中线逐桩坐标的计算
- 格式:ppt
- 大小:908.50 KB
- 文档页数:16
坐标计算方法目前公路、铁路工程的施工放样已广泛采用全站仪放样,而全站仪放样的关键是放样逐点的坐标计算。
放样点的位置不外乎两种,即:中线点(中桩)和横断面范围上的任意点(边桩)。
1、直线段坐标的计算方法:直线段的坐标方位角a用弧度表示)是不变的,其坐标计算不用考虑方位角的变化。
1.1 直线段任意中桩点坐标计算公式如下:X=X0+L*COS aY=Y0+L*SIN a其中:XO、Y0分别代表直线段已知点的坐标;L代表计算点到已知点的距离;a代表直线段的方位角以弧度计。
1.2 边桩坐标计算公式如下:(本文以90度即n /2弧度示例)X=X0+ D*COS(a 士n /2+ n)Y二Y0+ D*SIN(a 士n /2+ n)其中:X0、Y0分别代表已知中桩点的坐标;D代表计算点到中桩的距离,a 代表中桩点的方位角以弧度计。
士的使用,当计算点在左侧选择-,当计算点在右侧选择+2、xx曲线段坐标的计算方法:圆曲线段采用切线支距法计算:2.1 中桩坐标计算2.1- 1 方位角计算:已知ZY点的方位角a,计算点的弦切角8=L/2R,L为计算点到ZY点的桩号长度,所以计算点的方位角为(a±8)。
±的使用,当路线为左转时选择-,路线为右转时选择+2.1- 2计算点到ZY点的距离计算:C=2R*SIN(L/2R),为计算点到ZY点的桩号长度;R为圆曲线的半径。
2.1- 3中桩坐标计算公式:X=XO+ C*COS(士®Y二Y0+ C*SIN(c士®a为ZY点的方位角;XO、Y0代表ZY点的坐标;8=L/2R,C=2R*SIN(L/2R),为圆曲线半径,L为桩号长度。
±的使用,当路线为左转时选择-,路线为右转时选择+。
2.2边桩坐标计算2.2- 1 方位角计算:a、已知中桩点方位角(a±S);b、因为圆曲线上的边桩点是沿半径方向布置的,半径垂直于计算点的切线而不是弦线,如果严格按照弦线90度即(2弧度方向布置计算,需要调整角度,即弦垂线与切线垂线的夹角i,其中i二L/2R=3,所以计算点的方位角即为:(a±2士n2 )。
线路逐桩坐标计算原理高等级公路、铁路的测设通常要用全站仪应用极坐标法测设中线,利用极坐标法测设中线就必须知道线路中线的点位坐标。
下面就有关计算原理进行说明。
直线段逐桩坐标计算原理直线是线路中最基本的线形。
直线以最短的距离连接两目的地,具有线路短捷,汽车行车方向明确,驾驶操作简单,视距良好等特点,同时直线线形简单也容易计算。
其计算方法和导线类似,知道一个已知点坐标,直线的方位角和距离(即历程差)就能计算未知点里程桩坐标。
如图2-1,例如已知直线A 点坐标和直线方位角AB α以及直线AB 之间的距离AB d 推算B 点坐标:图2-1直线线路⎭⎬⎫+=+=AB AB A B AB AB A B d Y Y d X X ααsin cos (2-1)圆曲线逐桩坐标计算原理铁路与公路线路的平面通常由直线和曲线构成,这是因为在线路的定线中,由于受地形、地物或其他因素限制,需要改变方向。
在改变方向处,相邻两直线间要求用曲线连结起来,以保证行车顺畅安全。
这种曲线称平面曲线。
由于受地形等条件限制,路线总是不断从一个方向转到另一个方向。
这时为了工程能 安全运营,必须用曲线来连接。
其中,圆曲线是最基本线路曲线之一,它是有一定曲率的圆弧。
下面介绍圆曲线的理论计算。
如图2-2所示,直线与圆曲线的连接点称为直圆点(ZY );圆曲线的中点称为曲线中点(QZ );圆曲线与直线的连接点称为圆直点(YZ )。
圆曲线要素有线路转向角α,圆曲线半径R ,圆曲线长L ,外矢距E 及切曲差q 。
其中转向角α(单位:度、分、秒)和半径R 是已知数据,其余要素如切线长T ,曲线长L, 外矢距E, 切曲差q 可以按下列关系式计算得出:图2-2圆曲线⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫-=-⨯=⨯=⨯=LT q R E R L R T 2)12(sec1802tanαπαα (2-2) 1)曲线要素计算由交点里程、切线长T 和曲线长L 计算曲线主点里程:ZY 里程 = JD 里程 - 切线长TQZ 里程 = ZH 里程 + L/2YZ 里程 = ZY 里程 + 曲线长L2) ZY 点与YZ 点坐标计算由已知条件和计算出的曲线要素L T 、用极坐标法求出ZY 和YZ 点坐标。
路线中桩坐标的计算公式在道路建设和维护中,桩号是一个非常重要的概念。
它用来表示道路上的位置,帮助工程师和施工人员准确地定位和测量。
桩号通常是以公里为单位,每隔一定距离就会设置一个桩号,以便对道路进行定位和管理。
在本文中,我们将讨论路线中桩坐标的计算公式,以及如何使用这些公式进行实际测量和定位工作。
路线中桩坐标的计算公式通常涉及到道路的曲线和坡度等因素。
在实际测量中,通常会使用全站仪或者GPS等设备来测量各个桩号的坐标,然后根据这些坐标来计算出路线中桩的坐标。
下面我们将介绍几种常见的计算公式。
1. 直线路段的桩坐标计算公式。
在直线路段上,桩号和坐标的计算比较简单。
假设起点的坐标为(x1, y1),终点的坐标为(x2, y2),起点的桩号为P1,终点的桩号为P2。
那么在直线路段上任意一个桩号P的坐标可以通过如下公式计算得出:x = x1 + (x2 x1) (P P1) / (P2 P1)。
y = y1 + (y2 y1) (P P1) / (P2 P1)。
其中,x和y分别表示桩号为P时的坐标,P为需要计算坐标的桩号。
2. 曲线路段的桩坐标计算公式。
在曲线路段上,桩坐标的计算会更加复杂一些,需要考虑曲线的半径、圆心、圆心角等因素。
在实际测量中,通常会使用曲线表来进行计算。
曲线表是根据设计参数和曲线类型制定的一张表格,其中包含了各个桩号对应的曲线半径、圆心角等信息。
通过曲线表,可以根据桩号和曲线类型来计算出相应的曲线参数,进而得出桩坐标。
3. 坡度路段的桩坐标计算公式。
在坡度路段上,桩坐标的计算也需要考虑坡度的影响。
假设起点的坐标为(x1,y1),终点的坐标为(x2, y2),起点的桩号为P1,终点的桩号为P2,坡度为S。
那么在坡度路段上任意一个桩号P的坐标可以通过如下公式计算得出:x = x1 + (x2 x1) (P P1) / (P2 P1)。
y = y1 + (y2 y1) (P P1) / (P2 P1) + S (P P1)。
现阶段我国公路工程中已普遍使用大地坐标进行线型的控制及测设,在施工中经常要对中线坐标进行复核、加密,才能满足公路工程施工的需要。
本文是结合公路工程的实际需要,用于由直线、圆曲线、缓和曲线组成的一般公路线型中桩、边桩等计算的公式。
一、采用公式1 直线段1.1 中桩坐标计算公式1.2 边桩坐标计算公式2 缓和曲线段2.1 中桩坐标计算公式:以ZH点为原点,当曲线左转是Y=(-Y)Xp= X1+X*COSαA→B - Y*SINαA→B,Yp= Y1+X*SINαA→B + Y*COSαA→B以HZ点为原点,当曲线右转是Y=(-Y)Xp= X1-X*COSαB→A + Y*SINαB→A,Yp= Y1-X*SINαB→A - Y*COSαB→A(X=L-L5/40/R2/L s2, Y=L3/6/R/L s)2.2 边桩坐标计算公式:以ZH点为原点以HZ点为原点边桩坐标计算公式:以ZH点为原点坐标中的中桩左侧的“-90°”改为“+90°”,中桩右侧的“+90°”改为“-90°”就OK了。
3 圆曲线段3.1 中桩坐标计算公式当E点位于顺时针方向时取“+”,当E点位于逆时针方向时取“-”。
3.2 边桩坐标计算公式XP、YP——未知点P的坐标X1、Y1——各线型起点的坐标(第二曲线段为终点)XA、YA、XB、YB——P点边桩A点、B点的坐标(A为左侧、B为右侧)α1→2——直线段起点的方位角αA→B——各线形起点的切线方位角(第二曲线段为终点)L——P点距各线形起点的长度LS——缓和曲线段缓和曲线长R——各曲线段的半径β——P点的切线角(曲线左转时取“-”、曲线右转时取“+”)T1、T2——P点至边桩A、B的距离(A为T1、B为T2)边桩与路线切线方向的夹角设定为90°,实际应用中可根据需要进行修改。
线路逐桩坐标计算原理讲解线路逐桩坐标计算是通过一系列的桩号,计算出线路上每个桩点的坐标,从而得到线路的几何形状。
它是土木工程中常用的计算方法,用于设计和施工过程中的位置确认以及标高确定。
本文将详细讲解线路逐桩坐标计算的原理,以及其应用。
一、线路逐桩坐标计算原理1.起点坐标确定:首先需要确定线路的起点坐标,可以通过GPS定位或者大地测量等方法来获取。
2.桩号确定:根据设计或者施工要求,确定线路上需要计算坐标的桩号范围。
3.桩点间距确定:根据线路的几何形状参数,确定桩点之间的间距。
通常情况下,间距是固定的,也可以根据实际需要来调整。
4.桩点坐标计算:根据起点坐标、桩号和桩点间距,按照线路的几何形状参数进行计算,得到每个桩点的坐标。
5.标高计算:根据设计或者施工要求,使用地形图、高程测量等方法来确定每个桩点的标高。
二、线路逐桩坐标计算的应用1.道路和铁路线路设计:在线路的设计过程中,需要准确计算出每个桩点的坐标和标高,以便确定线路的几何形状和纵断面。
2.隧道和桥梁设计:隧道和桥梁的设计需要确定每个桩点的坐标和标高,以便确定结构的形状和尺寸。
3.施工坐标确定:在线路的施工过程中,需要按照设计要求和坐标计算结果来确定施工点的位置和标高。
4.管道工程设计:管道工程中,需要计算出管道的中心线坐标和标高,以便确定管道的走向和高程。
5.环境影响评价:在环境影响评价过程中,需要对线路的几何形状和标高进行计算和分析,以评估其对周边环境的影响。
三、线路逐桩坐标计算的优势1.精确性:线路逐桩坐标计算可以根据实际的桩号和线路的几何形状参数,精确计算出每个桩点的坐标和标高,保证了设计和施工的准确性。
2.高效性:线路逐桩坐标计算可以通过计算机和专业的软件工具来完成,大大提高了计算的效率,并减少了人为错误的发生。
3.便捷性:线路逐桩坐标计算的原理简单明了,运算过程极为简便,适用于各类工程中的位置确认和标高确定。
总结:线路逐桩坐标计算是土木工程中常用的计算方法,通过已知的桩号和起点坐标,计算出线路上每个桩点的坐标和标高。
线路中线桩点的坐标计算如图1所示,已知两交点的坐标:JDi(XJDi ,YJDi),JDi-1(XJDi-1,YJDi-1)。
线路导线的坐标的坐标方位角A 和边长S 可按坐标反算公式求得:A i-1,i =tg -111----i i i i x x y y , (式1)S i-1,i =i i i i A x x ,11cos ---=ii i i A y y ,11sin --- (式2)S i-1,i =2121)()(---+-i i i i y y x x (式3)在选定各圆曲线半经R 缓和和曲线长度Ls 后,依照各桩点的里程桩号,即可算出相应的坐标值X,Y 。
一、 HZ 点(包括线路起点)至ZH 点之间的中桩坐标如图1所示,此段为直线。
桩点的坐标按下式计算:X JDi =X HZi-1+D i cosA i-1,iY JDi =Y HZi-1+D i sinA i-1,I (式4)式中A i-1,i 为线路导线JDi-1到JDi 的坐标方位角;Di 为桩点到HZi-1的距离(Si-1,i –THi-1),即桩点里程与HZi-1点里程之差;X HZi-1、Y HZi-1为HZi-1点的坐标,由下式计算:XHZi-1=X JDi-1+T Hi-1cosA i-1,iY HZi-1=X JDi-1+T Hi-1sinA i-1,i (式5) 同理计算出直线终点ZHi 点的坐标 X ZHi =X JDi-1+(Si-1,i –THi)cosA i-1,iY ZHi =X JDi-1+(Si-1,i –THi)sinA i-1-I (式6)二、 ZH 点至YH 点之间的中桩坐标如图1所示,此段包括第一缓和曲线及圆曲线,先计算桩点的切线支距法坐标x 、y :1、缓和曲线上桩点的切线支距法坐标x 、y :X=()L -22540SL R L Y=SRL L 63(式7)L 为桩点(测点)到缓和曲线起点ZH 的曲线长,即测长;R 为圆曲线半径;L S 为缓和曲线总长2、圆曲线上桩点的切线支距法坐标x 、y :以ZH 为起点:(带有缓和曲线的圆曲线,)X=Rsin ϕ+q=Rsin )2(1800S L L R +π+2S L –23240RL SY=R(1-cos ϕ)+p=R 〔1–cos )2(1800S L L R +π〕+RL S 242 (式8) ○1L 为桩点到HY(缓圆点,既圆曲线的起点)的曲线长,仅为圆曲线部份的长度,那么:式中ϕ=α+βo =RL π180⨯+βo =R L π0180⨯+πR L S 21800⨯=)2(1800S L L R +π, ○2假设L 为桩点到ZH(直缓点)的曲线长,那么:式中ϕ=α-βo =RL π180⨯-βo =R L π0180⨯-πR L S 21800⨯=)2(1800S L L R -π。