 2≥____(a,b∈R );b a +a b≥____(a ,b 同号).ab ≤⎝ ⎛⎭⎪⎫a +b 22(a ,b ∈R );⎝ ⎛⎭⎪⎫a +b 22____a 2+b 22(a ,b ∈R ). 答案1.(1)a >0,b >0 (2)a =b 2.a +b2ab 两个正数的算术平均数不小于它们的几何平均数3.2ab 2 ≤1.判断正误(1)函数y =x +1x的最小值是2.( )(2)x >0且y >0是x y +y x≥2的充分不必要条件.( ) (3)若a ≠0,则a 2+1a2的最小值为2.( )答案:(1)× (2)√ (3)√知识点二 利用基本不等式求最值问题 已知x >0,y >0,则1.如果积xy 是定值p ,那么当且仅当______时,x +y 有最____值是____.(简记:积定和最小)2.如果和x +y 是定值p ,那么当且仅当______时,xy 有最____值是____.(简记:和定积最大)答案1.x =y 小 2p 2.x =y 大p 242.(必修⑤P100习题3.4A 组第1(2)题改编)设x >0,y >0,且x +y =18,则xy 的最大值为( )A .80B .77C .81D .82解析:xy ≤⎝ ⎛⎭⎪⎫x +y 22=⎝ ⎛⎭⎪⎫1822=81,当且仅当x =y =9时等号成立,故选C.答案:C3.(必修⑤P100习题3.4A 组第2题改编)若把总长为20 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是________.解析:设一边长为x m ,则另一边长可表示为(10-x )m ,由题知0<x <10,则面积S =x (10-x )≤⎝⎛⎭⎪⎫x +10-x 22=25,当且仅当x =10-x ,即x =5时等号成立,故当矩形的长与宽相等,都为5时面积取到最大值25 m 2.答案:25 m 24.已知m >0,n >0,2m +n =1,则1m +2n的最小值为____.解析:∵2m +n =1,∴1m +2n =(1m +2n)·(2m +n )=4+n m+4mn ≥4+2n m ·4mn=8. 当且仅当n m =4m n ,即n =12,m =14时,“=”成立.答案:8热点一 配凑法求最值【例1】 (1)已知x <54,求f (x )=4x -2+14x -5的最大值;(2)已知x 为正实数且x 2+y 22=1,求x 1+y 2的最大值.【解】 (1)因为x <54,所以5-4x >0,则f (x )=4x -2+14x -5=-⎝ ⎛⎭⎪⎫5-4x +15-4x +3≤-2+3=1.当且仅当5-4x =15-4x ,即x =1时,等号成立.故f (x )=4x -2+14x -5的最大值为1.(2)因为x >0,所以x 1+y 2=2x 2⎝ ⎛⎭⎪⎫12+y 22≤2⎣⎢⎡⎦⎥⎤x 2+ 12+y 22 2.又x 2+⎝ ⎛⎭⎪⎫12+y 22=⎝ ⎛⎭⎪⎫x 2+y 22+12=32,所以x 1+y 2≤2⎝ ⎛⎭⎪⎫12×32=324,即(x 1+y 2)max =324.(1)设0<x <52,则函数y =4x (5-2x )的最大值为________.(2)设x >-1,则函数y = x +5 x +2x +1的最小值为________.解析:(1)因为0<x <52,所以5-2x >0,所以y =4x (5-2x )=2×2x (5-2x )≤2⎝ ⎛⎭⎪⎫2x +5-2x 22=252, 当且仅当2x =5-2x ,即x =54时等号成立,故函数y =4x (5-2x )的最大值为252.(2)因为x >-1,所以x +1>0, 所以y = x +5 x +2 x +1=x 2+7x +10x +1= x +1 2+5 x +1 +4x +1=x +1+4x +1+5≥2x +1 ×4x +1+5=9, 当且仅当x +1=4x +1,即x =1时等号成立,故函数y = x +5 x +2 x +1的最小值为9. 答案:(1)252 (2)9热点二 常值代换法求最值【例2】 已知a >0,b >0,a +b =1,则1a +1b的最小值为________.【解析】 ∵a >0,b >0,a +b =1, ∴1a +1b =a +b a +a +b b =2+b a +a b≥2+2b a ·a b =4,即1a +1b 的最小值为4,当且仅当a =b =12时等号成立. 【答案】 41.本例的条件不变,则⎝⎛⎭⎪⎫1+1a ⎝⎛⎭⎪⎫1+1b 的最小值为____.解析:⎝⎛⎭⎪⎫1+1a ⎝⎛⎭⎪⎫1+1b =⎝⎛⎭⎪⎫1+a +b a ·⎝⎛⎭⎪⎫1+a +b b =⎝⎛⎭⎪⎫2+b a ·⎝⎛⎭⎪⎫2+a b =5+2⎝ ⎛⎭⎪⎫b a +a b ≥5+4=9,当且仅当a =b =12时,取等号.答案:92.若将本例中的“a +b =1”换为“a +2b =3”,如何求解? 解:∵a +2b =3,∴13a +23b =1.∴1a +1b =⎝ ⎛⎭⎪⎫1a +1b ⎝ ⎛⎭⎪⎫13a +23b =13+23+a 3b +2b3a≥1+22ab 9ab =1+223. 当且仅当a =2b =32-3时,取等号. 故1a +1b 的最小值为1+223.若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是________. 解析:因为x +3y =5xy ,且x >0,y >0. 所以3x +1y=5,所以3x +4y =15(3x +4y )⎝ ⎛⎭⎪⎫3x +1y =15⎝⎛⎭⎪⎫13+12y x +3x y ≥15⎝ ⎛⎭⎪⎫13+212y x·3x y=15(13+12)=5. 当且仅当⎩⎪⎨⎪⎧12y x =3xy,3x +1y =5,即⎩⎪⎨⎪⎧x =1,y =12时取“=”.所以3x +4y 的最小值是5.答案:5热点三 换元法求最值【例3】 已知正实数x ,y 满足xy +2x +y =4,则x +y 的最小值为________. 【解析】 因为xy +2x +y =4,所以x =4-y y +2,由x =4-yy +2>0,得-2<y <4,又y >0,则0<y <4,所以x +y =4-y y +2+y =6y +2+(y +2)-3≥26-3,当且仅当6y +2=y +2(0<y <4),即y =6-2时取等号.【答案】 26-3已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________. 解析:由已知得x =9-3y1+y .方法1:(消元法) ∵x >0,y >0,∴y <3, ∴x +3y =9-3y 1+y +3y =3y 2+91+y=3 1+y 2-6 1+y +121+y =121+y +(3y +3)-6≥2121+y· 3y +3 -6=6. 当且仅当121+y=3y +3,即y =1,x =3时,(x +3y )min =6. 方法2:∵x >0,y >0,9-(x +3y ) =xy =13x ·(3y )≤13·(x +3y 2)2,当且仅当x =3y 时等号成立, 设x +3y =t >0,则t 2+12t -108≥0, ∴(t -6)(t +18)≥0,又∵t >0,∴t ≥6. 故当x =3,y =1时,(x +3y )min =6. 答案:6热点四 基本不等式与函数的综合应用【例4】 (1)已知f (x )=32x-(k +1)3x+2,当x ∈R 时,f (x )恒为正值,则k 的取值范围是( )A .(-∞,-1)B .(-∞,22-1)C .(-1,22-1)D .(-22-1,22-1)(2)已知函数f (x )=x 2+ax +11x +1(a ∈R ),若对于任意x ∈N *,f (x )≥3恒成立,则a 的取值范围是________.【解析】 (1)由32x -(k +1)3x +2>0恒成立,得k +1<3x +23x .∵3x+23x ≥22,∴k +1<22,即k <22-1.(2)由f (x )≥3恒成立,得x 2+ax +11x +1≥3,又x ∈N *,∴x 2+ax +11≥3(x +1),∴a -3≥-⎝⎛⎭⎪⎫x +8x . 令F (x )=-⎝⎛⎭⎪⎫x +8x ,x ∈N *,则F (x )max =F (3)=-173.即a -3≥-173,∴a ≥-83.【答案】 (1)B (2)⎣⎢⎡⎭⎪⎫-83,+∞(2017·太原模拟)正数a ,b 满足1a +9b=1,若不等式a +b ≥-x 2+4x +18-m 对任意实数x 恒成立,则实数m 的取值范围是( )A .[3,+∞)B .(-∞,3]C .(-∞,6]D .[6,+∞)解析:因为a >0,b >0,1a +9b=1,所以a +b =(a +b )⎝ ⎛⎭⎪⎫1a +9b =10+b a +9a b≥10+29=16.由题意,得16≥-x 2+4x +18-m , 即x 2-4x -2≥-m 对任意实数x 恒成立, 而x 2-4x -2=(x -2)2-6, 所以x 2-4x -2的最小值为-6, 所以-6≥-m ,即m ≥6. 答案:D1.运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a 2+b 2≥2ab 逆用就是ab ≤a 2+b 22;a +b2≥ab (a ,b >0)逆用就是ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b >0)等,还要注意“添”“拆”项技巧和公式等号成立的条件等.2.利用基本不等式求最值应注意的问题(1)使用基本不等式求最值,其失误的真正原因是对其存在前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.(2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.(3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致.。
第一节 不等关系与不等式☆☆☆2017考纲考题考情☆☆☆自|主|排|查1.实数的大小顺序与运算性质的关系 (1)a >b ⇔a -b >0; (2)a =b ⇔a -b =0; (3)a <b ⇔a -b <0。
2.不等式的性质(1)对称性:a >b ⇔b <a ;(双向性) (2)传递性:a >b ,b >c ⇒a >c ;(单向性) (3)可加性:a >b ⇔a +c >b +c ;(双向性) (4)a >b ,c >d ⇒a +c >b +d ;(单向性)(5)可乘性:a >b ,c >0⇒ac >bc ;a >b ,c <0⇒ac <bc ; (6)a >b >0,c >d >0⇒ac >bd ;(单向性)(7)乘方法则:a >b >0⇒a n>b n(n ∈N ,n ≥1);(单向性) (8)开方法则:a >b >0⇒na >nb (n ∈N ,n ≥2);(单向性)(9)倒数性质:设ab >0,则a <b ⇔1a >1b;(双向性) (10)有关分数的性质:若a >b >0,m >0,则 ①b a <b +m a +m ;b a >b -ma -m(b -m >0)②a b >a +mb +m ;a b <a -mb -m(b -m >0)。
微点提醒1.在应用不等式性质时,不可强化或弱化成立的条件,如“同向不等式”才可相加、“同向且两边同正的不等式”才可相乘;“可乘性”中的c 的符号等都需注意。
2.当判断两个式子大小时,对错误的关系式举反例即可,对正确的关系式,则需推理论证。
小|题|快|练一 、走进教材1.(必修5P 74练习T 3改编)下列四个结论,正确的是( ) ①a >b ,c <d ⇒a -c >b -d ; ②a >b >0,c <d <0⇒ac >bd ; ③a >b >0⇒3a >3b ;④a >b >0⇒1a 2>1b2。
重点强化课(三) 不等式及其应用本章的主要内容是不等式的性质,一元二次不等式及其解法,简单的线性规划问题,基本不等式及其应用,针对不等式具有很强的工具性,应用广泛,解法灵活的特点,应加强不等式基础知识的复习,要弄清不等式性质的条件与结论;一元二次不等式是解决问题的重要工具,如利用导数研究函数的单调性,往往归结为解一元二次不等式问题;函数、方程、不等式三者密不可分,相互转化,因此应加强函数与方程思想在不等式中应用的训练.重点1 一元二次不等式的综合应用(1)(2016·山东青岛一模)函数y =1-x22x 2-3x -2的定义域为( )A .(-∞,1]B .C .一元二次不等式综合应用问题的常见类型及求解方法(1)与函数的定义域、集合的综合,此类问题的本质就是求一元二次不等式的解集. (2)与分段函数问题的综合.解决此类问题的关键是根据分段函数解析式,将问题转化为不同区间上的不等式,然后根据一元二次不等式或其他不等式的解法求解.(3)与函数的奇偶性等的综合.解决此类问题可先根据函数的奇偶性确定函数的解析式,然后求解,也可直接根据函数的性质求解.已知f (x )是定义在R 上的奇函数.当x >0时,f (x )=x 2-4x ,则不等式f (x )>x 的解集用区间表示为__________. 【导学号:31222215】(-5,0)∪(5,+∞)重点2 线性规划问题(1)(2017·深圳二次调研)在平面直角坐标系xOy 中,若x ,y 满足约束条件⎩⎪⎨⎪⎧2x +y -4≤0,x -y -1≥0,y ≥0,则z =x +y 的最大值为( )A.73 B .1 C .2D .4(2)当实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1时,1≤ax +y ≤4恒成立,则实数a 的取值范围是__________.【导学号:31222216】(1)A (2)⎣⎢⎡⎦⎥⎤1,32 本题(2)是线性规划的逆问题,这类问题的特点是在目标函数或约束条件中含有参数,当在约束条件中含有参数时,那么随着参数的变化,可行域的形状可能就要发生变化,因此在求解时也要根据参数的取值对可行域的各种情况进行分类讨论,以免出现漏解.已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a x -若z =2x +y 的最小值为1,则a=( )A.14 B.12 C .1 D .2B重点3 基本不等式的综合应用(2016·江苏高考节选)已知函数f (x )=a x +b x(a >0,b >0,a ≠1,b ≠1).设a =2,b =12. (1)求方程f (x )=2的根;(2)若对于任意x ∈R ,不等式f (2x )≥mf (x )-6恒成立,求实数m 的最大值. 因为a =2,b =12,所以f (x )=2x +2-x.2分(1)方程f (x )=2,即2x +2-x =2,亦即(2x )2-2×2x +1=0,所以(2x -1)2=0,即2x=1,解得x =0.5分(2)由条件知f (2x )=22x+2-2x=(2x +2-x )2-2=(f (x ))2-2.因为f (2x )≥mf (x )-6对于x ∈R 恒成立,且f (x )>0,所以m ≤f x 2+4f x 对于x ∈R 恒成立.8分而f x 2+4f x=f (x )+4f x≥2f x4f x=4,且f 2+4f=4,所以m ≤4,故实数m 的最大值为4.12分基本不等式综合应用中的常见类型及求解方法(1)应用基本不等式判断不等式是否成立或比较大小.解决此类问题通常将所给不等式(或式子)变形,然后利用基本不等式求解.(2)条件不等式问题.通过条件转化成能利用基本不等式的形式求解.(3)求参数的值或范围.观察题目特点,利用基本不等式确定相关成立条件,从而得到参数的值或范围.(1)设a ,b ,c ∈(0,+∞),则“abc =1”是“1a+1b+1c≤a +b +c ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2)已知正数x ,y 满足x +2y =2,则x +8yxy的最小值为__________. (1)A (2)9重点强化训练(三) 不等式及其应用A 组 基础达标 (建议用时:30分钟)一、选择题1.下列不等式一定成立的是( )A .lg ⎝⎛⎭⎪⎫x 2+14>lg x (x >0)B .sin x +1sin x≥2(x ≠k π,k ∈Z ) C .x 2+1≥2|x |(x ∈R ) D.1x 2+1>1(x ∈R ) C2.(2016·天津高考)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,2x +3y -6≥0,3x +2y -9≤0,则目标函数z =2x +5y 的最小值为( )A .-4B .6C .10D .17B3.(2016·浙江高考)在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l上的投影.由区域⎩⎪⎨⎪⎧x -2≤0,x +y ≥0,x -3y +4≥0中的点在直线x +y -2=0上的投影构成的线段记为AB ,则|AB |=( )A .2 2B .4C .3 2D .6C 4.不等式4x -2≤x -2的解集是( ) A . B .∪(4,+∞)B5.(2015·山东高考)若函数f (x )=2x+12x -a 是奇函数,则使f (x )>3成立的x 的取值范围为( )A .(-∞,-1)B .(-1,0)C .(0,1)D .(1,+∞)C 二、填空题6.(2016·全国卷Ⅲ)设x ,y 满足约束条件⎩⎪⎨⎪⎧2x -y +1≥0,x -2y -1≤0,x ≤1,则z =2x +3y -5的最小值为________.-107.设a ,b >0,a +b =5,则a +1+b +3的最大值为__________.【导学号:31222217】328.设0≤α≤π,不等式8x 2-(8sin α)x +cos 2α≥0对x ∈R 恒成立,则α的取值范围为__________.【导学号:31222218】⎣⎢⎡⎦⎥⎤0,π6∪⎣⎢⎡⎦⎥⎤5π6,π三、解答题 9.已知不等式ax -1x +1>0(a ∈R ). (1)解这个关于x 的不等式;(2)若x =-a 时不等式成立,求a 的取值范围. (1)原不等式等价于(ax -1)(x +1)>0.1分 ①当a =0时,由-(x +1)>0,得x <-1;②当a >0时,不等式化为⎝⎛⎭⎪⎫x -1a (x +1)>0.解得x <-1或x >1a;3分③当a <0时,不等式化为⎝⎛⎭⎪⎫x -1a (x +1)<0;若1a <-1,即-1<a <0,则1a<x <-1;若1a =-1,即a =-1,则不等式解集为空集; 若1a>-1,即a <-1,则 -1<x <1a.5分综上所述,当a <-1时,解集为⎩⎨⎧⎭⎬⎫x | -1<x <1a ;当a =-1时,原不等式无解;当-1<a <0时,解集为⎩⎨⎧⎭⎬⎫x | 1a<x <-1;当a =0时,解集为{x |x <-1};当a >0时,解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-1或x >1a .6分 (2)∵x =-a 时不等式成立, ∴-a 2-1-a +1>0,即-a +1<0,10分 ∴a >1,即a 的取值范围为(1,+∞).12分10.(2016·全国卷Ⅰ改编)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料,生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,试求在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为多少元.设生产产品A x 件,产品B y 件,则⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ≥0,x ∈N *,y ≥0,y ∈N *.5分目标函数z =2 100x +900y .作出可行域为图中的阴影部分(包括边界)内的整数点,图中阴影四边形的顶点坐标分别为(60,100),(0,200),(0,0),(90,0).当直线z =2 100x +900y 经过点(60,100)时,z 取得最大值,z max =2 100×60+900×100=216 000(元).12分B 组 能力提升 (建议用时:15分钟)1.已知a ,b 为正实数,且ab =1,若不等式(x +y )·⎝ ⎛⎭⎪⎫a x +b y >m 对任意正实数x ,y 恒成立,则实数m 的取值范围是( ) 【导学号:31222219】A .C .(-∞,4]D .(-∞,4)D2.若不等式x 2+ax +1≥0对一切x ∈⎝ ⎛⎦⎥⎤0,12恒成立,则a 的最小值是__________. 【导学号:31222220】-523.已知f (x )是定义在上的奇函数,且f (1)=1,若m ,n ∈,m +n ≠0时,f m +f nm +n>0.(1)用定义证明f (x )在上是增函数;(2)解不等式f ⎝ ⎛⎭⎪⎫x +12<f ⎝ ⎛⎭⎪⎫1x -1;(3)若f (x )≤t 2-2at +1对所有x ∈,a ∈恒成立,求实数t 的取值范围. (1)证明:任取x 1<x 2,且x 1,x 2∈,则f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f x 1+f -x 2x 1-x 2·(x 1-x 2).2分∵-1≤x 1<x 2≤1,∴x 1-x 2<0. 又已知f x 1+f -x 2x 1-x 2>0,∴f (x 1)-f (x 2)<0, 即f (x )在上为增函数,4分 (2)∵f (x )在上为增函数,∴⎩⎪⎨⎪⎧-1≤x +12≤1,-1≤1x -1≤1,x +12<1x -1,解得⎩⎨⎧⎭⎬⎫x | -32≤x <-1.8分(3)由(1)可知f (x )在上为增函数,且f (1)=1,故对x ∈,恒有f (x )≤1, ∴要f (x )≤t 2-2at +1对所有x ∈,a ∈恒成立,即要t 2-2at +1≥1成立, 故t 2-2at ≥0,记g (a )=-2ta +t 2.10分对a ∈,g (a )≥0恒成立,只需g (a )在上的最小值大于等于0, ∴g (-1)≥0,g (1)≥0,解得t ≤-2或t =0或t ≥2. ∴t 的取值范围是{t |t ≤-2或t =0或t ≥2}.12分。
(全国通用)2018高考数学一轮复习第6章不等式、推理与证明重点强化课3 不等式及其应用教师用书文新人教A版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((全国通用)2018高考数学一轮复习第6章不等式、推理与证明重点强化课3 不等式及其应用教师用书文新人教A版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(全国通用)2018高考数学一轮复习第6章不等式、推理与证明重点强化课3 不等式及其应用教师用书文新人教A版的全部内容。
重点强化课(三) 不等式及其应用[复习导读]本章的主要内容是不等式的性质,一元二次不等式及其解法,简单的线性规划问题,基本不等式及其应用,针对不等式具有很强的工具性,应用广泛,解法灵活的特点,应加强不等式基础知识的复习,要弄清不等式性质的条件与结论;一元二次不等式是解决问题的重要工具,如利用导数研究函数的单调性,往往归结为解一元二次不等式问题;函数、方程、不等式三者密不可分,相互转化,因此应加强函数与方程思想在不等式中应用的训练.重点1 一元二次不等式的综合应用(1)(2016·山东青岛一模)函数y=错误!的定义域为()A.(-∞,1]B.[-1,1]C.[1,2)∪(2,+∞)D。
错误!∪错误!(2)已知函数f(x)=错误!则满足不等式f(1-x2)〉f(2x)的x的取值范围是__________.(1)D(2)(-1,错误!-1) [(1)由题意得错误!解得错误!即-1≤x≤1且x≠-错误!,所以函数的定义域为错误!,故选D.(2)由题意得错误!或错误!解得-1〈x<0或0≤x〈错误!-1.所以x的取值范围为(-1,错误!-1).][规律方法]一元二次不等式综合应用问题的常见类型及求解方法(1)与函数的定义域、集合的综合,此类问题的本质就是求一元二次不等式的解集.(2)与分段函数问题的综合.解决此类问题的关键是根据分段函数解析式,将问题转化为不同区间上的不等式,然后根据一元二次不等式或其他不等式的解法求解.(3)与函数的奇偶性等的综合.解决此类问题可先根据函数的奇偶性确定函数的解析式,然后求解,也可直接根据函数的性质求解.[对点训练1] 已知f(x)是定义在R上的奇函数.当x〉0时,f(x)=x2-4x,则不等式f(x)>x的解集用区间表示为__________. 【导学号:31222215】(-5,0)∪(5,+∞)[由于f(x)为R上的奇函数,所以当x=0时,f(0)=0;当x〈0时,-x〉0,所以f(-x)=x2+4x=-f(x),即f(x)=-x2-4x,所以f(x)=错误!由f(x)〉x,可得错误!或错误!解得x〉5或-5<x<0,所以原不等式的解集为(-5,0)∪(5,+∞).]重点2 线性规划问题(1)(2017·深圳二次调研)在平面直角坐标系xOy中,若x,y满足约束条件错误!则z=x+y的最大值为()A。
第四节 合情推理与演绎推理———————————————————————————————— 1.了解合情推理的含义,能进行简单的归纳推理和类比推理,体会合情推理在数学发现中的作用.2.了解演绎推理的含义,了解合情推理和演绎推理的联系和差异;掌握演绎推理的“三段论”,能运用“三段论”进行一些简单的演绎推理.1.合情推理(1)定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括: ①大前提——已知的一般原理; ②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)归纳推理与类比推理都是由特殊到一般的推理.( )(2)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.( ) (3)“所有3的倍数都是9的倍数,某数m 是3的倍数,则m 一定是9的倍数”,这是三段论推理,但其结论是错误的.( )(4)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.( ) (1)× (2)× (3)√ (4)×2.由“半径为R 的圆内接矩形中,正方形的面积最大”,推出“半径为R 的球的内接长方体中,正方体的体积最大”是( )A .归纳推理B .类比推理C .演绎推理D .以上都不是B3.(教材改编)已知数列{a n }中,a 1=1,n ≥2时,a n =a n -1+2n -1,依次计算a 2,a 3,a 4后,猜想a n 的表达式是( )A .a n =3n -1B .a n =4n -3C .a n =n 2D .a n =3n -1C4.“因为指数函数y =a x是增函数(大前提),而y =⎝ ⎛⎭⎪⎫13x 是指数函数(小前提),所以函数y =⎝ ⎛⎭⎪⎫13x是增函数(结论)”,上面推理的错误在于( )A .大前提错误导致结论错误B .小前提错误导致结论错误C .推理形式错误导致结论错误D .大前提和小前提错误导致结论错误 A5.(2014·全国卷Ⅰ)甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市; 丙说:我们三人去过同一城市. 由此可判断乙去过的城市为________. A(1)(2016·武汉4月调研)数列2,3,3,4,4,4,…,m +1,m +1,…,mm +1,…的第20项是( )A.58 B.34 C.57D.67(2)(2016·山东高考)观察下列等式:⎝ ⎛⎭⎪⎫sin π3-2+⎝ ⎛⎭⎪⎫sin 2π3-2=43×1×2; ⎝ ⎛⎭⎪⎫sin π5-2+⎝ ⎛⎭⎪⎫sin 2π5-2+⎝ ⎛⎭⎪⎫sin 3π5-2+⎝ ⎛⎭⎪⎫sin 4π5-2=43×2×3;⎝ ⎛⎭⎪⎫sin π7-2+⎝ ⎛⎭⎪⎫sin 2π7-2+⎝ ⎛⎭⎪⎫sin 3π7-2+…+⎝ ⎛⎭⎪⎫sin 6π7-2=43×3×4;⎝ ⎛⎭⎪⎫sin π9-2+⎝ ⎛⎭⎪⎫sin 2π9-2+⎝ ⎛⎭⎪⎫sin 3π9-2+…+⎝ ⎛⎭⎪⎫sin 8π9-2=43×4×5; …… 照此规律,⎝ ⎛⎭⎪⎫sin π2n +1-2+⎝ ⎛⎭⎪⎫sin 2π2n +1-2+⎝ ⎛⎭⎪⎫sin 3π2n +1-2+…+⎝ ⎛⎭⎪⎫sin 2n π2n +1-2=________.(1)C (2)43n (n +1)1.常见的归纳推理分为数的归纳和形的归纳两类:(1)数的归纳包括数字归纳和式子归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2)形的归纳主要包括图形数目归纳和图形变化规律归纳,合理利用特殊图形归纳推理得出结论,并用赋值检验法验证其真伪性.2.归纳推理的一般步骤:(1)通过观察个别情况发现某些相同性质; (2)从相同性质中推出一个明确表述的一般性命题.(1)已知x ∈(0,+∞),观察下列各式:x +1x ≥2,x +4x 2=x 2+x 2+4x 2≥3,x +27x 3=x3+x 3+x 3+27x 3≥4,…,类比得x +a xn ≥n +1(n ∈N *),则a =__________. (2)下面图形由小正方形组成,请观察图641(1)至图(4)的规律,并依此规律,写出第n 个图形中小正方形的个数是__________. 【导学号:31222221】图641(1)n n(n ∈N *) (2)n n +2(n ∈N *)n ,则数列{b n }⎝⎛⎭⎪⎫b n =a 1+a 2+…+a n n 也是等差数列,类比这一性质可知,若正项数列{c n }是等比数列,且{d n }也是等比数列,则d n 的表达式应为( )A .d n =c 1+c 2+…+c nnB .d n =c 1·c 2·…·c nnC .d n =n c n 1+c n 2+…+c n nnD .d n =nc 1·c 2·…·c n(2)(2016·贵州六校联考)在平面几何中,△ABC 的∠C 的平分线CE 分AB 所成线段的比为AC BC =AE BE.把这个结论类比到空间:在三棱锥A BCD 中(如图642),DEC 平分二面角A CD B 且与AB 相交于E ,则得到类比的结论是________________.图642(1)D (2)AE EB =S △ACDS △BCD1.进行类比推理,应从具体问题出发,通过观察、分析、联想进行对比,提出猜想,其中找到合适的类比对象是解题的关键.2.类比推理常见的情形有:平面与空间类比;低维与高维类比;等差数列与等比数列类比;运算类比(和与积、乘与乘方,差与除,除与开方).数的运算与向量运算类比;圆锥曲线间的类比等.给出下面类比推理(其中Q 为有理数集,R 为实数集,C 为复数集):①“若a ,b ∈R ,则a -b =0⇒a =b ”类比推出“a ,c ∈C ,则a -c =0⇒a =c ”; ②“若a ,b ,c ,d ∈R ,则复数a +b i =c +d i ⇒a =c ,b =d ”类比推出“a ,b ,c ,d ∈Q ,则a +b 2=c +d 2⇒a =c ,b =d ”;③“a ,b ∈R ,则a -b >0⇒a >b ”类比推出“若a ,b ∈C ,则a -b >0⇒a >b ”; ④“若x ∈R ,则|x |<1⇒-1<x <1”类比推出“若z ∈C ,则|z |<1⇒-1<z <1.” 其中类比结论正确的个数为( ) A .1 B .2 C .3 D .4B数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=nS n (n ∈N *).证明: (1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;(2)S n +1=4a n . 【导学号:31222222】 (1)∵a n +1=S n +1-S n ,a n +1=n +2nS n , ∴(n +2)S n =n (S n +1-S n ),即nS n +1=2(n +1)S n .2分 ∴S n +1n +1=2·S n n ,又S 11=1≠0,(小前提) 故⎩⎨⎧⎭⎬⎫S n n 是以1为首项,2为公比的等比数列.(结论) (大前提是等比数列的定义,这里省略了)5分 (2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2), ∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1 =4a n (n ≥2),(小前提)8分又a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提) ∴对于任意正整数n ,都有S n +1=4a n .(结论)(第(2)问的大前提是第(1)问的结论以及题中的已知条件)12分演绎推理的一般模式为三段论,三段论推理的依据是:如果集合M 的所有元素都具有性质P ,S 是M 的子集,那么S 中所有元素都具有性质P .应用三段论解决问题时,首先应该明确什么是大前提,小前提,然后再找结论.如图643所示,D ,E ,F 分别是BC ,CA ,AB 上的点,∠BFD =∠A ,且DE ∥BA .求证:ED =AF (要求注明每一步推理的大前提、小前提和结论,并最终把推理过程用简略的形式表示出来).图643(1)同位角相等,两条直线平行,(大前提) ∠BFD 与∠A 是同位角,且∠BFD =∠A ,(小前提) 所以DF ∥EA .(结论)5分(2)两组对边分别平行的四边形是平行四边形,(大前提)DE ∥BA 且DF ∥EA ,(小前提)所以四边形AFDE 为平行四边形.(结论)8分 (3)平行四边形的对边相等,(大前提)ED 和AF 为平行四边形的对边,(小前提)所以ED =AF .(结论) 上面的证明可简略地写成:⎭⎪⎬⎪⎫∠BFD =∠A ⇒DF ∥EA DE ∥BA ⇒四边形AFDE 是平行四边形⇒ED =AF .12分1.合情推理的过程概括为从具体问题出发→观察、分析、比较、联想→归纳、类比→提出猜想 2.演绎推理是从一般的原理出发,推出某个特殊情况的结论的推理方法,是由一般到特殊的推理,常用的一般模式是三段论.数学问题的证明主要通过演绎推理来进行.1.在进行类比推理时要尽量从本质上去类比,不要被表面现象迷惑,否则只抓住一点表面现象的相似甚至假象就去类比,那么就会犯机械类比的错误.2.合情推理是从已知的结论推测未知的结论,发现与猜想的结论都要经过进一步严格证明.3.演绎推理是由一般到特殊的推理,它常用来证明和推理数学问题,注意推理过程的严谨性,书写格式的规范性.课时分层训练(三十五) 合情推理与演绎推理 A 组 基础达标(建议用时:30分钟)一、选择题1.正弦函数是奇函数,f (x )=sin(x 2+1)是正弦函数,因此f (x )=sin(x 2+1)是奇函数,以上推理( )A .结论正确B .大前提不正确C .小前提不正确D .全不正确C2.如图644,根据图中的数构成的规律,得a 表示的数是( )【导学号:31222223】图644A .12B .48C .60D .144D3.某种树的分枝生长规律如图645所示,第1年到第5年的分枝数分别为1,1,2,3,5,则预计第10年树的分枝数为( )【导学号:31222224】图645A .21B .34C .52D .55D4.如图646所示,椭圆中心在坐标原点,F 为左焦点,当FB →⊥AB →时,其离心率为5-12,此类椭圆被称为“黄金椭圆”.类比“黄金椭圆”,可推算出“黄金双曲线”的离心率e 等于( )图646A.5+12B.5-12C.5-1D.5+1A5.下面四个推导过程符合演绎推理三段论形式且推理正确的是( )A .大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数B .大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数C .大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数D .大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数B 二、填空题6.把一个直角三角形以两直角边为邻边补成一个矩形,则矩形的对角线长即为直角三角形外接圆直径,以此可求得外接圆半径r =a 2+b 22(其中a ,b 为直角三角形两直角边长).类比此方法可得三条侧棱长分别为a ,b ,c 且两两垂直的三棱锥的外接球半径R =__________.a 2+b 2+c 227.观察下列不等式: 1+122<32, 1+122+132<53, 1+122+132+142<74, …照此规律,第五个不等式为__________.【导学号:31222225】1+12+13+14+15+16<1168.(2017·东北三省四市一联)在某次数学考试中,甲、乙、丙三名同学中只有一个人得了优秀.当他们被问到谁得到了优秀时,丙说“甲没有得优秀”,乙说“我得了优秀”,甲说“丙说的是真话”.事实证明,在这三名同学中,只有一人说的是假话,那么得优秀的同学是__________.丙 三、解答题9.平面中的三角形和空间中的四面体有很多相类似的性质,例如在三角形中:(1)三角形两边之和大于第三边;(2)三角形的面积S =12×底×高;(3)三角形的中位线平行于第三边且等于第三边的12;…请类比上述性质,写出空间中四面体的相关结论.由三角形的性质,可类比得空间四面体的相关性质为: (1)四面体的任意三个面的面积之和大于第四个面的面积;4分 (2)四面体的体积V =13×底面积×高;8分(3)四面体的中位面平行于第四个面且面积等于第四个面的面积的14.12分10.设f (x )=13x +3,先分别求f (0)+f (1),f (-1)+f (2),f (-2)+f (3),然后归纳猜想一般性结论,并给出证明. 【导学号:31222226】f (0)+f (1)=130+3+131+3 =11+3+13+3=3-12+3-36=33,2分同理可得:f (-1)+f (2)=33, f (-2)+f (3)=33,并注意到在这三个特殊式子中,自变量之和均等于1. 归纳猜想得:当x 1+x 2=1时, 均有f (x 1)+f (x 2)=33.6分 证明:设x 1+x 2=1,f (x 1)+f (x 2)=13x 1+3+13x 2+3=x 1+3+x 2+3x 1+3x 2+3=3x 1+3x 2+233x 1+x 2+3x 1+3x 2+3=3x 1+3x 2+233x 1+3x 2+2×3=3x 1+3x 2+233x 1+3x 2+23=33.12分 B 组 能力提升 (建议用时:15分钟)1.给出以下数对序列: (1,1); (1,2)(2,1); (1,3)(2,2)(3,1); (1,4)(2,3)(3,2)(4,1); …记第i 行的第j 个数对为a ij ,如a 43=(3,2),则a nm =( ) A .(m ,n -m +1) B .(m -1,n -m ) C .(m -1,n -m +1) D .(m ,n -m )A2.(2016·全国卷Ⅱ)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.1和33.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数: ①sin 213°+cos 217°-sin13°cos 17°; ②sin 215°+cos 215°-sin 15°cos 15°; ③sin 218°+cos 212°-sin18°cos12°;④sin 2(-18°)+cos 248°-sin(-18°)cos 48°; ⑤sin 2(-25°)+cos 255°-sin(-25°)cos 55°. (1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. (1)选择②式,计算如下:sin 215°+cos 215°-sin 15°cos 15°=1-12sin 30°=1-14=34.5分(2)法一:三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34.7分 证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°cos α+sin 30°sin α)=sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α =34sin 2α+34cos 2α=34.12分 法二:三角恒等式为sin 2 α+cos 2(30°-α)-sin αcos(30°-α)=34.7分 证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=1-cos 2α2+1+-2α2-sin α(cos 30° cos α+sin 30°sin α) =12-12cos 2α+12+12(cos 60°cos 2α+sin 60°sin 2α)-32sin αcos α-12sin 2α =12-12cos 2α+12+14cos 2α+34sin 2α-34sin 2α-14(1-cos 2α) =1-14cos 2α-14+14cos 2α=34.12分。
第五节合情推理与演绎推理1.了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用.2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单的推理.3.了解合情推理和演绎推理之间的联系和差异.知识点一合情推理1.归纳推理:(1)定义:由某类事物的部分对象具有某些特征,推出该类事物的________都具有这些特征的推理,或者由个别事实概括出一般结论的推理.(2)特点:是由______到______,由______到______的推理.2.类比推理(1)定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有________的推理.(2)特点:类比推理是由______到______的推理.答案1.(1)全部对象(2)部分整体个别一般2.(1)这些特征(2)特殊特殊1.判断正误(1)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.( )(2)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.( )(3)一个数列的前三项是1,2,3,那么这个数列的通项公式是a n=n(n∈N*).( )答案:(1)√(2)×(3)×2.(选修1-1P32练习第1题改编)已知数列{a n }中,a 1=1,n ≥2时,a n =a n -1+2n -1,依次计算a 2,a 3,a 4后,猜想a n 的表达式是( )A .a n =3n -1B .a n =4n -3C .a n =n 2D .a n =3n -1解析:a 1=1,a 2=4,a 3=9,a 4=16,猜想a n =n 2. 答案:C3.(选修1-1P32练习第3题改编)在平面上,若两个正三角形的边长的比为12,则它们的面积比为14.类似地,在空间中,若两个正四面体的棱长的比为12,则它们的体积比为________.解析:由平面图形的面积类比立体图形的体积得出:在空间内,若两个正四面体的棱长的比为12,则它们的底面积之比为14,对应高之比为12,所以体积比为18.答案:18知识点二 演绎推理 1.模式:三段论(1)大前提——已知的________; (2)小前提——所研究的________;(3)结论——根据一般原理,对________做出的判断. 2.特点:演绎推理是由______到______的推理.答案1.(1)一般原理 (2)特殊情况 (3)特殊情况 2.一般 特殊4.“因为指数函数y =a x是增函数(大前提),而y =⎝ ⎛⎭⎪⎫13x 是指数函数(小前提),所以函数y =⎝ ⎛⎭⎪⎫13x 是增函数(结论)”,上面推理的错误在于( )A .大前提错误导致结论错B .小前提错误导致结论错C .推理形式错误导致结论错D .大前提和小前提错误导致结论错解析:当a >1时,y =a x为增函数;当0<a <1时,y =a x为减函数.故大前提错误. 答案:A热点一 归纳推理考向1 与数、式有关的归纳推理 【例1】 (2016·山东卷)观察下列等式: (sin π3)-2+(sin 2π3)-2=43×1×2;(sin π5)-2+(sin 2π5)-2+(sin 3π5)-2+(sin 4π5)-2=43×2×3;(sin π7)-2+(sin 2π7)-2+(sin 3π7)-2+…+(sin 6π7)-2=43×3×4;(sin π9)-2+(sin 2π9)-2+(sin 3π9)-2+…+(sin 8π9)-2=43×4×5;…… 照此规律,(sin π2n +1)-2+(sin 2π2n +1)-2+(sin 3π2n +1)-2+…+(sin 2n π2n +1)-2=________.【解析】 分析各等式的形式特点: 第1个等式右边为:43×1×2;第2个等式右边为:43×2×3;第3个等式右边为:43×3×4依次类推第n 个等式的右边为43×n ×(n +1)即43n (n +1).【答案】 43n (n +1)考向2 与图形有关的归纳推理【例2】 如图所示,用全等的小正方体木块叠放立体图形,按照这样的规律继续逐个叠放下去,那么在第7个叠放的立体图形中小正方体木块数应是( )A.25 B.66C.91 D.120【解析】图中前三个立体图形中,用到的小正方体木块数依次为1,2+1×4,3+(1+2)×4,按照前三个立体图形所反映出来的规律,归纳推理可知,第7个叠放的立体图形中用到的小正方体木块数应是7+(1+2+3+…+6)×4=91.【答案】 C(1)(2017·广州模拟)以下数表的构造思路源于我国南宋数学家杨辉所著的《详解九章算法》一书中的“杨辉三角形”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数为( )A.2 017×22 013 B.2 017×22 014C.2 016×22 015 D.2 016×22 014(2)(2017·湖南桃江检测)地震后需搭建简易帐篷,搭建如图①的单顶帐篷需要17根钢管,这样的帐篷按图②、图③的方式串起来搭建,则串7顶这样的帐篷需要________根钢管.解析:(1)当第一行为2个数时,最后一行仅一个数,为3=3×1=3×20; 当第一行为3个数时,最后一行仅一个数,为8=4×2=4×21; 当第一行为4个数时,最后一行仅一个数,为20=5×4=5×22; 当第一行为5个数时,最后一行仅一个数,为48=6×8=6×23. 归纳推理得,当第一行为2 016个数时,最后一行仅一个数,为2 017×22 014,故选B.(2)由题意可知,图①的单顶帐篷要(17+0×11)根钢管,图②的帐篷要(17+1×11)根钢管,图③的帐篷要(17+2×11)根钢管,……所以串7顶这样的帐篷需要17+6×11=83(根)钢管.答案:(1)B (2)83 热点二 类比推理【例3】 已知点A (x 1,ax 1),B (x 2,ax 2)是函数y =a x的图象上任意不同的两点,依据图象可知,线段AB 总是位于A ,B 两点之间函数图象的上方,因此有ax 1+ax 22>a x 1+x 22成立.运用类比思想方法可知,若点A (x 1,sin x 1),B (x 2,sin x 2)是函数y =sin x (x ∈(0,π))图象上任意不同的两点,则类似地有________成立.【解析】 由题意知,点A ,B 是函数y =a x的图象上任意不同的两点,该函数是一个变化率逐渐变大的函数,线段AB 总是位于A ,B 两点之间函数图象的上方,因此有ax 1+ax 22>ax 1+x 22成立;而函数y =sin x (x ∈(0,π)),其变化率逐渐变小,线段AB 总是位于A ,B 两点之间函数图象的下方,故可类比得到结论sin x 1+sin x 22<sin x 1+x 22.【答案】 sin x 1+sin x 22<sin x 1+x 22平面几何中有如下结论:如图(1),设O 是等腰直角△ABC 底边BC 的中点,AB =1,过点O 的动直线与两腰或其延长线的交点分别为Q ,R ,则有1AQ +1AR=2.类比此结论,将其拓展到空间,如图(2),设O 是正三棱锥A -BCD 底面BCD 的中心,AB ,AC ,AD 两两垂直,AB =1,过点O 的动平面与三棱锥的三条侧棱或其延长线的交点分别为Q ,R ,P ,则有________.解析:设O 到各个侧面的距离为d ,而V三棱锥R -AQP=13S △AQP ·AR =13·12·AQ ·AP ·AR =16AQ ·AP ·AR ,又∵V 三棱锥R -AQP =V 三棱锥O -AQP +V 三棱锥O -ARP +V 三棱锥O -AQR =13S △AQP ·d +13S △ARP ·d +13S △AQR ·d=16(AQ ·AP +AR ·AP +AQ ·AR )d ,∴16AQ ·AP ·AR =16(AQ ·AP +AR ·AP +AQ ·AR )d ,即1AQ +1AR +1AP =1d ,而V 三棱锥A -BDC =13S △BDC ·AO =13×34×2×33=16. ∴V 三棱锥O -ABD =13V 三棱锥A -BDC =118,即13·S △ABD ·d =13·12·d =118⇒d =13,∴1AQ +1AR +1AP=3.答案:1AQ +1AR +1AP=3热点三 演绎推理【例4】 数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2nS n (n ∈N *).证明: (1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;(2)S n +1=4a n .【证明】 (1)∵a n +1=S n +1-S n ,a n +1=n +2nS n ,∴(n +2)S n =n (S n +1-S n ),即nS n +1=2(n +1)S n ,故S n +1n +1=2·S nn,(小前提) 故⎩⎨⎧⎭⎬⎫S n n 是以2为公比,1为首项的等比数列.(结论) (大前提是等比数列的定义,这里省略了)(2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2), ∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1=4a n (n ≥2).(小前提) 又∵a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提) ∴对于任意正整数n ,都有S n +1=4a n .(结论)(1)有6名选手参加演讲比赛,观众甲猜测:4号或5号选手得第一名;观众乙猜测:3号选手不可能得第一名;观众丙猜测:1,2,6号选手中的一位获得第一名;观众丁猜测:4,5,6号选手都不可能获得第一名.比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是( )A .甲B .乙C .丙D .丁(2)已知在△ABC 中,∠A =30°,∠B =60°,求证:a <b . 证明:∵∠A =30°,∠B =60°,∴∠A <∠B .∴a <b . 其中,画线部分是演绎推理的( ) A .大前提 B .小前提 C .结论D .三段论解析:(1)若甲猜测正确,则4号或5号得第一名,那么乙猜测也正确,与题意不符,故甲猜测错误,即4号和5号均不是第一名.若丙猜测正确,那么乙猜测也正确,与题意不符,故仅有丁猜测正确,所以选D.答案:(1)D (2)B1.合情推理主要包括归纳推理和类比推理.数学研究中,在得到一个新结论前,合情推理能帮助猜测和发现结论,在证明一个数学结论之前,合情推理常常能为证明提供思路与方向.2.演绎推理从一般的原理出发,推出某个特殊情况下的结论的推理方法,是由一般到特殊的推理,常用的一般模式是三段论.数学问题的证明主要通过演绎推理来进行.3.合情推理仅是“合乎情理”的推理,它得到的结论不一定正确.而演绎推理得到的结论一定正确(前提和推理形式都正确的前提下).类比推理命题的特点类比推理是由特殊到特殊的推理,借助类比推理可以推测未知、发现新结论、探索和提供解决问题的思路和方法.这正像著名数学家波利亚所说的:“类比是一个伟大的引路人.”因此,在解决某些数学问题时,若能合理地运用类比,可为问题的解决开辟一条便捷之路.在近年各类考试中,类比推理题频频亮相.下面就通过介绍类比推理的一些命题特点,揭示求解规律,希望对同学们求解此类问题有所帮助.1.类比定义【例1】 等和数列的定义是:若数列{a n }(n ∈N *)从第二项起,以后每一项与前一项的和都是同一常数,则此数列叫做等和数列,这个常数叫做等和数列的公和.如果数列{a n }是等和数列,且a 1=1,a 2=3,则数列{a n }的一个通项公式是________.【解析】 由定义知公和为4,且a n +a n -1=4(n ≥2,n ∈N *),那么a n -2=-(a n -1-2),依次类推,于是有a n -2=(-1)n -1(a 1-2).因为a 1=1,所以a n =2+(-1)n.【答案】 a n =2+(-1)n2.类比性质【例2】 我们知道:圆的任意一弦(非直径)的中点和圆心的连线与该弦垂直,那么,若椭圆b 2x 2+a 2y 2=a 2b 2的一弦(非过原点的弦)的中点与原点连线及弦所在直线的斜率均存在,你能得到什么结论?请予以证明.【解】 假设在圆中,弦(非直径)所在直线的斜率与弦的中点和圆心连线的斜率都存在,由两线垂直,我们可以知道两斜率之积为-1.对于方程b 2x 2+a 2y 2=a 2b 2,若a =b ,则方程为圆的方程,由此可以猜测两斜率之积为-b 2a 2或-a 2b2.于是,设椭圆的弦AB 的两端点的坐标分别为A (x 1,y 1),B (x 2,y 2),中点为P ,则⎩⎪⎨⎪⎧b 2x 21+a 2y 21=a 2b 2,b 2x 22+a 2y 22=a 2b 2⇒b 2(x 22-x 21)+a 2(y 22-y 21)=0⇒y 2+y 1x 2+x 1·y 2-y 1x 2-x 1=-b 2a 2⇒k OP ·k AB =-b 2a 2,即两斜率之积为-b 2a2. 3.类比方法【例3】 已知O 是△ABC 内任意一点,连接AO ,BO ,CO 并延长交对边于A ′,B ′,C ′,则OA ′AA ′+OB ′BB ′+OC ′CC ′=1,这是一道平面几何题,其证明常采用“面积法”. OA ′AA ′+OB ′BB ′+OC ′CC ′=S △OBC S △ABC +S △OCA S △ABC +S △OAB S △ABC =S △ABCS △ABC=1. 请运用类比思想,对于空间中的四面体A BCD ,存在什么类似的结论?并证明. 【解】 在四面体A BCD 中,任取一点O ,连接AO ,DO ,BO ,CO 并延长分别交四个面于E ,F ,G ,H 点.则OE AE +OF DF +OG BG +OHCH=1. 在四面体O BCD 与A BCD 中, OE AE =h O BCD h A BCD =13S △BCD ·h O BCD13S △BCD ·h A BCD =V O BCDV A BCD. 同理,OF DF =V O ABC V D -ABC ,OG BG =V O ACD V B ACD ,OH CH =V O ABDV C ABD,∴OE AE +OF DF +OG BG +OH CH =V O BCD +V O ABC +V O ACD +V O ABD V A BCD =V A BCDV A BCD=1.。
第二节一元二次不等式及其解法☆☆☆2017考纲考题考情☆☆☆自|主|排|查1.一元二次不等式的特征一元二次不等式的二次项(最高次项)系数不等于0。
2.一元二次不等式的解集3.(x -a )(x -b )>0或(x -a )(x -b )<0型不等式解法 微点提醒1.解不等式ax 2+bx +c >0(<0)时不要忘记讨论当a =0时的情形。
2.不等式ax 2+bx +c >0(<0)恒成立的条件要结合其对应的函数图象决定。
(1)不等式ax 2+bx +c >0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧a =b =0,c >0或⎩⎪⎨⎪⎧a >0,Δ<0。
(2)不等式ax2+bx +c <0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧a =b =0,c <0或⎩⎪⎨⎪⎧a <0,Δ<0。
小|题|快|练一 、走进教材1.(必修5P 80A 组T 4改编)已知集合A ={x |x 2-16<0},B ={x |x 2-4x +3>0},则A ∪B =( )A .(-4,4)B .RC .{x |x >3或x <1}D .{x |-4<x <1或3<x <4}【解析】 A ={x |x 2-16<0}=(-4,4),B ={x |x 2-4x +3>0}={x |x >3或x <1},所以A ∪B =R 。
故选B 。
【答案】 B2.(必修5P 103A 组T 3改编)当x >0时,若不等式x 2+ax +1≥0恒成立,则a 的最小值为( ) A .-2 B .-3 C .-1D .-32【解析】 当Δ=a 2-4≤0,即-2≤a ≤2时,不等式x 2+ax +1≥0对任意x >0恒成立,当Δ=a 2-4>0,则需⎩⎪⎨⎪⎧a 2-4>0,-a2<0,解得a >2。
第七节数学归纳法☆☆☆2017考纲考题考情☆☆☆考纲要求真题举例命题角度全国卷Ⅰ,Ⅱ,Ⅲ无数学归纳法在近年的全国卷高考2015江苏,23,10分(数学归纳1.了解数学归纳法的原中还未出现过,只是在个别的自主命法)理;题的省份有所考查。
由此可见数学归2014,安徽,21,13分(数学归2.能用数学归纳法证明纳法不是高考的热点内容,我们做一纳法)一些简单的数学命题。
般地认识就可以了,不必搞得过深过2014,陕西,21,14分(数学归难。
纳法)微知识小题练自|主|排|查数学归纳法的定义及框图表示(1)定义:证明一个与正整数n有关的命题,可按下列步骤进行:①证明当n取第一个值n0(n0∈N*)时命题成立,这一步是归纳奠基。
②假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立,这一步是归纳递推。
完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立。
(2)框图表示:微点提醒1.数学归纳法证题时,不要误把第一个值n0认为是1,如证明多边形内角和定理(n-2)π时,初始值n0=3。
2.数学归纳法证题的关键是第二步,证题时应注意:- 1 -(1)必须利用归纳假设作基础。
(2)证明中可利用综合法、分析法、反证法等方法。
(3)解题时要搞清从n=k到n=k+1增加了哪些项或减少了哪些项。
小|题|快|练一、走进教材1 1.(选修2-2P96B组T1改编)在应用数学归纳法证明凸n边形的对角线为n(n-3)条时,2第一步检验n等于()A.1 B.2C.3 D.4【解析】三角形是边数最少的凸多边形,故第一步应检验n=3。
【答案】 Cn4+n2 2.(选修2-2P94例1改编)用数学归纳法证明1+2+3+…+n2=,则当n=k+12时,左端应在n=k的基础上加上()A.k2+1B.(k+1)2k+14+k+12C.2D.(k2+1)+(k2+2)+…+(k+1)2【解析】当n=k时,左端=1+2+3+…+k2。
第六章不等式及其证明[深研高考·备考导航]为教师备课、授课提供丰富教学资源[五年考情]从近五年浙江卷高考题来看,涉及本章知识的既有客观题,又有解答题.客观题主要考查不等关系与不等式,一元二次不等式的解法,简单线性规划,解答题重点考查绝对值不等式与二次函数相交汇问题,不等式的证明问题.第一节不等式的性质与一元二次不等式1.实数的大小顺序与运算性质的关系 (1)a >b ⇔a -b >0; (2)a =b ⇔a -b =0; (3)a <b ⇔a -b <0. 2.不等式的性质(1)对称性:a >b ⇔b <a ;(双向性) (2)传递性:a >b ,b >c ⇒a >c ;(单向性) (3)可加性:a >b ⇔a +c >b +c ;(双向性)a >b ,c >d ⇒a +c >b +d ;(单向性)(4)可乘性:a >b ,c >0⇒ac >bc ;a >b ,c <0⇒ac <bc ;a >b >0,c >d >0⇒ac >bd ;(单向性)(5)乘方法则:a >b >0⇒a n>b n(n ≥2,n ∈N );(单向性) (6)开方法则:a >b >0⇒n ≥2,n ∈N );(单向性)(7)倒数性质:设ab >0,则a <b ⇔1a >1b.(双向性)3.一元二次不等式与相应的二次函数及一元二次方程的关系1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)a >b ⇔ac 2>bc 2.( ) (2)a >b >0,c >d >0⇒a d >bc.( )(3)若不等式ax 2+bx +c <0的解集为(x 1,x 2),则必有a >0.( )(4)若方程ax 2+bx +c =0(a ≠0)没有实数根,则不等式ax 2+bx +c >0的解集为R .( )。
第六章⎪⎪⎪ 不等式、推理与证明第一节不等关系与不等式1.两个实数比较大小的依据 (1)a -b >0⇔a >b . (2)a -b =0⇔a =b . (3)a -b <0⇔a <b . 2.不等式的性质 (1)对称性:a >b ⇔b <a ; (2)传递性:a >b ,b >c ⇒a >c ; (3)可加性:a >b ⇔a +c >b +c ;a >b ,c >d ⇒a +c >b +d ;(4)可乘性:a >b ,c >0⇒ac >bc ;a >b >0,c >d >0⇒ac >bd ;(5)可乘方:a >b >0⇒a n>b n(n ∈N ,n ≥1); (6)可开方:a >b >0⇒na > nb (n ∈N ,n ≥2).[小题体验]1.(教材习题改编)用不等号“>”或“<”填空: (1)a >b ,c <d ⇒a -c ________b -d ; (2)a >b >0,c <d <0⇒ac ________bd ; (3)a >b >0⇒3a ________3b .答案:(1)> (2)< (3)>2.限速40 km/h 的路标,指示司机在前方路段行驶时,应使汽车的速度v 不超过40 km/h ,写成不等式就是__________.答案:v ≤40 km/h2 3.若0<a <b ,c >0,则b +c a +c 与a +cb +c的大小关系为________. 答案:b +c a +c >a +cb +c1.在应用传递性时,注意等号是否传递下去,如a ≤b ,b <c ⇒a <c .2.在乘法法则中,要特别注意“乘数c 的符号”,例如当c ≠0时,有a >b ⇒ac 2>bc 2;若无c ≠0这个条件,a >b ⇒ac 2>bc 2就是错误结论(当c =0时,取“=”).[小题纠偏]1.设a ,b ,c ∈R ,且a >b ,则( ) A .ac >bc B .1a <1bC .a 2>b 2D . a 3>b 3答案:D2.若ab >0,且a >b ,则1a 与1b的大小关系是________.答案:1a <1b考点一 比较两个数式的大小基础送分型考点——自主练透[题组练透]1.已知x ∈R ,m =(x +1)⎝ ⎛⎭⎪⎫x 2+x 2+1,n =⎝ ⎛⎭⎪⎫x +12(x 2+x +1),则m ,n 的大小关系为( ) A .m ≥n B .m >n C .m ≤n D .m <n答案:B2.若a =ln 22,b =ln 33,则a ____b (填“>”或“<”).解析:易知a ,b 都是正数,b a =2ln 33ln 2=log 89>1,所以b >a .答案:<3.已知等比数列{a n }中,a 1>0,q >0,前n 项和为S n ,则S 3a 3与S 5a 5的大小关系为________.解析:当q =1时,S 3a 3=3,S 5a 5=5,所以S 3a 3<S 5a 5. 当q >0且q ≠1时,S3a 3-S 5a 5=a 1-q 3a 1q 2-q -a 1-q 5a 1q 4-q=q 2-q3--q 5q 4-q=-q -1q4<0, 所以S 3a 3<S 5a 5. 综上可知S 3a 3<S 5a 5. 答案:S 3a 3<S 5a 5[谨记通法]比较两实数(式)大小的2种常用方法考点二 不等式的性质重点保分型考点——师生共研[典例引领]1.设a ,b ∈R 则“(a -b )·a 2<0”是“a <b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A (a -b )·a 2<0,则必有a -b <0,即a <b ;而a <b 时,不能推出(a -b )·a 2<0,如a =0,b =1,所以“(a -b )·a 2<0”是“a <b ”的充分不必要条件.2.若a >b >0,c <d <0,则一定有( ) A .a d >b c B .a d <b c C .a c >b dD .a c <b d解析:选B 法一:因为c <d <0,所以-c >-d >0,4 所以1-d >1-c>0.又a >b >0,所以a -d >b -c ,所以a d <bc .故选B .法二:⎭⎪⎬⎪⎫c <d <0⇒cd >0c <d <0⇒c cd <dcd <0⇒1d <1c<0⇒⎭⎪⎬⎪⎫-1d >-1c >0a >b >0⇒-a d >-b c ⇒a d <b c .法三:令a =3,b =2,c =-3,d =-2, 则a c=-1,b d=-1,排除选项C 、D ; 又∵-32<-23,排除A .故选B .[由题悟法]不等式性质应用问题的3大常见类型及解题策略(1)利用不等式性质比较大小.熟记不等式性质的条件和结论是基础,灵活运用是关键,要注意不等式性质成立的前提条件.(2)与充要条件相结合问题.用不等式的性质分别判断p ⇒q 和q ⇒p 是否正确,要注意特殊值法的应用.(3)与命题真假判断相结合问题.解决此类问题除根据不等式的性质求解外,还经常采用特殊值验证的方法.[即时应用]1.(2016·河南六市第一次联考)若1a <1b<0,则下列结论不正确的是( )A .a 2<b 2B .ab <b 2C .a +b <0D .|a |+|b |>|a +b |解析:选D ∵1a <1b<0,∴b <a <0,∴b 2>a 2,ab <b 2,a +b <0,∴选项A 、B 、C 均正确,∵b <a <0,∴|a |+|b |=|a +b |,故D 项错误,故选D .2.(2017·赣中南五校联考)对于任意实数a ,b ,c ,d ,有以下四个命题: ①若ac 2>bc 2,则a >b ;②若a >b ,c >d ,则a +c >b +d ; ③若a >b ,c >d ,则ac >bd ; ④若a >b ,则1a >1b.其中正确的有( ) A .1个 B .2个 C .3个D .4个解析:选B ①由ac 2>bc 2,得c ≠0,则a >b ,①正确; ②由不等式的同向可加性可知②正确; ③错误,当0>c >d 时,不等式不成立.④错误,令a =-1,b =-2,满足-1>-2,但1-1<1-2.故选B .考点三 不等式性质的应用重点保分型考点——师生共研[典例引领]已知函数f (x )=ax 2+bx ,且1≤f (-1)≤2,2≤f (1)≤4.求f (-2)的取值范围. 解:由题意知f (-1)=a -b ,f (1)=a +b .f (-2)=4a -2b .设m (a +b )+n (a -b )=4a -2b .则⎩⎪⎨⎪⎧m +n =4,m -n =-2,解得⎩⎪⎨⎪⎧m =1,n =3.∴f (-2)=(a +b )+3(a -b )=f (1)+3f (-1). ∵1≤f (-1)≤2,2≤f (1)≤4,∴5≤f (-2)≤10. 即f (-2)的取值范围为[5,10].[类题通法]利用不等式性质可以求某些代数式的取值范围,但应注意两点:一是必须严格运用不等式的性质;二是在多次运用不等式的性质时有可能扩大了变量的取值范围,解决的途径是先建立所求范围的整体与已知范围的整体的等量关系,最后通过“一次性”不等关系的运算求解范围.[即时应用]1.若6<a <10,a2≤b ≤2a ,c =a +b ,则c 的取值范围是( ) A .[9,18] B .(15,30) C .[9,30]D .(9,30)解析:选D ∵a 2≤b ≤2a ,∴3a 2≤a +b ≤3a ,即3a2≤c ≤3a .∵6<a <10,∴9<c <30.故选D .2.已知-1<x <4,2<y <3,则x -y 的取值范围是________,3x +2y 的取值范围是________. 解析:∵-1<x <4,2<y <3, ∴-3<-y <-2,6 ∴-4<x -y <2. 由-1<x <4,2<y <3, 得-3<3x <12,4<2y <6, ∴1<3x +2y <18. 答案:(-4,2) (1,18)一抓基础,多练小题做到眼疾手快1.设a ,b ∈[0,+∞),A =a +b ,B =a +b ,则A ,B 的大小关系是( ) A .A ≤B B .A ≥B C .A <BD .A >B解析:选B 由题意得,B 2-A 2=-2ab ≤0,且A ≥0,B ≥0,可得A ≥B . 2.若a <b <0,则下列不等式不能成立的是( ) A .1a -b >1aB .1a >1bC .|a |>|b |D .a 2>b 2解析:选A 取a =-2,b =-1,则1a -b >1a不成立. 3.若a ,b 都是实数,则“a -b >0”是“a 2-b 2>0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 由a -b >0得a >b ≥0, 则a 2>b 2⇒a 2-b 2>0;由a 2-b 2>0得a 2>b 2,可得a >b ≥0或a <b ≤0等,所以“a -b >0”是“a 2-b 2>0”的充分不必要条件,故选A .4.(2017·资阳诊断)已知a ,b ∈R ,下列命题正确的是( ) A .若a >b ,则|a |>|b | B .若a >b ,则1a <1bC .若|a |>b ,则a 2>b 2D .若a >|b |,则a 2>b 2解析:选D 当a =1,b =-2时,选项A 、B 、C 均不正确;对于D 项,a >|b |≥0,则a 2>b 2. 5.若角α,β满足-π2<α<β<π,则α-β的取值范围是( )A .⎝ ⎛⎭⎪⎫-3π2,3π2B .⎝ ⎛⎭⎪⎫-3π2,0C .⎝⎛⎭⎪⎫0,3π2 D .⎝ ⎛⎭⎪⎫-π2,0解析:选B ∵-π2<α<π,-π2<β<π,∴-π<-β<π2,∴-3π2<α-β<3π2.又∵α<β,∴α-β<0,从而-3π2<α-β<0.二保高考,全练题型做到高考达标1.已知a 1,a 2∈(0,1),记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( ) A .M <N B .M >N C .M =ND .不确定解析:选B M -N =a 1a 2-(a 1+a 2-1) =a 1a 2-a 1-a 2+1=(a 1-1)(a 2-1),又∵a 1∈(0,1),a 2∈(0,1),∴a 1-1<0,a 2-1<0. ∴(a 1-1)(a 2-1)>0,即M -N >0.∴M >N .2.若m <0,n >0且m +n <0,则下列不等式中成立的是( ) A .-n <m <n <-m B .-n <m <-m <n C .m <-n <-m <nD .m <-n <n <-m 解析:选D 法一:(取特殊值法)令m =-3,n =2分别代入各选项检验即可. 法二:m +n <0⇒m <-n ⇒n <-m ,又由于m <0<n ,故m <-n <n <-m 成立. 3.(2016·湘潭一模)设a ,b 是实数,则“a >b >1”是“a +1a >b +1b”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件解析:选A 因为a +1a -⎝ ⎛⎭⎪⎫b +1b =a -bab -ab,若a >b >1,显然a +1a -⎝ ⎛⎭⎪⎫b +1b =a -bab -ab>0,则充分性成立,当a =12,b =23时,显然不等式a +1a >b +1b成立,但a >b >1不成立,所以必要性不成立.4.(2016·浙江高考)已知a ,b >0且a ≠1,b ≠1,若log a b >1,则( ) A .(a -1)(b -1)<0 B .(a -1)(a -b )>0 C .(b -1)(b -a )<0D .(b -1)(b -a )>0解析:选D ∵a ,b >0且a ≠1,b ≠1,∴当a >1,即a -1>0时,不等式log a b >1可化为a log a b >a 1,即b >a >1,∴(a -1)(a -b )<0,(b -1)(a -1)>0,(b -1)(b -a )>0.当0<a <1,即a -1<0时,不等式log a b >1可化为a log a b <a 1,即0<b <a <1,∴(a -1)(a -b )<0,(b -1)(a -1)>0,(b -1)(b -a )>0.8 综上可知,选D .5.设a ,b ∈R ,定义运算“⊗和“⊕”如下:a ⊗b =⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b ,a ⊕b =⎩⎪⎨⎪⎧b ,a ≤b ,a ,a >b .若m ⊗n ≥2,p ⊕q ≤2,则( )A .mn ≥4且p +q ≤4B .m +n ≥4且pq ≤4C .mn ≤4且p +q ≥4D .m +n ≤4且pq ≤4解析:选A 结合定义及m ⊗n ≥2可得⎩⎪⎨⎪⎧m ≥2,m ≤n 或⎩⎪⎨⎪⎧n ≥2,m >n ,即n ≥m ≥2或m >n ≥2,所以mn ≥4;结合定义及p ⊕q ≤2可得⎩⎪⎨⎪⎧p ≤2,p >q 或⎩⎪⎨⎪⎧q ≤2,p ≤q ,即q <p ≤2或p ≤q ≤2,所以p +q ≤4.6.a ,b ∈R ,a <b 和1a <1b同时成立的条件是________.解析:若ab <0,由a <b 两边同除以ab 得,1b >1a ,即1a <1b ;若ab >0,则1a >1b.∴a <b 和1a <1b同时成立的条件是a <0<b .答案:a <0<b7.用一段长为30 m 的篱笆围成一个一边靠墙的矩形菜园,墙长18 m ,要求菜园的面积不小于216 m 2,靠墙的一边长为x m ,其中的不等关系可用不等式(组)表示为________.解析:矩形靠墙的一边长为x m ,则另一边长为30-x2 m ,即⎝ ⎛⎭⎪⎫15-x 2m ,根据题意知⎩⎪⎨⎪⎧0<x ≤18,x ⎝⎛⎭⎪⎫15-x 2≥216.答案:⎩⎪⎨⎪⎧0<x ≤18,x ⎝⎛⎭⎪⎫15-x 2≥2168.已知a +b >0,则a b2+b a2与1a +1b的大小关系是________.解析:a b 2+b a 2-⎝ ⎛⎭⎪⎫1a +1b =a -b b 2+b -a a 2=(a -b )·⎝ ⎛⎭⎪⎫1b 2-1a 2=a +b a -b 2a 2b 2.∵a +b >0,(a -b )2≥0, ∴a +ba -b2a 2b 2≥0.∴a b2+b a2≥1a +1b . 答案:a b2+b a2≥1a +1b9.已知存在实数a 满足ab 2>a >ab ,则实数b 的取值范围是__________. 解析:∵ab 2>a >ab ,∴a ≠0, 当a >0时,b 2>1>b ,即⎩⎪⎨⎪⎧ b 2>1,b <1,解得b <-1;当a <0时,b 2<1<b ,即⎩⎪⎨⎪⎧b 2<1,b >1,此式无解.综上可得实数b 的取值范围为(-∞,-1). 答案:(-∞,-1)10.若a >b >0,c <d <0,e <0.求证:e a -c2>e b -d2.证明:∵c <d <0,∴-c >-d >0. 又∵a >b >0,∴a -c >b -d >0. ∴(a -c )2>(b -d )2>0. ∴0<1a -c2<1b -d2.又∵e <0,∴e a -c2>e b -d2.三上台阶,自主选做志在冲刺名校1.(2017·合肥质检)已知△ABC 的三边长分别为a ,b ,c ,且满足b +c ≤3a ,则c a的取值范围为( )A .(1,+∞)B .(0,2)C .(1,3)D .(0,3)解析:选B 由已知及三角形三边关系得⎩⎪⎨⎪⎧a <b +c ≤3a ,a +b >c ,a +c >b ,10 ∴⎩⎪⎨⎪⎧1<b a +c a≤3,1+b a >ca ,1+c a >b a ,∴⎩⎪⎨⎪⎧1<b a +ca ≤3,-1<c a -ba <1,两式相加得,0<2·c a<4, ∴c a的取值范围为(0,2). 2.设a >b >0,m ≠-a ,则b +m a +m >ba时,m 满足的条件是________. 解析:由b +m a +m >b a 得a -b m a a +m >0,因为a >b >0,所以mm +a>0. 即⎩⎪⎨⎪⎧m >0,m +a >0或⎩⎪⎨⎪⎧m <0,m +a <0.∴m >0或m <-a .即m 满足的条件是m >0或m <-a . 答案:m >0或m <-a3.某单位组织职工去某地参观学习需包车前往.甲车队说:“如果领队买一张全票,其余人可享受7.5折优惠.”乙车队说:“你们属团体票,按原价的8折优惠.”这两个车队的原价、车型都是一样的,试根据单位去的人数比较两车队的收费哪家更优惠.解:设该单位职工有n 人(n ∈N *),全票价为x 元,坐甲车需花y 1元,坐乙车需花y 2元, 则y 1=x +34x ·(n -1)=14x +34xn ,y 2=45nx .所以y 1-y 2=14x +34xn -45nx =14x -120nx=14x ⎝ ⎛⎭⎪⎫1-n 5. 当n =5时,y 1=y 2; 当n >5时,y 1<y 2; 当n <5时,y 1>y 2.因此当单位去的人数为5人时,两车队收费相同;多于5人时,甲车队更优惠;少于5人时,乙车队更优惠.第二节一元二次不等式及其解法“三个二次”的关系[小题体验]1.设集合S ={x |x >-2},T ={x |x 2+3x -4≤0},则(∁R S )∪T =( ) A .(-2,1] B .(-∞,-4] C .(-∞,1]D .[1,+∞)解析:选C 由题意得T = {x |-4≤x ≤1}, 根据补集定义, ∁R S ={x |x ≤-2}, 所以(∁R S )∪T ={x |x ≤1}.2.(教材习题改编)不等式-x 2+2x -3>0的解集为________. 答案:∅3.不等式ax 2+bx +2>0的解集是⎝ ⎛⎭⎪⎫-12,13,则a +b 的值是________.解析:由题意知-12,13是ax 2+bx +2=0的两根,12 则a =-12,b =-2. 所以a +b =-14. 答案:-141.对于不等式ax 2+bx +c >0,求解时不要忘记讨论a =0时的情形. 2.当Δ<0时,ax 2+bx +c >0(a ≠0)的解集为R 还是∅,要注意区别. 3.含参数的不等式要注意选好分类标准,避免盲目讨论.[小题纠偏] 1.不等式x -3x -1≤0的解集为( ) A .{x |x <1或x ≥3} B .{x |1≤x ≤3} C .{x |1<x ≤3}D .{x |1<x <3}解析:选C 由x -3x -1≤0,得⎩⎪⎨⎪⎧x -x -,x -1≠0,解得1<x ≤3.2.若不等式mx 2+2mx +1>0的解集为R ,则m 的取值范围是________. 解析:①当m =0时,1>0显然成立.②当m ≠0时,由条件知⎩⎪⎨⎪⎧m >0,Δ=4m 2-4m <0.得0<m <1.由①②知0≤m <1. 答案:[0,1)考点一 一元二次不等式的解法基础送分型考点——自主练透[题组练透]1.已知函数f (x )=⎩⎪⎨⎪⎧2x 2+1,x ≤0,-2x ,x >0,则不等式f (x )-x ≤2的解集是________.解析:当x ≤0时,原不等式等价于2x 2+1-x ≤2,∴-12≤x ≤0;当x >0时,原不等式等价于-2x -x ≤2,∴x >0.综上所述,原不等式的解集为⎩⎨⎧⎭⎬⎫xx ≥-12.答案:⎩⎨⎧⎭⎬⎫xx ≥-122.不等式2x +1x -5≥-1的解集为________.解析:将原不等式移项通分得3x -4x -5≥0,等价于⎩⎪⎨⎪⎧x -x -,x -5≠0,解得x >5或x ≤43.所以原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤43或x >5. 答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤43或x >53.解下列不等式:(1)(易错题)-3x 2-2x +8≥0; (2)0<x 2-x -2≤4.解:(1)原不等式可化为3x 2+2x -8≤0, 即(3x -4)(x +2)≤0. 解得-2≤x ≤43,所以原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-2≤x ≤43. (2)原不等式等价于⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -2≤4⇔⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -6≤0⇔⎩⎪⎨⎪⎧x -x +>0,x -x +⇔⎩⎪⎨⎪⎧x >2或x <-1,-2≤x ≤3.借助于数轴,如图所示,所以原不等式的解集为{}x |-2≤x <-1或2<x ≤3.[谨记通法]解一元二次不等式的4个步骤14考点二 含参数的一元二次不等式的解法重点保分型考点——师生共研[典例引领]解关于x 的不等式ax 2-(a +1)x +1<0(a >0). 解:原不等式变为(ax -1)(x -1)<0,因为a >0,所以a ⎝⎛⎭⎪⎫x -1a (x -1)<0,所以当a >1时,解为1a<x <1;当a =1时,解集为∅; 当0<a <1时,解为1<x <1a.综上,当0<a <1时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1<x <1a . 当a =1时,不等式的解集为∅.当a >1时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1a <x <1. [由题悟法]解含参数的一元二次不等式时分类讨论的依据(1)二次项中若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为一次不等式或二次项系数为正的形式.(2)当不等式对应方程的根的个数不确定时,讨论判别式Δ与0的关系.(3)确定无根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集形式.[提醒] 当不等式中二次项的系数含有参数时,不要忘记讨论其等于0的情况.[即时应用]1.已知不等式ax 2-bx -1≥0的解集是⎣⎢⎡⎦⎥⎤-12,-13,则不等式x 2-bx -a <0的解集是( )A .(2,3)B .(-∞,2)∪(3,+∞)C .⎝ ⎛⎭⎪⎫13,12 D .⎝ ⎛⎭⎪⎫-∞,13∪⎝ ⎛⎭⎪⎫12,+∞ 解析:选A 由题意知-12,-13是方程ax 2-bx -1=0的根,所以由根与系数的关系得-12+⎝ ⎛⎭⎪⎫-13=b a ,-12×⎝ ⎛⎭⎪⎫-13=-1a .解得a =-6,b =5,不等式x 2-bx -a <0即为x 2-5x +6<0,解集为(2,3).2.求不等式12x 2-ax >a 2(a ∈R)的解集. 解:原不等式可化为12x 2-ax -a 2>0, 即(4x +a )(3x -a )>0,令(4x +a )(3x -a )=0,解得x 1=-a 4,x 2=a3.当a >0时,不等式的解集为⎝ ⎛⎭⎪⎫-∞,-a 4∪⎝ ⎛⎭⎪⎫a3,+∞; 当a =0时,不等式的解集为(-∞,0)∪(0,+∞); 当a <0时,不等式的解集为⎝ ⎛⎭⎪⎫-∞,a 3∪⎝ ⎛⎭⎪⎫-a4,+∞. 考点三 一元二次不等式恒成立问题题点多变型考点——多角探明 [锁定考向]一元二次不等式与其对应的函数与方程之间存在着密切的联系.在解决具体的数学问题时,要注意三者之间的相互联系,并在一定条件下相互转换.对于一元二次不等式恒成立问题,常根据二次函数图象与x 轴的交点情况确定判别式的符号,进而求出参数的取值范围.常见的命题角度有:(1)形如f (x )≥0(f (x )≤0)(x ∈R)确定参数的范围; (2)形如f (x )≥0(x ∈[a ,b ])确定参数范围;(3)形如f (x )≥0(参数m ∈[a ,b ])确定x 的范围.[题点全练]角度一:形如f (x )≥0(f (x )≤0)(x ∈R)确定参数的范围1.已知不等式mx 2-2x -m +1<0,是否存在实数m 对所有的实数x ,不等式恒成立?若存在,求出m 的取值范围;若不存在,请说明理由.解:要使不等式mx 2-2x -m +1<0恒成立,即函数f (x )=mx 2-2x -m +1的图象全部在x 轴下方. 当m =0时,1-2x <0,则x >12,不满足题意;16 当m ≠0时,函数f (x )=mx 2-2x -m +1为二次函数, 需满足开口向下且方程mx 2-2x -m +1=0无解,即⎩⎪⎨⎪⎧m <0,Δ=4-4m-m <0,不等式组的解集为空集,即m 无解.综上可知不存在这样的实数m 使不等式恒成立.角度二:形如f (x )≥0(x ∈[a ,b ])确定参数范围2.已知函数f (x )=-x 2+ax +b 2-b +1(a ∈R ,b ∈R),对任意实数x 都有f (1-x )=f (1+x )成立,若当x ∈[-1,1]时,f (x )>0恒成立,求b 的取值范围.解:由f (1-x )=f (1+x )知f (x )的图象关于直线x =1对称,即a2=1,解得a =2.又因为f (x )开口向下,所以当x ∈[-1,1]时,f (x )为增函数, 所以f (x )min =f (-1)=-1-2+b 2-b +1 =b 2-b -2,f (x )>0恒成立,即b 2-b -2>0恒成立,解得b <-1或b >2.∴b 的取值范围为(-∞,-1)∪(2,+∞)角度三:形如f (x )≥0(参数m ∈[a ,b ])确定x 的范围3.对任意m ∈[-1,1],函数f (x )=x 2+(m -4)x +4-2m 的值恒大于零,求x 的取值范围.解:由f (x )=x 2+(m -4)x +4-2m =(x -2)m +x 2-4x +4, 令g (m )=(x -2)m +x 2-4x +4.由题意知在[-1,1]上,g (m )的值恒大于零,∴⎩⎪⎨⎪⎧g -=x --+x 2-4x +4>0,g=x -+x 2-4x +4>0,解得x <1或x >3.故当x ∈(-∞,1)∪(3,+∞)时,对任意的m ∈[-1,1],函数f (x )的值恒大于零.[通法在握]一元二次型不等式恒成立问题的3大破解方法恒成立的条件是{ a >0,Δ≤0;(2)ax 2+bx +c ≤0对任意实数x 恒成立的条件是{ a <0,Δ≤0把变元与参数交换位置,构造以参数为变量的函数,根据原变量的取值范围列式求解.常见的是转化为一次函数f (x )=ax +b (a ≠0)在[m ,n ]恒成立问题,若f (x )>0恒成立⇔⎩⎪⎨⎪⎧ f m >0f n >0,若f (x )<0恒成立⇔⎩⎪⎨⎪⎧f m <0,f n <0[演练冲关]1.(2017·济宁模拟)不等式a 2+8b 2≥λb (a +b )对于任意的a ,b ∈R 恒成立,则实数λ的取值范围为________.解:因为a 2+8b 2≥λb (a +b )对于任意的a ,b ∈R 恒成立,所以a 2+8b 2-λb (a +b )≥0对于任意的a ,b ∈R 恒成立,即a 2-λba +(8-λ)b 2≥0恒成立,由二次不等式的性质可得,Δ=λ2b 2+4(λ-8)b 2=b 2(λ2+4λ-32)≤0, 所以(λ+8)(λ-4)≤0, 解得-8≤λ≤4. 答案:[-8,4]18 2.设函数f (x )=mx 2-mx -1(m ≠0),若对于x ∈[1,3],f (x )<-m +5恒成立,求m 的取值范围.解:要使f (x )<-m +5在[1,3]上恒成立, 则mx 2-mx +m -6<0,即m ⎝ ⎛⎭⎪⎫x -122+34m -6<0在x ∈[1,3]上恒成立.因为x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34>0,又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1.因为函数y =6x 2-x +1=6⎝ ⎛⎭⎪⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可. 因为m ≠0,所以m 的取值范围是(-∞,0)∪⎝ ⎛⎭⎪⎫0,67.一抓基础,多练小题做到眼疾手快1.设集合A ={x |x 2+x -6≤0},集合B 为函数y =1x -1的定义域,则A ∩B 等于( )A .(1,2)B .[1,2]C .[1,2)D .(1,2]解析:选D A ={x |x 2+x -6≤0}={x |-3≤x ≤2}, 由x -1>0得x >1,即B ={x |x >1}, 所以A ∩B ={x |1<x ≤2}.2.不等式f (x )=ax 2-x -c >0的解集为{x |-2<x <1},则函数y =f (-x )的图象为( )解析:选B 由根与系数的关系得1a =-2+1,-ca=-2,得a =-1,c =-2,∴f (x )=-x 2-x +2(经检验知满足题意),∴f (-x )=-x 2+x +2,其图象开口向下,顶点为⎝ ⎛⎭⎪⎫12,94.3.(2017·昆明模拟)不等式x 2-2x +5≥a 2-3a 对任意实数x 恒成立,则实数a 的取值范围为( )A .[-1,4]B .(-∞,-2]∪[5,+∞)C .(-∞,-1]∪[4,+∞)D .[-2,5]解析:选A x 2-2x +5=(x -1)2+4的最小值为4,所以x 2-2x +5≥a 2-3a 对任意实数x 恒成立,只需a 2-3a ≤4,解得-1≤a ≤4.4.不等式|x (x -2)|>x (x -2)的解集是________.解析:不等式|x (x -2)|>x (x -2)的解集即x (x -2)<0的解集,解得0<x <2. 答案:{x |0<x <2}5.若0<a <1,则不等式(a -x )⎝⎛⎭⎪⎫x -1a >0的解集是________.解析:原不等式为(x -a )⎝⎛⎭⎪⎫x -1a <0,由0<a <1得a <1a ,∴a <x <1a.答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪a <x <1a 二保高考,全练题型做到高考达标1.已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B ,不等式x 2+ax +b <0的解集为A ∩B ,则a +b 等于( )A .-3B .1C .-1D .3解析:选A 由题意得,A ={x |-1<x <3},B ={x |-3<x <2},∴A ∩B ={x |-1<x <2},由根与系数的关系可知,a =-1,b =-2,则a +b =-3.2.不等式2x +1<1的解集是( ) A .(-∞,-1)∪(1,+∞) B .(1,+∞) C .(-∞,-1) D .(-1,1)解析:选A ∵2x +1<1,∴2x +1-1<0,即1-x x +1<0,该不等式可化为(x +1)(x -1)>0,∴x <-1或x >1.3.(2017·郑州调研)规定记号“⊙”表示一种运算,定义a ⊙b =ab +a +b (a ,b 为正实数),若1⊙k 2<3,则k 的取值范围是( )A .(-1,1)B .(0,1)C .(-1,0)D .(0,2)解析:选A 因为定义a ⊙b =ab +a +b (a ,b 为正实数), 1⊙k 2<3,所以k 2+1+k 2<3,化为(|k |+2)(|k |-1)<0,所以|k |<1, 所以-1<k <1.20 4.某商场若将进货单价为8元的商品按每件10元出售,每天可销售100件,现准备采用提高售价来增加利润.已知这种商品每件销售价提高1元,销售量就要减少10件.那么要保证每天所赚的利润在320元以上,销售价每件应定为( )A .12元B .16元C .12元到16元之间D .10元到14元之间解析:选C 设销售价定为每件x 元,利润为y , 则y =(x -8)[100-10(x -10)],依题意有,(x -8)[100-10(x -10)]>320, 即x 2-28x +192<0, 解得12<x <16,所以每件销售价应为12元到16元之间.5.若不等式x 2-(a +1)x +a ≤0的解集是[-4,3]的子集,则a 的取值范围是( ) A .[-4,1] B .[-4,3] C .[1,3]D .[-1,3]解析:选B 原不等式为(x -a )(x -1)≤0,当a <1时,不等式的解集为[a,1],此时只要a ≥-4即可,即-4≤a <1;当a =1时,不等式的解为x =1,此时符合要求;当a >1时,不等式的解集为[1,a ],此时只要a ≤3即可,即1<a ≤3.综上可得-4≤a ≤3.6.不等式x 2+ax +4<0的解集不是空集,则实数a 的取值范围是________. 解析:∵不等式x 2+ax +4<0的解集不是空集, ∴Δ=a 2-4×4>0,即a 2>16. ∴a >4或a <-4.答案:(-∞,-4)∪(4,+∞)7.若关于x 的不等式ax >b 的解集为⎝ ⎛⎭⎪⎫-∞,15,则关于x 的不等式ax 2+bx -45a >0的解集为________.解析:由已知ax >b 的解集为⎝⎛⎭⎪⎫-∞,15,可知a <0,且b a =15,将不等式ax 2+bx -45a >0两边同除以a ,得x 2+b a x -45<0,即x 2+15x -45<0,即5x 2+x -4<0,解得-1<x <45,故所求解集为⎝⎛⎭⎪⎫-1,45. 答案:⎝⎛⎭⎪⎫-1,45 8.(2017·石家庄质检)在R 上定义运算:⎪⎪⎪⎪⎪⎪ab cd =ad -bc .若不等式⎪⎪⎪⎪⎪⎪x -1 a -2a +1 x ≥1对任意实数x 恒成立,则实数a 的最大值为________.解析:原不等式等价于x (x -1)-(a -2)(a +1)≥1, 即x 2-x -1≥(a +1)(a -2)对任意x 恒成立,x 2-x -1=⎝⎛⎭⎪⎫x -122-54≥-54,所以-54≥a 2-a -2,解得-12≤a ≤32.答案:329.已知f (x )=-3x 2+a (6-a )x +6. (1)解关于a 的不等式f (1)>0;(2)若不等式f (x )>b 的解集为(-1,3),求实数a ,b 的值. 解:(1)∵f (x )=-3x 2+a (6-a )x +6, ∴f (1)=-3+a (6-a )+6=-a 2+6a +3, ∴原不等式可化为a 2-6a -3<0, 解得3-23<a <3+23.∴原不等式的解集为{a |3-23<a <3+23}.(2)f (x )>b 的解集为(-1,3)等价于方程-3x 2+a (6-a )x +6-b =0的两根为-1,3, 等价于⎩⎪⎨⎪⎧-1+3=a-a3,-1×3=-6-b3,解得⎩⎨⎧a =3±3,b =-3.10.(2017·北京朝阳统一考试)已知函数f (x )=x 2-2ax -1+a ,a ∈R . (1)若a =2,试求函数y =f xx(x >0)的最小值; (2)对于任意的x ∈[0,2],不等式f (x )≤a 成立,试求a 的取值范围.解:(1)依题意得y =f x x =x 2-4x +1x =x +1x-4.因为x >0,所以x +1x≥2.当且仅当x =1x时,即x =1时,等号成立.所以y ≥-2. 所以当x =1时,y =f xx的最小值为-2.22 (2)因为f (x )-a =x 2-2ax -1,所以要使得“∀x ∈[0,2],不等式f (x )≤a 成立”, 只要“x 2-2ax -1≤0在[0,2]恒成立”. 不妨设g (x )=x 2-2ax -1,则只要g (x )≤0在[0,2]上恒成立即可.所以⎩⎪⎨⎪⎧g,g,即⎩⎪⎨⎪⎧0-0-1≤0,4-4a -1≤0,解得a ≥34.则a 的取值范围为⎣⎢⎡⎭⎪⎫34,+∞. 三上台阶,自主选做志在冲刺名校1.(2016·太原模拟)若关于x 的不等式x 2-4x -2-a >0在区间(1,4)内有解,则实数a 的取值范围是( )A .(-∞,-2)B .(-2,+∞)C .(-6,+∞)D .(-∞,-6)解析:选A 不等式x 2-4x -2-a >0在区间(1,4)内有解等价于a <(x 2-4x -2)max ,令g (x )=x 2-4x -2,x ∈(1,4),∴g (x )<g (4)=-2,∴a <-2.2.已知函数f (x )=ax 2+2ax +1的定义域为R . (1)求a 的取值范围; (2)若函数f (x )的最小值为22,解关于x 的不等式x 2-x -a 2-a <0. 解:(1)∵函数f (x )=ax 2+2ax +1的定义域为R , ∴ ax 2+2ax +1≥0恒成立, 当a =0时,1≥0恒成立. 当a ≠0时,需满足题意,则需⎩⎪⎨⎪⎧a >0,Δ=a2-4a ≤0,解得0<a ≤1,综上可知,a 的取值范围是[0,1]. (2)f (x )=ax 2+2ax +1=a x +2+1-a ,由题意及(1)可知0<a ≤1,∴当x =-1时,f (x )min =1-a , 由题意得,1-a =22, ∴a =12,∴不等式x 2-x -a 2-a <0可化为x 2-x -34<0.解得-12<x <32,∴不等式的解集为⎝ ⎛⎭⎪⎫-12,32. 第三节二元一次不等式(组)及简单的线性规划问题1.一元二次不等式(组)表示的平面区域2.线性规划中的基本概念24[小题体验]1.下列各点中,不在x +y -1≤0表示的平面区域内的是( ) A .(0,0) B .(-1,1) C .(-1,3) D .(2,-3)答案:C2.(教材习题改编)不等式组⎩⎪⎨⎪⎧x -3y +6≥0,x -y +2<0表示的平面区域是( )答案:B3.(2016·北京高考)若x ,y 满足⎩⎪⎨⎪⎧2x -y ≤0,x +y ≤3,x ≥0,则2x +y 的最大值为________.解析:根据题意作出可行域如图阴影部分所示,平移直线y =-2x ,当直线平移到过点A 时,目标函数取得最大值,由⎩⎪⎨⎪⎧2x -y =0,x +y =3,可得A (1,2),此时2x +y 取最大值为2×1+2=4.答案:41.画出平面区域.避免失误的重要方法就是首先使二元一次不等式化为ax +by +c >0(a >0).2.线性规划问题中的最优解不一定是唯一的,即可行域内使目标函数取得最值的点不一定只有一个,也可能有无数多个,也可能没有.3.在通过求直线的截距zb 的最值间接求出z 的最值时,要注意:当b >0时,截距z b取最大值时,z 也取最大值;截距z b 取最小值时,z 也取最小值;当b <0时,截距z b取最大值时,z 取最小值;截距z b取最小值时,z 取最大值.[小题纠偏]1.若用阴影表示不等示组⎩⎨⎧-x +y ≤0,3x -y ≤0所形成的平面区域,则该平面区域中的夹角的大小为________.答案:15°2.(2017·兰州诊断)已知实数x ,y 满足⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1,则目标函数z =2x -y 的最大值为________.解析:画出平面区域如图所示,目标函数可变为y =2x -z ,将直线y =2x 进行平移可得在点(2,-1)处截距最小,所以此时z 最大,最大值为5.答案:5考点一 二元一次不等式组表示平面区域基础送分型考点——自主练透[题组练透]1.已知约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,kx -y ≤0表示面积为1的直角三角形区域,则实数k 的值为( )A .1B .-1C .0D .-2解析:选A 先作出不等式组⎩⎪⎨⎪⎧x ≥1,x +y ≤4,对应的平面区域,如图. 要使阴影部分为直角三角形,当k =0时,此时三角形的面积为12×3×3=92≠1,所以不成立.当k =-1或-2时,不能构成直角三角形区域.26 当k =1时,由图可知,可构成直角三角区域且面积为1,故选A .2.(易错题)若满足条件⎩⎪⎨⎪⎧x -y ≥0,x +y -2≤0,y ≥a的整点(x ,y )恰有9个,其中整点是指横、纵坐标都是整数的点,则整数a 的值为( )A .-3B .-2C .-1D .0解析:选C 不等式组所表示的平面区域如图中阴影部分,当a =0时,只有4个整点(1,1),(0,0),(1,0),(2,0);当a =-1时,正好增加(-1,-1),(0,-1),(1,-1),(2,-1),(3,-1)共5个整点.3.(2017·广州五校联考)设不等式组⎩⎪⎨⎪⎧x ≥0,x +2y ≥4,2x +y ≤4所表示的平面区域为D ,则区域D 的面积为________.解析:如图,画出可行域.易得A ⎝ ⎛⎭⎪⎫43,43,B (0,2),C (0,4),∴可行域D 的面积为12×2×43=43.答案:43[谨记通法]确定二元一次不等式(组)表示的平面区域的方法(1)“直线定界,特殊点定域”,即先作直线,再取特殊点并代入不等式组.若满足不等式组,则不等式(组)表示的平面区域为直线与特殊点同侧的那部分区域;否则就对应与特殊点异侧的平面区域.如“题组练透”第2题易忽视边界.(2)当不等式中带等号时,边界为实线;不带等号时,边界应画为虚线,特殊点常取原点. 考点二 求目标函数的最值题点多变型考点——多角探明 [锁定考向]线性规划问题是高考的重点,而线性规划问题具有代数和几何的双重形式,多与函数、平面向量、数列、三角、概率、解析几何等问题交叉渗透.常见的命题角度有: (1)求线性目标函数的最值; (2)求非线性目标函数的最值; (3)线性规划中的参数问题.[题点全练]角度一:求线性目标函数的最值1.(2016·全国丙卷)设x ,y 满足约束条件⎩⎪⎨⎪⎧2x -y +1≥0,x -2y -1≤0,x ≤1,则z =2x +3y -5的最小值为________.解析:画出不等式组表示的平面区域如图中阴影部分所示.由题意可知,当直线y =-23x +53+z3过点A 时,z 取得最小值,联立⎩⎪⎨⎪⎧2x -y +1=0,x -2y -1=0,解得A (-1,-1),即z min =2×(-1)+3×(-1)-5=-10.答案:-10角度二:求非线性目标函数的最值2.(2016·江苏高考)已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +4≥0,2x +y -2≥0,3x -y -3≤0,则x 2+y 2的取值范围是________.解析:根据已知的不等式组画出可行域,如图阴影部分所示,则(x ,y )为阴影区域内的动点.d =x 2+y 2可以看做坐标原点O 与可行域内的点(x ,y )之间的距离.数形结合,知d 的最大值是OA 的长,d的最小值是点O 到直线2x +y -2=0的距离.由⎩⎪⎨⎪⎧x -2y +4=0,3x -y -3=0可得A (2,3),所以d max =22+32=13,d min =|-2|22+12=25. 所以d 2的最小值为45,最大值为13.28 所以x 2+y 2的取值范围是⎣⎢⎡⎦⎥⎤45,13.答案:⎣⎢⎡⎦⎥⎤45,13角度三:线性规划中的参数问题3.(2017·郑州质检)已知x ,y 满足⎩⎪⎨⎪⎧x ≥2,x +y ≤4,2x -y -m ≤0.若目标函数z =3x +y 的最大值为10,则z 的最小值为________.解析:画出不等式组表示的区域,如图中阴影部分所示,作直线l :3x +y =0,平移l ,从而可知经过C 点时z 取到最大值,由⎩⎪⎨⎪⎧3x +y =10,x +y =4,解得⎩⎪⎨⎪⎧x =3,y =1,∴2×3-1-m =0,m =5.由图知,平移l 经过B 点时,z 最小,∴当x =2,y =2×2-5=-1时,z 最小,z min =3×2-1=5. 答案:5[通法在握]1.求目标函数的最值3步骤(1)作图——画出约束条件所确定的平面区域和目标函数所表示的平行直线系中过原点的那一条直线;(2)平移——将l 平行移动,以确定最优解的对应点的位置;(3)求值——解方程组求出对应点坐标(即最优解),代入目标函数,即可求出最值. 2.常见的3类目标函数 (1)截距型:形如z =ax +by .求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-ab x +z b,通过求直线的截距z b的最值间接求出z 的最值.(2)距离型:形如z =(x -a )2+(y -b )2.(3)斜率型:形如z =y -bx -a. [提醒] 注意转化的等价性及几何意义.[演练冲关]1.(2017·海口调研)已知实数x ,y 满足⎩⎪⎨⎪⎧x -y +2≥0,x +y -4≥0,4x -y -4≤0.则z =3x -y 的取值范围为( )A .⎣⎢⎡⎦⎥⎤0,125B .[0,2]C .⎣⎢⎡⎦⎥⎤2,125 D .⎣⎢⎡⎦⎥⎤2,83解析:选A 画出题中的不等式组表示的平面区域(阴影部分)及直线3x -y =0,平移该直线,平移到经过该平面区域内的点A (1,3)(该点是直线x -y +2=0与x +y -4=0的交点)时,相应直线在x 轴上的截距达到最小,此时z =3x -y 取得最小值3×1-3=0;平移到经过该平面区域内的点B ⎝ ⎛⎭⎪⎫85,125(该点是直线4x -y -4=0与x +y -4=0的交点)时,相应直线在x 轴上的截距达到最大,此时z =3x -y 取得最大值3×85-125=125,因此z 的取值范围是⎣⎢⎡⎦⎥⎤0,125,选A .2.(2017·合肥质检)已知实数x ,y 满足⎩⎪⎨⎪⎧x -y +1≥0,x -3y -1≤0,x ≤1.若z =kx -y 的最小值为-5,则实数k 的值为( )A .-3B .3或-5C .-3或-5D .±3解析:选D 不等式组对应的平面区域是以点(1,2),(1,0)和(-2,-1)为顶点的三角形及其内部,当z 取得最小值时,直线y =kx -z 在y 轴上的截距最大,当k ≤1时,目标函数直线经过点(1,2)时,z min =k -2=-5,k =-3适合;当k >1时,目标函数直线经过点(-2,-1)时,z min =-2k +1=-5,k =3适合,故k =±3,选项D 正确.30 3.(2016·山西质检)设实数x ,y 满足⎩⎪⎨⎪⎧2x +y -2≤0,x -y +1≥0,x -2y -1≤0.则y -1x -1的最小值是________. 解析:如图所示,画出不等式组所表示的可行域,而y -1x -1表示区域内一点(x ,y )与点D (1,1)连线的斜率, ∴当x =13,y =43时,y -1x -1有最小值为-12.答案:-12考点三 线性规划的实际应用重点保分型考点——师生共研[典例引领](2016·全国乙卷)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900 元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.解析:设生产A 产品x 件,B 产品y 件,由已知可得约束条件为 ⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ∈N ,y ∈N.即⎩⎪⎨⎪⎧3x +y ≤300,10x +3y ≤900,5x +3y ≤600,x ∈N ,y ∈N.目标函数为z =2 100x +900y ,由约束条件作出不等式组表示的可行域如图中阴影部分.作直线 2 100x +900y =0,即7x +3y =0,当直线经过点M 时,z 取得最大值,联立⎩⎪⎨⎪⎧10x +3y =900,5x +3y =600,解得M (60,100).则z max =2 100×60+900×100=216 000(元). 答案:216 000[由题悟法]1.解线性规划应用题3步骤(1)转化——设元,写出约束条件和目标函数,从而将实际问题转化为线性规划问题; (2)求解——解这个纯数学的线性规划问题;(3)作答——将数学问题的答案还原为实际问题的答案. 2.求解线性规划应用题的3个注意点(1)明确问题中的所有约束条件,并根据题意判断约束条件是否能够取到等号. (2)注意结合实际问题的实际意义,判断所设未知数x ,y 的取值范围,特别注意分析x ,y 是否是整数、是否是非负数等.(3)正确地写出目标函数,一般地,目标函数是等式的形式.[即时应用]某旅行社租用A ,B 两种型号的客车安排900名客人旅行,A ,B 两种车辆的载客量分别为36人和60人,租金分别为1 600元/辆和2 400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆,则租金最少为( )A .31 200元B .36 000元C .36 800元D .38 400元解析:选C 设旅行社租用A 型客车x 辆,B 型客车y 辆,租金为z ,则线性约束条件为⎩⎪⎨⎪⎧x +y ≤21,y -x ≤7,36x +60y ≥900,x ,y ∈N.目标函数为z =1 600x +2 400y .画出可行域如图中阴影部分所示,可知目标函数过点N (5,12)时,有最小值z min =36 800(元).32一抓基础,多练小题做到眼疾手快1.不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域的面积等于( )A .32 B .23 C .43D .34解析:选C 平面区域如图所示.解⎩⎪⎨⎪⎧x +3y =4,3x +y =4.得A (1,1),易得B (0,4),C ⎝ ⎛⎭⎪⎫0,43, |BC |=4-43=83.所以S △ABC =12×83×1=43.2.不等式(x -2y +1)(x +y -3)≤0在坐标平面内表示的区域(用阴影部分表示)应是( )解析:选C (x -2y +1)(x +y -3)≤0⇔⎩⎪⎨⎪⎧x -2y +1≥0,x +y -3≤0或⎩⎪⎨⎪⎧x -2y +1≤0,x +y -3≥0.画出图形可知选C .3.(2016·四川德阳月考)设变量x ,y 满足⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≥0,2x -y -3≤0,则目标函数z =2x +3y的最大值为( )A .7B .8C .22D .23解析:选 D 由约束条件⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≥0,2x -y -3≤0作出可行域如图中阴影部分,由⎩⎪⎨⎪⎧x -y +1=0,2x -y -3=0解得⎩⎪⎨⎪⎧x =4,y =5,则B (4,5),将目标函数z=2x +3y 变形为y =-23x +z3.由图可知,当直线y =-23x +z3过B 时,直线在y 轴上的截距最大,此时z 取最大值,为2×4+3×5=23.4.点(-2,t )在直线2x -3y +6=0的上方,则t 的取值范围是________.解析:因为直线2x -3y +6=0的上方区域可以用不等式2x -3y +6<0表示,所以由点(-2,t )在直线2x -3y +6=0的上方得-4-3t +6<0,解得t >23.答案:⎝ ⎛⎭⎪⎫23,+∞ 5.(2017·昆明七校调研)已知实数x ,y 满足⎩⎪⎨⎪⎧x -y +5≥0,x ≤4,x +y ≥0.则z =x +3y 的最小值为________.解析:依题意,在坐标平面内画出不等式组表示的平面区域及直线x +3y =0,如图,平移直线y =-x3,当直线经过点(4,-4)时,在y 轴上的截距达到最小,此时z =x +3y 取得最小值4+3×(-4)=-8.答案:-8二保高考,全练题型做到高考达标1.(2015·福建高考)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≥0,x -y ≤0,x -2y +2≥0,则z =2x -y 的最小值等于( )A .-52B .-2。