四川省成都七中实验学校2011-2012学年八年级下学期期中考试数学试题(无答案)
- 格式:doc
- 大小:397.00 KB
- 文档页数:6
一、选择题1.(0分)[ID :9931]下列命题中,真命题是( )A .四个角相等的菱形是正方形B .对角线垂直的四边形是菱形C .有两边相等的平行四边形是菱形D .两条对角线相等的四边形是矩形2.(0分)[ID :9930]下列运算中,正确的是( )A .235+=;B .2(32)32-=-;C .2a a =;D .2()a b a b +=+. 3.(0分)[ID :9913]一次函数1y ax b 与2y bx a 在同一坐标系中的图像可能是( ) A . B .C .D .4.(0分)[ID :9900]如图,在菱形ABCD 中,AB =6,∠ABC =60°,M 为AD 中点,P 为对角线BD 上一动点,连接PA 和PM ,则PA +PM 的最小值是( )A .3B .2√3C .3√3D .6 5.(0分)[ID :9884]如图,直线y x m =-+与3yx 的交点的横坐标为-2,则关于x的不等式30x m x -+>+>的取值范围( )A .x>-2B .x<-2C .-3<x<-2D .-3<x<-16.(0分)[ID :9877]周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是( )A .小丽从家到达公园共用时间20分钟B .公园离小丽家的距离为2000米C .小丽在便利店时间为15分钟D .便利店离小丽家的距离为1000米7.(0分)[ID :9865]如图,函数y=2x 和y=ax+4的图象相交于A(m ,3),则不等式2x ax+4<的解集为( )A .3x 2>B .x 3>C .3x 2<D .x 3<8.(0分)[ID :9842]对于次函数21y x =-,下列结论错误的是( )A .图象过点()0,1-B .图象与x 轴的交点坐标为1(,0)2C .图象沿y 轴向上平移1个单位长度,得到直线2y x =D .图象经过第一、二、三象限 9.(0分)[ID :9918]如图所示,一次函数y =kx +b (k 、b 为常数,且k ≠0)与正比例函数y =ax (a 为常数,且a ≠0)相交于点P ,则不等式kx +b >ax 的解集是( )A .x >1B .x <1C .x >2D .x <210.(0分)[ID :9838]小带和小路两个人开车从A 城出发匀速行驶至B 城.在整个行驶过程中,小带和小路两人车离开A 城的距离y (km)与行驶的时间t (h)之间的函数关系如图所示.有下列结论;①A ,B 两城相距300 km ;②小路的车比小带的车晚出发1 h ,却早到1 h ;③小路的车出发后2.5 h 追上小带的车;④当小带和小路的车相距50 km 时,t =54或t =154.其中正确的结论有( )A.①②③④B.①②④C.①②D.②③④11.(0分)[ID:9833]下列各式中一定是二次根式的是( )A.23-B.2(0.3)-C.2-D.x12.(0分)[ID:9869]如图,菱形ABCD的对角线AC,BD相交于点O,E,F分别是AB,BC边上的中点,连接EF.若3EF=,BD=4,则菱形ABCD的周长为()A.4B.46C.47D.2813.(0分)[ID:9863]如图,在正方形网格(每个小正方形的边长都是1)中,若将△ABC 沿A﹣D的方向平移AD长,得△DEF(B、C的对应点分别为E、F),则BE长为()A.1B.2C5D.314.(0分)[ID:9851]下列各组数据中,不可以构成直角三角形的是()A.7,24,25B.2223,4,5C.53,1,44D.1.5,2,2.515.(0分)[ID:9925]已知一次函数y=﹣x+m和y=2x+n的图象都经过A(﹣4,0),且与y轴分别交于B、C两点,则△ABC的面积为()A.48B.36C.24D.18二、填空题16.(0分)[ID :10028]使二次根式1x -有意义的x 的取值范围是 _____.17.(0分)[ID :10020]若一元二次方程x 2﹣2x ﹣m=0无实数根,则一次函数y=(m+1)x+m ﹣1的图象不经过第_____象限.18.(0分)[ID :10005]如图在Rt △ABC 中,∠ACB =90°,AC =4,BC =3,D 为斜边AB 上一点,以CD 、CB 为边作平行四边形CDEB ,当AD =_____,平行四边形CDEB 为菱形.19.(0分)[ID :9991]函数126x y x +=+的自变量x 的取值范围是_________. 20.(0分)[ID :9988]如图,正方形ABCD 的边长为3,点E 在BC 上,且CE=1,P 是对角线AC 上的一个动点,则PB+PE 的最小值为______.21.(0分)[ID :9979]菱形ABCD 中,对角线AC =8,BD =6,则菱形的边长为_____.22.(0分)[ID :9972]已知211a a a a--=,则a 的取值范围是________ 23.(0分)[ID :9953]已知一个直角三角形的两边长分别为12和5,则第三条边的长度为_______24.(0分)[ID :9944]设2a =,3b =,用含,a b 的代数式表示0.54,结果为________.25.(0分)[ID :9935]如图,在菱形ABCD 中,AC 与BD 相交于点O ,点P 是AB 的中点,PO =2,则菱形ABCD 的周长是_________.三、解答题26.(0分)[ID:10129]如图,正方形网格中的每个小正方形边长都是l,每个小格的顶点叫做格点.以格点为顶点分别按下列要求画图:(1)画出一个平行四边形,使其面积为6;(2)画出一个菱形,使其面积为4.(3)画出一个正方形,使其面积为5.27.(0分)[ID:10123]如图,∠MON=90°,正方形ABCD的顶点A、B分别在OM、ON 上,AB=13,OB=5,E为AC上一点,且∠EBC=∠CBN,直线DE与ON交于点F.(1)求证BE=DE;(2)判断DF与ON的位置关系,并说明理由;(3)△BEF的周长为.28.(0分)[ID:10112]计算:16(23)(23)27 3+-+-.29.(0分)[ID:10107]如图,在矩形ABCD中,对角线AC,BD相交于点O,点O关于直线CD的对称点为E,连接DE,CE.(1)求证:四边形ODEC为菱形;(2)连接OE,若BC=2,求OE的长.30.(0分)[ID:10080]一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量y (升)关于加满油后已行驶的路程x(千米)的函数图象.(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;(2)求y关于x的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.A2.D3.C4.C5.C6.C7.C8.D9.D10.C11.B12.C13.C15.C二、填空题16.x≤1【解析】由题意得:1-x≥0解得x≤1故答案为x≤1点睛:二次根式有意义的条件是:a≥017.一【解析】∵一元二次方程x2-2x-m=0无实数根∴△=4+4m<0解得m<-1∴m+1<0m-1<0∴一次函数y=(m+1)x+m-1的图象经过二三四象限不经过第一象限故答案是:一18.【解析】【分析】首先根据勾股定理求得AB=5;然后利用菱形的对角线互相垂直平分邻边相等推知OD=OBCD=CB;最后Rt△BOC中根据勾股定理得OB的值则【详解】解:如图连接CE交AB于点O∵Rt△19.x>-3【解析】【分析】根据被开方数大于等于0分母不等于0列式计算即可得解【详解】解:由题意得2x+6>0解得x>-3故答案为x>-3【点睛】本题考查了函数自变量的范围一般从三个方面考虑:(1)当函20.【解析】【分析】已知ABCD是正方形根据正方形性质可知点B与点D关于AC对称DE=PB +PE求出DE长即是PB+PE最小值【详解】∵四边形ABCD是正方形∴点B与点D关于AC对称连接DE交AC于点P21.5【解析】【分析】根据菱形的对角线互相垂直平分求出OAOB再利用勾股定理列式进行计算即可得解【详解】如图∵四边形ABCD是菱形∴OAAC=4OBBD=3AC⊥BD∴AB5故答案为:5【点睛】本题主要22.【解析】【分析】根据二次根式得非负性求解即可【详解】解:∵成立则有:并且即:∴故答案为:【点睛】本题考查的是二次根式的取值范围在二次根式里被开方数必须是非负数23.13或;【解析】第三条边的长度为24.【解析】【分析】将化简后代入ab即可【详解】解:∵∴故答案为:【点睛】本题考查了二次根式的乘除法法则的应用解题的关键是将化简变形本题属于中等题型25.16【解析】【分析】根据菱形的性质可得AC⊥BDAB=BC=CD=AD再根据直角三角形的性质可得AB=2OP进而得到AB长然后可算出菱形ABCD的周长【详解】∵四边形ABCD是菱形∴A C⊥BDAB=三、解答题26.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.A解析:A【解析】分析:根据菱形的判断方法、正方形的判断方法和矩形的判断方法逐项分析即可.详解:A选项:∵四个角相等的菱形,∴四个角为直角的菱形,即为正方形,故是真命题;B选项:对角线垂直的四边形可能是梯形,故对角线垂直的四边形是菱形是假命题;C选项:当相等的边是对边时,它不是菱形,故有两边相等的平行四边形是菱形是假命题;D选项:两条对角线相等的四边形可能是等腰梯形,故两条对角线相等的四边形是矩形是假命题;故选A.点睛:考查的是命题与定理,熟知正方形、菱形、矩形的判定定理与性质是解答此题的关键,用举反例来证明命题是假命题是判断命题真假的常用方法.2.D解析:D【解析】A. 23与不是同类二次根式,不能合并,故错误;B.()23223-=-,故错误;C. 2a a =,故错误; D. ()2a b a b +=+,正确;故选D.3.C解析:C【解析】 【分析】可用排除法,对各选项中函数图象的特点逐一分析即可.【详解】A.由y 1的图象可知a< 0,b> 0;由y 2的图象可知a>0,b>0,两结论相矛盾,故错误;B.由y 1的图象可知a< 0,b> 0;由y 2的图象可知a=0,b<0,两结论相矛盾,故错误;C. 正确;D.由y 1的图象可知a> 0,b> 0;由y 2的图象可知a<0,b<0,两结论相矛盾,故错误; 故选:C.【点睛】此题考查一次函数的图象,熟记一次函数的图象与k 及b 值的关系是解题的关键.4.C解析:C【解析】【分析】首先连接AC ,交BD 于点O ,连接CM ,则CM 与BD 交于点P ,此时PA+PM 的值最小,由在菱形ABCD 中,AB=6,∠ABC=60°,易得△ACD 是等边三角形,BD 垂直平分AC ,继而可得CM ⊥AD ,则可求得CM 的值,继而求得PA+PM 的最小值.【详解】解:连接AC ,交BD 于点O ,连接CM ,则CM 与BD 交于点P ,此时PA+PM 的值最小,∵在菱形ABCD 中,AB=6,∠ABC=60°,∴∠ADC=∠ABC=60°,AD=CD=6,BD 垂直平分AC ,∴△ACD 是等边三角形,PA=PC ,∵M 为AD 中点,∴DM=12AD=3,CM ⊥AD , ∴CM=√CD 2−DM 2=3√3,∴PA+PM=PC+PM=CM=3√3.故选:C .【点睛】此题考查了最短路径问题、等边三角形的判定与性质、勾股定理以及菱形的性质.注意准确找到点P 的位置是解此题的关键.5.C解析:C【解析】【分析】【详解】解:∵直线y x m =-+与3y x 的交点的横坐标为﹣2,∴关于x 的不等式3x m x -+>+的解集为x <﹣2,∵y=x+3=0时,x=﹣3,∴x+3>0的解集是x >﹣3,∴3x m x -+>+>0的解集是﹣3<x <﹣2,故选C .【点睛】本题考查一次函数与一元一次不等式.6.C解析:C【解析】解:A .小丽从家到达公园共用时间20分钟,正确;B .公园离小丽家的距离为2000米,正确;C .小丽在便利店时间为15﹣10=5分钟,错误;D .便利店离小丽家的距离为1000米,正确.故选C .7.C解析:C【解析】【分析】【详解】解:∵函数y=2x 和y=ax+4的图象相交于点A (m ,3),∴3=2m ,解得m=32. ∴点A 的坐标是(32,3). ∵当3x 2<时,y=2x 的图象在y=ax+4的图象的下方, ∴不等式2x <ax+4的解集为3x 2<. 故选C .8.D解析:D【解析】【分析】根据一次函数的性质对D 进行判断;根据一次函数图象上点的坐标特征对A 、B 进行判断;根据一次函数的几何变换对C 进行判断.【详解】A 、图象过点()0,1-,不符合题意;B 、函数的图象与x 轴的交点坐标是1(,0)2,不符合题意;C 、图象沿y 轴向上平移1个单位长度,得到直线2y x =,不符合题意;D 、图象经过第一、三、四象限,符合题意;故选:D .【点睛】本题考查了一次函数的性质、一次函数图象上点的坐标特征和一次函数图象的几何变换,属于基础题. 9.D解析:D【解析】分析:以函数的交点为分界线,然后看谁的图像在上面就是谁大.详解:根据函数图像可得:当x >2时,kx+b <ax ,故选C .点睛:本题主要考查的是不等式与函数之间的关系,属于中等难度题型.解决这个问题的关键就是看懂函数图像.10.C解析:C【解析】【分析】观察图象可判断①②,由图象所给数据可求得小带、小路两车离开A 城的距离y 与时间t 的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t ,可判断④,可得出答案.【详解】由图象可知A ,B 两城市之间的距离为300 km ,小带行驶的时间为5 h ,而小路是在小带出发1 h 后出发的,且用时3 h ,即比小带早到1 h ,∴①②都正确;设小带车离开A 城的距离y 与t 的关系式为y 小带=kt ,把(5,300)代入可求得k =60,∴y 小带=60t ,设小路车离开A 城的距离y 与t 的关系式为y 小路=mt +n ,把(1,0)和(4,300)代入可得0 4300 m nm n+=⎧⎨+=⎩解得100100 mn=⎧⎨=-⎩∴y小路=100t-100,令y小带=y小路,可得60t=100t-100,解得t=2.5,即小带和小路两直线的交点横坐标为t=2.5,此时小路出发时间为1.5 h,即小路车出发1.5 h后追上甲车,∴③不正确;令|y小带-y小路|=50,可得|60t-100t+100|=50,即|100-40t|=50,当100-40t=50时,可解得t=54,当100-40t=-50时,可解得t=154,又当t=56时,y小带=50,此时小路还没出发,当t=256时,小路到达B城,y小带=250.综上可知当t的值为54或154或56或256时,两车相距50 km,∴④不正确.故选C.【点睛】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.11.B解析:B【解析】二次根式要求被开方数为非负数,易得B为二次根式.故选B.12.C解析:C【解析】【分析】首先利用三角形的中位线定理得出AC,进一步利用菱形的性质和勾股定理求得边长,得出周长即可.【详解】解:∵E ,F 分别是AB ,BC 边上的中点,EF=3, ∴AC=2EF=23, ∵四边形ABCD 是菱形,∴AC ⊥BD ,OA=12AC=3,OB=12BD=2, ∴AB=22OA OB +=7,∴菱形ABCD 的周长为47.故选C .13.C解析:C【解析】【分析】直接根据题意画出平移后的三角形进而利用勾股定理得出BE 的长.【详解】如图所示:22125BE +=故选:C .【点睛】此题主要考查了勾股定理以及坐标与图形的变化,正确得出对应点位置是解题关键.14.B解析:B【解析】【分析】由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可.【详解】解:A 、72+242=625=252,故是直角三角形,不符合题意;B 、222222(3)(4)81256337(5)+=+=≠,故不是直角三角形,符合题意;C 、12+(34)2=2516=(54)2,故是直角三角形,不符合题意;D、1.52+22=6.25=2.52,故是直角三角形,不符合题意;故选:B.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.15.C解析:C【解析】【分析】把A(﹣4,0)分别代入一次函数y=﹣x+m和y=2x+n中,求得m和n的值,根据所得的两个解析式,求得点B和点C的坐标,以BC为底,点A到BC的垂线段为高,求出△ABC的面积即可.【详解】把点A(﹣4,0)代入一次函数y=﹣x+m得:4+m=0,解得:m=﹣4,即该函数的解析式为:y=﹣x﹣4,把点A(﹣4,0)代入一次函数y=2x+n得:﹣8+n=0,解得:n=8,即该函数的解析式为:y=2x+8,把x=0代入y=﹣x﹣4得:y=0﹣4=﹣4,即B(0,﹣4),把x=0代入y=2x+8得:y=0+8=8,即C(0,8),则边BC的长为8﹣(﹣4)=12,点A到BC的垂线段的长为4,S△ABC11242=⨯⨯=24.故选C.【点睛】本题考查了一次函数图象上点的坐标特征,正确掌握代入法求一次函数的解析式是解题的关键.二、填空题16.x≤1【解析】由题意得:1-x≥0解得x≤1故答案为x≤1点睛:二次根式有意义的条件是:a≥0解析:x≤1【解析】由题意得:1-x≥0,解得x≤1.故答案为x≤1.a≥0.17.一【解析】∵一元二次方程x2-2x-m=0无实数根∴△=4+4m<0解得m<-1∴m+1<0m-1<0∴一次函数y=(m+1)x+m-1的图象经过二三四象限不经过第一象限故答案是:一【解析】∵一元二次方程x 2-2x-m=0无实数根,∴△=4+4m<0,解得m <-1,∴m+1<0,m-1<0,∴一次函数y=(m+1)x+m-1的图象经过二三四象限,不经过第一象限.故答案是:一. 18.【解析】【分析】首先根据勾股定理求得AB=5;然后利用菱形的对角线互相垂直平分邻边相等推知OD=OBCD=CB ;最后Rt △BOC 中根据勾股定理得OB 的值则【详解】解:如图连接CE 交AB 于点O ∵Rt △ 解析:75【解析】【分析】首先根据勾股定理求得AB =5;然后利用菱形的对角线互相垂直平分、邻边相等推知OD =OB ,CD =CB ;最后Rt △BOC 中,根据勾股定理得,OB 的值,则2AD AB OB =-.【详解】解:如图,连接CE 交AB 于点O .∵Rt △ABC 中,90ACB ∠=︒,AC =4,BC =3∴225AB AC BC =+= (勾股定理)若平行四边形CDEB 为菱形时,CE ⊥BD ,且OD =OB ,CD =CB .∵1122AB OC AC BC ⋅=⋅, ∴12.5OC = ∴在Rt △BOC 中,根据勾股定理得,2222129355OB BC OC ⎛⎫=-=-= ⎪⎝⎭, ∴725AD AB OB =-=故答案是:75.本题考查菱形的判定与性质,解题的关键是熟记菱形的判定方法.19.x>-3【解析】【分析】根据被开方数大于等于0分母不等于0列式计算即可得解【详解】解:由题意得2x+6>0解得x>-3故答案为x>-3【点睛】本题考查了函数自变量的范围一般从三个方面考虑:(1)当函解析:x>-3.【解析】【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】解:由题意得,2x+6>0,解得x>-3.故答案为x>-3.【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.20.【解析】【分析】已知ABCD是正方形根据正方形性质可知点B与点D关于AC对称DE=PB+PE求出DE长即是PB+PE最小值【详解】∵四边形ABCD是正方形∴点B与点D关于AC对称连接DE交AC于点P解析:10【解析】【分析】已知ABCD是正方形,根据正方形性质可知点B与点D关于AC对称,DE=PB+PE,求出DE长即是PB+PE最小值.【详解】∵四边形ABCD是正方形∴点B与点D关于AC对称,连接DE,交AC于点P,连接PB,则PB+PE=DE的值最小∵CE=1,CD=3,∠ECD=90°∴2222DE CE CD1310=++=∴PB+PE1010本题考查正方形性质,作对称点,再连接,根据两点之间直线最短得结论.21.5【解析】【分析】根据菱形的对角线互相垂直平分求出OAOB 再利用勾股定理列式进行计算即可得解【详解】如图∵四边形ABCD 是菱形∴OAAC =4OBBD =3AC ⊥BD ∴AB5故答案为:5【点睛】本题主要解析:5【解析】【分析】根据菱形的对角线互相垂直平分求出OA 、OB ,再利用勾股定理列式进行计算即可得解.【详解】如图,∵四边形ABCD 是菱形,∴OA 12=AC =4,OB 12=BD =3,AC ⊥BD , ∴AB 22OA OB =+=5故答案为:5【点睛】本题主要考查了菱形的对角线互相垂直平分的性质,勾股定理的应用,熟记菱形的各种性质是解题的关键.22.【解析】【分析】根据二次根式得非负性求解即可【详解】解:∵成立则有:并且即:∴故答案为:【点睛】本题考查的是二次根式的取值范围在二次根式里被开方数必须是非负数解析:01a <≤【解析】【分析】根据二次根式得非负性求解即可.【详解】 211a a a a--=成立, 则有:10a ->,0a ≠ , 10aa ,即:0a >,∴01a <≤,故答案为:01a <≤.【点睛】本题考查的是二次根式的取值范围,在二次根式里被开方数,必须是非负数.23.13或;【解析】第三条边的长度为解析:13【解析】第三条边的长度为24.【解析】【分析】将化简后代入ab 即可【详解】解:∵∴故答案为:【点睛】本题考查了二次根式的乘除法法则的应用解题的关键是将化简变形本题属于中等题型 解析:310ab 【解析】【分析】化简后,代入a ,b 即可.【详解】====a =b =,301=ab 故答案为:310ab . 【点睛】化简变形,本题属于中等题型.25.16【解析】【分析】根据菱形的性质可得AC⊥BDAB=BC=CD=AD 再根据直角三角形的性质可得AB=2OP 进而得到AB 长然后可算出菱形ABCD 的周长【详解】∵四边形ABCD 是菱形∴AC⊥BDAB=解析:16【解析】【分析】根据菱形的性质可得AC ⊥BD ,AB=BC=CD=AD ,再根据直角三角形的性质可得AB=2OP ,进而得到AB 长,然后可算出菱形ABCD 的周长.【详解】∵四边形ABCD是菱形,∴AC⊥BD,AB=BC=CD=AD,∵点P是AB的中点,∴AB=2OP,∵PO=2,∴AB=4,∴菱形ABCD的周长是:4×4=16,故答案为:16.【点睛】此题主要考查了菱形的性质,关键是掌握菱形的两条对角线互相垂直,四边相等,此题难度不大.三、解答题26.(1)见解析;(2)见解析;(3)见解析【解析】【分析】(1)平行四边形面积为6,则可以为底边长为3,高为2,具体图形如下;(2)菱形面积为4,则对角线长度为2和4,据此可画出菱形;(3)要使正方形面积为5,则正方形的边长为5.【详解】(1)图形如下:(2)图形如下:(3)图形如下:【点睛】本题考查根据条件绘制四边形,注意在绘制前,需要根据四边形的特点,适当进行分析,以辅助完成绘图.27.(1)见解析;(2)DF⊥ON,理由见解析;(3)24【解析】【分析】(1)根据正方形的性质证明△BCE≌△DCE即可;(2)由第一题所得条件和已知条件可推出∠EDC=∠CBN,再利用90°的代换即可证明;(3)过D点作DG垂直于OM,交点为G,结合已知条件推出DF和BF的长,再根据第一题结论得出△BEF的周长等于DF加BF即可得出答案.【详解】解:(1)证明:∵四边形ABCD正方形,∴CA平分∠BCD,BC=DC,∴∠BCE=∠DCE=45°,∵CE=CE,∴△BCE≌△DCE(SAS);∴BE=DE;(2)DF⊥ON,理由如下:∵△BCE≌△DCE,∴∠EBC=∠EDC,∵∠EBC=∠CBN,∴∠EDC=∠CBN,∵∠EDC+∠1=90°,∠1=∠2,∴∠2+∠CBN=90°,∴∠EFB=90°,即DF⊥ON;(3)过D点作DG垂直于OM,交点为G,∵四边形ABCD是正方形,∴AD=AB,∠BAD=90°,∴∠DAG+∠BAO=90°,∵∠ABO+∠BAO=90°,∴∠DAG=∠ABO,又∵∠MON=90°,DG⊥OM,∴△ADG≌△ABO,∴DM=AO,GA=OB=5,∵AB=13,OB=5,根据勾股定理可得AO=12,由(2)可知DF⊥ON,又∵∠MON=90°,DG⊥OM,∴四边形OFDM是矩形,∴OF=DG=AO=12,DF=OM=17,由(1)可知BE=DE,∴△BEF的周长=DF+BF=17+(12-5)=24.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,矩形的判定,掌握知识点是解题关键.28.13【解析】【分析】先利用平方差公式计算,然后把二次根式化为最简二次根式后合并即可.【详解】解:原式=234333--=13本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.29.(1)详见解析;(2)22【解析】【分析】(1)利用矩形性质可得OD=OC,再借助对称性可得OD=DE=EC=CO,从而证明了四边形ODEC为菱形;(2)证明四边形OBCE为平行四边形,即可得到OE=BC=22.【详解】(1)∵四边形ABCD是矩形,∴AC=BD,OC=12AC,OB=OD=12BD,∴OD=OC.∵点O关于直线CD的对称点为E,∴OD=ED,OC=EC.∴OD=DE=EC=CO.∴四边形ODEC为菱形;(2)连接OE.如图,由(1)知四边形ODEC为菱形,∴CE∥OD且CE=OD.又∵OB=OD,∴CE∥BO且CE=BO.∴四边形OBCE为平行四边形.∴22OE BC==【点睛】本题主要考查了矩形的性质,菱形的判定和性质、平行四边形的判定和性质,熟知特殊四边形的判定和性质是解题的关键.30.(1)汽车行驶400千米,剩余油量30升,加满油时,油量为70升;(2)已行驶的路程为650千米.【解析】(1)观察图象,即可得到油箱内的剩余油量,根据耗油量计算出加满油时油箱的油量; ()2用待定系数法求出一次函数解析式,再代入进行运算即可.【详解】(1)汽车行驶400千米,剩余油量30升,304000.170.+⨯=即加满油时,油量为70升.(2)设()0y kx b k =+≠,把点()0,70,()400,30坐标分别代入得70b =,0.1k =-,∴0.170y x =-+,当5y =时,650x =,即已行驶的路程为650千米.【点睛】本题主要考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征等,关键是掌握待定系数法求函数解析式.。
成都七中实验学校(初中部)数学三角形填空选择单元测试题(Word版含解析)一.八年级数学三角形填空题(难)1.如图,AABC中,点D、E、F分别在三边上,E是AC的中点,AD、BE、CF交于一点G, BD=2DC, S AGEC=3,S AGDC=4,则Z\ABC 的而积是____________ .【解析】【分析】由P BD=2DC,那么结介二角形而积公式可得S M8D=2S.,\.ACQ,而S“8C=S MBQ+S..'SCQ,可得出S;\ABC=3S,\ACD^ iflj E是AC屮点,故冇S MGE=S.MGE> 于是可求S/ACD» 从而易求 S.wc・【详解】解:T BD=2DC,/•S:\ABD-2S/XACD> S.S5C=3S MCQ・•・• F是AC的中点,.•・Sg=Sg.乂 T S A.GEC=3,S Z.GDC=4»/•S・MC0=S.SG£+S MG£+S.MGO=3+3+4=1O,/•S.WC=3S AACQ=3X10=30・故答案为30・【点睛】本题考查了三角形的面积公式、三角形之间的而积加减计算.注意同底等高的三角形而积相等,而积相等、同髙的三角形底相等・2.如图.C在直线BE匕ZA = m\ZABC与Z4CE的角平分线交于点A,则A= ______ %若再作ZA/E、ZACE的平分线,交于点血:再作乙的平分线,交于点依此类推,ZA I0【答案】Q)【解析】 【分析】 根据“角平分线左义”和“三角形的外角等于与它不相邻的两个内角和”求出规律,直接 利用规律解题.【详解】 解:VZA 1=ZA 1CE.ZA 1BC=1Z AC E 4ZA B C 4 (ZACE.ZABC)冷 ZA 誇.2和“亠 〃?。
加。
依此类推纠〒=才, 故答案划(知w- 【点睛】 此题主要考查了三角形的内角和外角之间的关系以及角平分线的左义,三角形的外角等于 与它不相邻的两个内角和.3. _______ 已知三角形的两边的长分别为2cm 和8cm,设第三边中线的长为^cm,则X 的取值范 围是 ______【答案】3<x<5【解析】【分析】延长AD 至M 使DM=AD,连接CM,先说明△ ABD^ACDM,得到CM=AB=8,再求出2AD 的范围,最后求岀AD 的范围.【详解】解:如图:AB=8, AC=2,延长AD 至M 使DM=AD,连接CM 在 AABD 和ZkCDM 中,AD = MD< ZADB = ZMDCBD = CD1024AAABD^AMCD (SAS),.\CM=AB=8.在AACM 中:8-2<2x<8+2,解得:3<x<5.故答案为:3VXV5.【点睛】本题考查了三角形的三边关系,解答的关键在于画出图形,数形结合完成解答.4.一个等腰三角形的两边长分別为4cm和9cm,则它的周长为_cm .【答案】22【解析】【分析】底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.【详解】试题解析:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.②当底边是4cm,腰长是9cm时,能构成三角形,则其周长=4+9+9=22cm.故填22.【点睛】本题考查了等腰三角形的性质和三角形的三边关系:已知没有明确腰和底边的题目一左要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.CE 是AACD 的中线,S/.ACE=3cm2,则 S AABC=【答案】12cm2 .【解析】【分析】根据三角形的而积公式,得AACE的面积是AACD的而枳的一半,AACD的而积是AABC 的面积的一半.【详解】解:TCE是AACD的中线,•I S^ACD=2SAACE=6cm2・••• AD是Z\ABC的中线,•I SAABC=2SAACD=12cm2・故答案为12cm2・【点睛】此题主要是根据三角形的而积公式,得三角形的中线把三角形的而积分成了相等的两部分.6. __________________________________________ 如图,小亮从人点出发前进5m,向右转25° ,再前进5m,又向右转15°…,这样一直走下去,他第一次回到出发点人时,一共走了 _______________________________________________ m.【答案】120.【解析】【分析】由题意可知小亮所走的路线为正多边形,根据多边形的外角和左理即可求出答案.【详解】解:•••小亮从A点出发最后回到出发点A时正好走了一个正多边形,・•・该正多边形的边数为n=360°-M5°=24,则一共走了 24x5=120米,故答案为:120.【点睛】本题主要考査了多边形的外角和泄理.任何一个多边形的外角和都是360°,用外角和求正多边形的边数可直接用360。
一、选择题1.(0分)[ID :10232]若2(5)x -=x ﹣5,则x 的取值范围是( ) A .x <5 B .x ≤5C .x ≥5D .x >52.(0分)[ID :10221]若等腰三角形的底边长为6,底边上的中线长为4,则它的腰长为( ) A .7B .6C .5D .43.(0分)[ID :10218]某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示: 鞋的尺码/cm 23 23.5 24 24.5 25 销售量/双13362则这15双鞋的尺码组成的一组数据中,众数和中位数分别为( ) A .24.5,24.5B .24.5,24C .24,24D .23.5,244.(0分)[ID :10209]估计()-⋅1230246的值应在( ) A .1和2之间B .2和3之间C .3和4之间D .4和5之间5.(0分)[ID :10204]如图,在平行四边形ABCD 中,ABC ∠和BCD ∠的平分线交于AD 边上一点E ,且4BE =,3CE =,则AB 的长是( )A .3B .4C .5D .2.56.(0分)[ID :10199]将一张长方形纸片按如图所示的方式折叠,,BC BD 为折痕,则CBD ∠的度数为( )A .60︒B .75︒C .90︒D .95︒7.(0分)[ID :10198]如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE=DF ,AE 、BF 相交于点O ,下列结论:(1)AE=BF ;(2)AE ⊥BF ;(3)AO=OE ;(4)AOB DEOF S S 四边形∆=中正确的有 A .4个B .3个C .2个D .1个8.(0分)[ID :10138]小强所在学校离家距离为2千米,某天他放学后骑自行车回家,先骑了5分钟后,因故停留10分钟,再继续骑了5分钟到家.下面哪一个图象能大致描述他回家过程中离家的距离s (千米)与所用时间t (分)之间的关系( )A .B .C .D .9.(0分)[ID :10193]如图,以 Rt △ABC 的斜边 BC 为一边在△ABC 的同侧作正方形 BCEF,设正方形的中心为 O ,连接 AO ,如果 AB =4,AO =62,那么 AC 的长等于( )A .12B .16C .3D .210.(0分)[ID :10191]在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( ) A .众数B .平均数C .中位数D .方差11.(0分)[ID :10189]为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码统计如下表: 尺码(厘米)2525.52626.527购买量(双)12322则这10双运动鞋尺码的众数和中位数分别为( ) A .25.5厘米,26厘米 B .26厘米,25.5厘米 C .25.5厘米,25.5厘米 D .26厘米,26厘米12.(0分)[ID :10185]若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是( ) A .矩形B .一组对边相等,另一组对边平行的四边形C .对角线互相垂直的四边形D .对角线相等的四边形 13.(0分)[ID :10176]如图(1),四边形ABCD 中,AB ∥CD ,∠ADC =90°,P 从A 点出发,以每秒1个单位长度的速度,按A →B →C →D 的顺序在边上匀速运动,设P 点的运动时间为t 秒,△PAD 的面积为S ,S 关于t 的函数图象如图(2)所示,当P 运动到BC 中点时,△APD 的面积为( )A .4B .5C .6D .714.(0分)[ID :10160]如图,将矩形ABCD 沿EF 折叠,使顶点C 恰好落在AB 的中点C '上.若6AB =,9BC =,则BF 的长为( )A .4B .32C .4.5D .515.(0分)[ID :10158]下列运算正确的是( )A.235+=B.32﹣2=3C.236⨯=D.632÷=二、填空题16.(0分)[ID:10330]如图,在▱ABCD中,E为CD的中点,连接AE并延长,交BC的延长线于点G,BF⊥AE,垂足为F,若AD=AE=1,∠DAE=30°,则EF=_____.17.(0分)[ID:10329]如图,在正方形ABCD的外侧,作等边△ADE,则∠AEB=_________°.18.(0分)[ID:10307]如图,一次函数y=kx+b的图象与x轴相交于点(﹣2,0),与y 轴相交于点(0,3),则关于x的方程kx=b的解是_____.19.(0分)[ID:10279]菱形ABCD的边长为5,一条对角线长为6,则该菱形的面积为__________.20.(0分)[ID:10276]在矩形ABCD中,AD=5,AB=4,点E,F在直线AD上,且四边形BCFE为菱形,若线段EF的中点为点M,则线段AM的长为.21.(0分)[ID:10270]如图,已知函数y=x+b和y=ax+3的图象交点为P,则不等式x+b>ax+3的解集为_____.22.(0分)[ID:10263]直角三角形两直角边长分别为3+1,31,则它的斜边长为____.23.(0分)[ID:10256]已知一次函数y=kx+b的图象如图,则关于x的不等式kx+b>0的解集是______.ABCD O是BC边上一点,P为CD中24.(0分)[ID:10243]如图,已如长方形纸片,的度数是______.点,沿AO折叠使得顶点B落在CD边上的点P处,则OAB25.(0分)[ID:10234]已知一直角三角形两直角边的长分别为6cm和8cm,则第三边上的高为________.三、解答题26.(0分)[ID:10401]某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.27.(0分)[ID:10387]已知:如图,在平行四边形ABCD中,E、F是对角线AC上的两点,且AE=CF.求证:∠EBF=∠EDF.28.(0分)[ID:10377]甲、乙两名射击选示在10次射击训练中的成绩统计图(部分)如图所示:根据以上信息,请解答下面的问题;选手A平均数中位数众数方差甲a88c乙7.5b6和9 2.65(1)补全甲选手10次成绩频数分布图.(2)a=,b=,c=.(3)教练根据两名选手手的10次成绩,决定选甲选手参加射击比赛,教练的理由是什么?(至少从两个不同角度说明理由).29.(0分)[ID:10339]如图,四边形ABCD的对角线AC⊥BD,垂足为O,点E,F,G,H 分别是AB,BC,CD,DA的中点.求证:四边形EFGH是矩形.30.(0分)[ID:10336]如图,将□ABCD的对角线BD向两个方向延长至点E和点F,使BE=DF,证:四边形AECF是平行四边形.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.C2.C3.A4.B5.D6.C7.B8.D9.B10.D11.D12.D13.B14.A15.C二、填空题16.﹣1【解析】【分析】首先证明△ADE≌△GCE推出EG=AE=AD=CG=1再求出FG即可解决问题【详解】∵四边形ABCD是平行四边形∴AD∥BGAD=BC∴∠DAE=∠G=30°∵DE=EC∠AE17.15°【解析】【分析】【详解】解:由题意可知:是等腰三角形故答案为18.x=2【解析】【分析】依据待定系数法即可得到k和b的值进而得出关于x的方程kx=b的解【详解】解:∵一次函数y=kx+b的图象与x轴相交于点(﹣20)与y轴相交于点(03)∴解得∴关于x的方程kx=19.24【解析】【分析】根据菱形的性质利用勾股定理求得另一条对角线再根据菱形的面积等于两对角线乘积的一半求得菱形的面积【详解】解:如图当BD=6时∵四边形ABCD是菱形∴AC⊥BDAO=COBO=DO=20.5或05【解析】【分析】两种情况:①由矩形的性质得出CD=AB=4BC=AD=5∠ADB=∠CDF=90°由菱形的性质得出CF=EF=BE=BC=5由勾股定理求出DF 得出MF即可求出AM;②同①得出21.x>1【解析】试题分析:根据两直线的图象以及两直线的交点坐标来进行判断试题解析:由图知:当直线y=x+b的图象在直线y=ax+3的上方时不等式x+b>ax+3成立;由于两直线的交点横坐标为:x=1观22.【解析】【分析】已知直角三角形的两条直角边由勾股定理直角三角形两条直角边的平方和等于斜边的平方即可求得斜边的长度【详解】由勾股定理得(2 +1)2+(2 −1)2=斜边2斜边=故答案为:【点睛】勾股23.【解析】【分析】直接利用一次函数图象结合式kx+b>0时则y的值>0时对应x的取值范围进而得出答案【详解】如图所示:关于x的不等式kx+b>0的解集是:x<2故答案为:x<2【点睛】此题主要考查了一24.30°【解析】【分析】根据题意先通过△ADP求出∠DAP的因为△ABO≌△APO即可求出∠OAB的度数【详解】解:∵P是CD的中点沿折叠使得顶点落在边上的点∴DP=PC=CD△ABO≌△APO∵四边25.8cm【解析】【分析】先由勾股定理求出斜边的长再用面积法求解【详解】解:如图在Rt△ABC中∠ACB=90°AC=6cmBC=8cmCD⊥AB则(cm)由得解得CD=48(cm)故答案为48cm【点三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题 1.C 解析:C 【解析】 【分析】因为2a =-a (a≤0),由此性质求得答案即可. 【详解】 ∵()25x -=x-5,∴5-x≤0 ∴x≥5. 故选C . 【点睛】此题考查二次根式的性质:2a =a (a≥0),2a =-a (a≤0).2.C解析:C 【解析】 【分析】 【详解】∵等腰三角形ABC 中,AB =AC ,AD 是BC 上的中线, ∴BD =CD =12BC =3, AD 同时是BC 上的高线, ∴AB =22AD BD +=5.故它的腰长为5. 故选C.3.A解析:A 【解析】【分析】根据众数和中位数的定义进行求解即可得.【详解】这组数据中,24.5出现了6次,出现的次数最多,所以众数为24.5,这组数据一共有15个数,按从小到大排序后第8个数是24.5,所以中位数为24.5,故选A.【点睛】本题考查了众数、中位数,熟练掌握中位数、众数的定义以及求解方法是解题的关键.4.B解析:B【解析】【分析】先利用分配律进行计算,然后再进行化简,根据化简的结果即可确定出值的范围.【详解】(==2,而,所以2<2<3,所以估计(2和3之间,故选B.【点睛】本题主要考查二次根式的混合运算及估算无理数的大小,熟练掌握运算法则以及“夹逼法”是解题的关键.5.D解析:D【解析】【分析】由▱ABCD中,∠ABC和∠BCD的平分线交于AD边上一点E,易证得△ABE,△CDE是等腰三角形,△BEC是直角三角形,则可求得BC的长,继而求得答案.【详解】∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,AD=BC,∴∠AEB=∠CBE,∠DEC=∠BCE,∠ABC+∠DCB=90°,∵BE,CE分别是∠ABC和∠BCD的平分线,∴∠ABE=∠CBE=12∠ABC,∠DCE=∠BCE=12∠DCB,∴∠ABE=∠AEB,∠DCE=∠DEC,∠EBC+∠ECB=90°,∴AB=AE ,CD=DE ,∴AD=BC=2AB ,∵BE=4,CE=3,∴BC=2222345BE CE =+=+,∴AB=12BC=2.5. 故选D .【点睛】 此题考查了平行四边形的性质、等腰三角形的判定与性质以及直角三角形的性质.注意证得△ABE ,△CDE 是等腰三角形,△BEC 是直角三角形是关键.6.C解析:C【解析】【分析】根据图形,利用折叠的性质,折叠前后形成的图形全等,对应角相等,利用平角定义ABC ∠+A BC '∠+E BD '∠+EBD ∠=180°,再通过等量代换可以求出CBD ∠. 【详解】解:∵长方形纸片按如图所示的方式折叠,,BC BD 为折痕∴A BC ABC '∠=∠,E BD EBD '∠=∠∵ABC ∠+A BC '∠+E BD '∠+EBD ∠=180°(平角定义)∴A BC '∠+A BC '∠+E BD '∠+E BD '∠=180°(等量代换)A BC '∠+E BD '∠=90°即CBD ∠=90°故选:C .【点睛】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.7.B解析:B【解析】【分析】根据正方形的性质得AB=AD=DC ,∠BAD=∠D=90°,则由CE=DF 易得AF=DE ,根据“SAS”可判断△ABF ≌△DAE ,所以AE=BF ;根据全等的性质得∠ABF=∠EAD ,利用∠EAD+∠EAB=90°得到∠ABF+∠EAB=90°,则AE ⊥BF ;连结BE ,BE >BC ,BA≠BE ,而BO ⊥AE ,根据垂直平分线的性质得到OA≠OE ;最后根据△ABF ≌△DAE 得S △ABF =S △DAE ,则S △ABF -S △AOF =S △DAE -S △AOF ,即S △AOB =S 四边形DEOF .【详解】解:∵四边形ABCD 为正方形,∴AB=AD=DC ,∠BAD=∠D=90°,而CE=DF ,∴AF=DE ,在△ABF 和△DAE 中AB DA BAD ADE AF DE =⎧⎪∠=∠⎨⎪=⎩∴△ABF ≌△DAE ,∴AE=BF ,所以(1)正确;∴∠ABF=∠EAD ,而∠EAD+∠EAB=90°,∴∠ABF+∠EAB=90°,∴∠AOB=90°,∴AE ⊥BF ,所以(2)正确;连结BE ,∵BE >BC ,∴BA≠BE ,而BO ⊥AE ,∴OA≠OE ,所以(3)错误;∵△ABF ≌△DAE ,∴S △ABF =S △DAE ,∴S △ABF -S △AOF =S △DAE -S △AOF ,∴S △AOB =S 四边形DEOF ,所以(4)正确.故选B .【点睛】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了正方形的性质.8.D解析:D【解析】【分析】根据描述,图像应分为三段,学校离家最远,故初始时刻s 最大,到家,s 为0,据此可判断.【详解】因为小明家所在学校离家距离为2千米,某天他放学后骑自行车回家,行使了5分钟后,因故停留10分钟,继续骑了5分钟到家,所以图象应分为三段,根据最后离家的距离为0,由此可得只有选项DF 符合要求.故选D .【点睛】本题要求正确理解函数图象与实际问题的关系,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.9.B解析:B【解析】【分析】首选在AC 上截取4CG AB ==,连接OG ,利用SAS 可证△ABO ≌△GCO ,根据全等三角形的性质可以得到:OA OG ==AOB COG ∠=∠,则可证△AOG 是等腰直角三角形,利用勾股定理求出12AG =,从而可得AC 的长度.【详解】解:如下图所示,在AC 上截取4CG AB ==,连接OG ,∵四边形BCEF 是正方形,90BAC ∠=︒,∴OB OC =,90BAC BOC ∠=∠=︒,∴点B 、A 、O 、C 四点共圆,∴ABO ACO ∠=∠,在△ABO 和△GCO 中,{BA CGABO ACO OB OC=∠=∠=,∴△ABO ≌△GCO ,∴OA OG ==AOB COG ∠=∠,∵90BOC COG BOG ∠=∠+∠=︒,∴90AOG AOB BOG ∠=∠+∠=︒,∴△AOG 是等腰直角三角形,∴()()22626212AG =+=,∴12416AC =+=.故选:B .【点睛】本题考查正方形的性质;全等三角形的判定与性质;勾股定理;直角三角形的性质.10.D解析:D【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好。
八年级下册数学期中考试试题【答案】一、选择题(每题3分,共30分)1.平行四边形ABCD 中,若2B A ∠=∠,则C ∠的度数为( ). A .120︒ B .60︒ C .30︒ D .15︒【答案】B【解析】在平行四边形ABCD 中,2180A B A A ∠+∠=∠+∠=︒ ∴60A ∠=︒, 60C A ∠=∠=︒.2.一次函数21y x =-的图象不经过( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】B【解析】∵一次函数21y x =-中,20k =>,10b =-<, ∴经过一、三、四象限,即不经过第二象限.3.下列根式中,最简二次根式是( ).AB C D【答案】A==4.下列各组数据中能作为直角三角形的三边长的是( ).A .1,2,2B .1,1C .12D .4,5,6【答案】C【解析】A .222122+≠,不可能构成直角三角形,故错误.B .22211+≠,不可能构成直角三角形,故错误.C .22212+=,能构成直角三角形,故正确.D .222456+≠,不可能构成直角三角形,故错误.5.如图,在一次实践活动课上,小刚为了测量池塘B 、C 两点间的距离,他先在池塘的一侧选定一点A ,然后测量出AB 、AC 的中点D 、E ,且10DE =,于是可以计算出池塘B、C两点间的距离是().A.5mB.10mC.15mD.20m【答案】D【解析】∵D,E分别是AB和AC的中点,∴12DE BC=.又∵10mDE=,∴20mBC=.6.下列计算正确的是().A.29=B2-C6=D2=【答案】D【解析】23=,2=2=.二、填空题(除第16题外,每题3分,第16题4分,共25分)11x的取值范围是______八年级(下)数学期中考试试题(答案)一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列二次根式中,属于最简二次根式的是()A.B.C.D.2.(3分)二次根式有意义的条件是()A.x>3B.x>﹣3C.x≥﹣3D.x≥33.(3分)已知一次函数y=kx﹣3且y随x的增大而增大,那么它的图象经过()A.第二、三、四象限B.第一、二、三象限C.第一、三、四象限D.第一、二、四象限4.(3分)如图,广场中心菱形花坛ABCD的周长是32米,∠A=60°,则A、C两点之间的距离为()A.4米B.4米C.8米D.8米5.(3分)下列四组线段中,可以构成直角三角形的是()A.4,5,6B.1.5,2,2.5C.2,3,4D.1,,3 6.(3分)若x≤0,则化简|1﹣x|﹣的结果是()A.1﹣2x B.2x﹣1C.﹣1D.17.(3分)如图,已知:函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是()A.x>﹣5B.x>﹣2C.x>﹣3D.x<﹣28.(3分)把直线y=﹣2x向上平移后得到直线AB,若直线AB经过点(m,n),且2m+n =8,则直线AB的表达式为()A.y=﹣2x+4B.y=﹣2x+8C.y=﹣2x﹣4D.y=﹣2x﹣8 9.(3分)如图,正方形ABCD中,AE=AB,直线DE交BC于点F,则∠BEF=()A.45°B.30°C.60°D.55°10.(3分)如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB =2,则矩形的面积为()A.2B.4C.D.311.(3分)如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为()A.6B.8C.10D.1212.(3分)将2×2的正方形网格如图放置在平面直角坐标系中,每个小正方形的顶点称为格点,每个小正方形的边长都是1,正方形ABCD的顶点都在格点上.若直线y=kx(k ≠0)与正方形ABCD有公共点,则k的取值范围是()A.k≤2B.C.D.二、填空题(每题4分,共32分)13.(4分)函数y=中自变量x的取值范围是.14.(4分)一次函数y=kx+b与y=2x+1平行,且经过点(﹣3,4),则表达式为:.15.(4分)矩形的两条对角线的夹角为60°,较短的边长为12cm,则对角线长为cm.16.(4分)计算:=.17.(4分)已知P1(﹣3,y1)、P2(2,y2)是一次函数y=﹣2x+1图象上的两个点,则y1y2.18.(4分)如果将直线y=﹣2x向上平移4个单位,那么平移后的直线与坐标轴围成的三角形面积为.19.(4分)一个平行四边形的一边长是9,两条对角线的长分别是12和6,则此平行四边形的面积为.20.(4分)如图,Rt△ABC中,AC=5,BC=12,分别以它的三边为直径向上作三个半圆,则阴影部分面积为.三、解答题(共8小题,满分77分)21.(8分)计算(1)2﹣(﹣)(2)÷×22.(10分)我校要对如图所示的一块地进行绿化,已知AD=4米,CD=3米,AD⊥DC,AB=13米,BC=12米,求这块地的面积.23.(9分)如图所示为某汽车行驶的路程S(km)与时间t(min)的函数关系图,观察图中所提供的信息解答下列问题:(1)汽车在前9分钟内的平均速度是多少?(2)汽车中途停了多长时间?(3)当16≤t≤30时,求S与t的函数关系式?24.(10分)已知y与x+2成正比例,且当x=2时,y=4.(1)y与x之间的函数关系式.(2)当x=4时,求y的值.(3)当y=7时,求x的值.25.(10分)已知:如图,四边形ABCD四条边上的中点分别为E、F、G、H,顺次连接EF、FG、GH、HE,得到四边形EFGH(即四边形ABCD的中点四边形).(1)四边形EFGH的形状是,证明你的结论;(2)当四边形ABCD的对角线满足条件时,四边形EFGH是矩形;(3)你学过的哪种特殊四边形的中点四边形是矩形?.26.(10分)如图,一次函数y=ax+b的图象与正比例函数y=kx的图象交于点M.(1)求正比例函数和一次函数的解析式;(2)根据图象写出使正比例函数的值大于一次函数的值的x的取值范围;(3)求△MOP的面积.27.(10分)如图,在四边形ABCD中,AD∥BC,AB=3,BC=5,连接BD,∠BAD的平分线分别交BD、BC于点E、F,且AE∥CD(1)求AD的长;(2)若∠C=30°,求CD的长.28.(10分)如图,在△ABC中,∠ACB=90°,D,E分别为AB,AC的中点,延长DE 到F,使得EF=DE,连接AF,CF.(1)求证:四边形ADCF是菱形;(2)请给△ABC添加一个条件,使得四边形ADCF是正方形,则添加的条件为.2018-2019学年山东省滨州市邹平县八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列二次根式中,属于最简二次根式的是()A.B.C.D.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数含分母,故A错误;B、被开方数含分母,故B错误;C、被开方数含能开得尽方的因数,故C错误;D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D正确;故选:D.【点评】本题考查最简二次根式的定义,被开方数不含分母;被开方数不含能开得尽方的因数或因式.2.(3分)二次根式有意义的条件是()A.x>3B.x>﹣3C.x≥﹣3D.x≥3【分析】根据二次根式有意义的条件求出x+3≥0,求出即可.【解答】解:∵要使有意义,必须x+3≥0,∴x≥﹣3,故选:C.【点评】本题考查了二次根式有意义的条件的应用,注意:要使有意义,必须a≥0.3.(3分)已知一次函数y=kx﹣3且y随x的增大而增大,那么它的图象经过()A.第二、三、四象限B.第一、二、三象限C.第一、三、四象限D.第一、二、四象限【分析】根据“一次函数y=kx﹣3且y随x的增大而增大”得到k<0,再由k的符号确定该函数图象所经过的象限.【解答】解:∵一次函数y=kx﹣3且y随x的增大而增大,∴k<0,该直线与y轴交于y轴负半轴,∴该直线经过第一、三、四象限.故选:C.【点评】本题考查了一次函数图象与系数的关系.函数值y随x的增大而减小⇔k<0;函数值y随x的增大而增大⇔k>0;一次函数y=kx+b图象与y轴的正半轴相交⇔b>0,一次函数y=kx+b图象与y轴的负半轴相交⇔b<0,一次函数y=kx+b图象过原点⇔b=0.4.(3分)如图,广场中心菱形花坛ABCD的周长是32米,∠A=60°,则A、C两点之间的距离为()A.4米B.4米C.8米D.8米【分析】由菱形花坛ABCD的周长是40米,∠BAD=60°,可求得边长AD的长,AC ⊥BD,且∠CAD=30°,则可求得OA的长,继而求得答案.【解答】解:如图,连接AC、BD,AC与BD交于点O,∵菱形花坛ABCD的周长是32米,∠BAD=60°,∴AC⊥BD,AC=2OA,∠CAD=∠BAD=30°,AD=8米,∴OA=AD•cos30°=8×=54(米),∴AC=2OA=8米.故选:D.【点评】此题考查了菱形的性质以及三角函数的性质.注意根据菱形的对角线互相垂直且平分求解是解此题的关键.5.(3分)下列四组线段中,可以构成直角三角形的是()A.4,5,6B.1.5,2,2.5C.2,3,4D.1,,3【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、42+52=41≠62,不可以构成直角三角形,故A选项错误;B、1.52+22=6.25=2.52,可以构成直角三角形,故B选项正确;C、22+32=13≠42,不可以构成直角三角形,故C选项错误;D、12+()2=3≠32,不可以构成直角三角形,故D选项错误.故选:B.【点评】本题考查勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.6.(3分)若x≤0,则化简|1﹣x|﹣的结果是()A.1﹣2x B.2x﹣1C.﹣1D.1【分析】利用二次根式的意义以及绝对值的意义化简.【解答】解:∵x≤0,∴1﹣x>0,|1﹣x|=1﹣x,=﹣x,∴|1﹣x|﹣=1﹣x﹣(﹣x)=1.故选:D.【点评】此题考查了绝对值的代数定义:①正数的绝对值是它本身;②负数的绝对值是它的相反数;③零的绝对值是零.7.(3分)如图,已知:函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是()A.x>﹣5B.x>﹣2C.x>﹣3D.x<﹣2【分析】根据一次函数的图象和两函数的交点坐标即可得出答案.【解答】解:∵函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是x>﹣2,故选:B.【点评】本题考查了议程函数与一元一次不等式的应用,主要考查学生的观察能力和理解能力,题型较好,难度不大.8.(3分)把直线y=﹣2x向上平移后得到直线AB,若直线AB经过点(m,n),且2m+n =8,则直线AB的表达式为()A.y=﹣2x+4B.y=﹣2x+8C.y=﹣2x﹣4D.y=﹣2x﹣8【分析】由题意知,直线AB的斜率,又已知直线AB上的一点(m,n),所以用直线的点斜式方程y﹣y0=k(x﹣x0)求得解析式即可.【解答】解:∵直线AB是直线y=﹣2x平移后得到的,∴直线AB的k是﹣2(直线平移后,其斜率不变)∴设直线AB的方程为y﹣y0=﹣2(x﹣x0)①把点(m,n)代入①并整理,得y=﹣2x+(2m+n)②∵2m+n=8 ③把③代入②,解得y=﹣2x+8,即直线AB的解析式为y=﹣2x+8.故选:B.【点评】本题是关于一次函数的图象与它平移后图象的转变的题目,在解题时,紧紧抓住直线平移后,斜率不变这一性质,再根据题意中的已知条件,来确定用哪种方程(点斜式、斜截式、两点式等)来解答.9.(3分)如图,正方形ABCD中,AE=AB,直线DE交BC于点F,则∠BEF=()A.45°B.30°C.60°D.55°【分析】先设∠BAE=x°,根据正方形性质推出AB=AE=AD,∠BAD=90°,根据等腰三角形性质和三角形的内角和定理求出∠AEB和∠AED的度数,根据平角定义求出即可.【解答】解:设∠BAE=x°,∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∵AE=AB,∴AB=AE=AD,∴∠ABE=∠AEB=(180°﹣∠BAE)=90°﹣x°,∠DAE=90°﹣x°,∠AED=∠ADE=(180°﹣∠DAE)=[180°﹣(90°﹣x°)]=45°+x°,∴∠BEF=180°﹣∠AEB﹣∠AED=180°﹣(90°﹣x°)﹣(45°+x°)=45°.答:∠BEF的度数是45°.【点评】本题考查了三角形的内角和定理的运用,等腰三角形的性质的运用,正方形性质的应用,解此题的关键是如何把已知角的未知角结合起来,题目比较典型,但是难度较大.10.(3分)如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB =2,则矩形的面积为()A.2B.4C.D.3【分析】由矩形的性质得出∠ABC=90°,OA=OB,再证明△AOB是等边三角形,得出OA=AB,求出AC,然后根据勾股定理即可求出BC,进而得出矩形面积即可.【解答】解:∵四边形ABCD是矩形,∴∠ABC=90°,OA=AC,OB=BD,AC=BD,∴OA=OB,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴OA=AB=2,∴AC=2OA=4,∴BC=,∴矩形的面积=AB•BC=4;故选:B.【点评】本题考查了矩形的性质、等边三角形的判定与性质以及勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.11.(3分)如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为()A.6B.8C.10D.12【分析】因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,于是得到AF=AB﹣BF,即可得到结果.【解答】解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,=•AF•BC=10.∴S△AFC故选:C.【点评】本题考查了翻折变换﹣折叠问题,勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.12.(3分)将2×2的正方形网格如图放置在平面直角坐标系中,每个小正方形的顶点称为格点,每个小正方形的边长都是1,正方形ABCD的顶点都在格点上.若直线y=kx(k ≠0)与正方形ABCD有公共点,则k的取值范围是()A.k≤2B.C.D.【分析】分别确定点A和点C的坐标,代入正比例函数的解析式即可求得k的取值范围.【解答】解:由题意得:点A的坐标为(1,2),点C的坐标为(2,1),∵当正比例函数经过点A时,k=2,当经过点C时,k=,∴直线y=kx(k≠0)与正方形ABCD有公共点,k的取值范围是,故选:C.【点评】本题考查了正比例函数的性质,解题的关键是求得点A和点C的坐标,难度不大.二、填空题(每题4分,共32分)13.(4分)函数y=中自变量x的取值范围是x≥﹣2且x≠1.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x+2≥0且x﹣1≠0,解得x≥﹣2且x≠1.故答案为:x≥﹣2且x≠1.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.14.(4分)一次函数y=kx+b与y=2x+1平行,且经过点(﹣3,4),则表达式为:y=2x+10.【分析】根据一次函数与y=2x+1平行,可求得k的值,再把点(﹣3,4)代入即可求得一次函数的解析式.【解答】解:∵一次函数y=kx+b与y=2x+1平行,∴k=2,又∵函数经过点(﹣3,4)∴4=﹣6+b,解得:b=10∴函数的表达式为y=2x+10.【点评】本题考查了待定系数法求一次函数的解析式,比较简单,同学们要熟练掌握.15.(4分)矩形的两条对角线的夹角为60°,较短的边长为12cm,则对角线长为24cm.【分析】根据矩形对角线相等且互相平分性质和题中条件易得△AOB为等边三角形,即可得到矩形对角线一半长,进而求解即可.【解答】解:如图:AB=12cm,∠AOB=60°.∵四边形是矩形,AC,BD是对角线.∴OA=OB=OD=OC=BD=AC.在△AOB中,OA=OB,∠AOB=60°.∴OA=OB=AB=12cm,BD=2OB=2×12=24cm.故答案为:24.【点评】矩形的两对角线所夹的角为60°,那么对角线的一边和两条对角线的一半组成等边三角形.本题比较简单,根据矩形的性质解答即可.16.(4分)计算:=.【分析】根据二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.【解答】解:原式=2×5﹣3×3+=(10﹣9+1)=2;故答案是:2.【点评】本题主要考查了二次根式的加减法.二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并;合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.17.(4分)已知P1(﹣3,y1)、P2(2,y2)是一次函数y=﹣2x+1图象上的两个点,则y1>y2.【分析】根据题目中的函数解析式,可以得到函数图象的变化趋势,从而可以解答本题.【解答】解:∵一次函数y=﹣2x+1,∴y随x的增大而减小,∵P1(﹣3,y1)、P2(2,y2)是一次函数y=﹣2x+1图象上的两个点,﹣3<2,∴y1>y2,故答案为:>.【点评】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.18.(4分)如果将直线y=﹣2x向上平移4个单位,那么平移后的直线与坐标轴围成的三角形面积为4.【分析】根据函数图象向上平移加,可得函数解析式,根据三角形的面积公式,可得答案.【解答】解:直线y=﹣2x向上平移4个单位得直线的解析式为y=﹣2x+4,则与坐标轴的交点为(2,0)和(0,4),所以平移后的直线与坐标轴围成的三角形面积为:×2×4=4.故答案为:4.【点评】本题考查了一次函数图象与几何变换,平移的规律“左加右减,上加下减”.19.(4分)一个平行四边形的一边长是9,两条对角线的长分别是12和6,则此平行四边形的面积为36.【分析】由题意画出相应的图形,得到平行四边形的边BC=9,对角线AC和BD分别为12和6,根据平行四边形的对角线互相平分,求出OB及OC的长,计算发现OC2+OB2=BC2,利用勾股定理的逆定理得到∠BOC为直角,根据垂直定义得到AC与BD垂直,根据对角线互相垂直的平行四边形为菱形得到四边形ABCD为菱形,根据菱形的面积等于对角线乘积的一半,由两对角线的长即可求出菱形ABCD的面积.【解答】解:根据题意画出相应的图形,如图所示:则有平行四边形ABCD中,BC=9,AC=12,BD=6,∴OC=AC=6,OB=BD=3,∵OC2+OB2=36+45=81,BC2=81,∴OC2+OB2=BC2,∴∠BOC=90°,即AC⊥BD,∴四边形ABCD为菱形,则菱形ABCD的面积S=BD•OC+BD•OA=BD(OC+OA)=AC•BD=×12×6=36.故答案为:36.【点评】此题考查了勾股定理的逆定理,菱形的判定与性质,以及菱形面积的求法,若四边形的对角线互相垂直,可得到其面积等于对角线乘积的一半,而菱形的对角线互相垂直,故菱形的面积也可以用对角线乘积的一半来求.20.(4分)如图,Rt△ABC中,AC=5,BC=12,分别以它的三边为直径向上作三个半圆,则阴影部分面积为30.【分析】根据勾股定理求出AB的长,即可用减法求出阴影部分的面积.【解答】解:由勾股定理AB==13,=π()2+π()2﹣[π()2﹣×5×12]=30.根据题意得:S阴影【点评】观察图形的特点,用各面积相加减,可得出阴影部分的面积.三、解答题(共8小题,满分77分)21.(8分)计算(1)2﹣(﹣)(2)÷×【分析】(1)先将化为最简二次根式,再去括号、合并同类二次根式即可;(2)先按从左往右的顺序计算乘除,再化简即可.【解答】解:(1)2﹣(﹣)=2﹣(3﹣)=2﹣3+=﹣+;(2)÷×===.【点评】本题考查了二次根式的混合运算,掌握运算法则是解题的关键.22.(10分)我校要对如图所示的一块地进行绿化,已知AD=4米,CD=3米,AD⊥DC,AB=13米,BC=12米,求这块地的面积.【分析】连接AC,利用勾股定理可以得出三角形ACD和ABC是直角三角形,△ABC的面积减去△ACD的面积就是所求的面积.【解答】解:连接AC.由勾股定理可知AC===5,又∵AC2+BC2=52+122=132=AB2,∴△ABC是直角三角形,故所求面积=△ABC的面积﹣△ACD的面积=24(m2).【点评】考查了直角三角形面积公式以及勾股定理的应用,关键是作出辅助线得到直角三角形.23.(9分)如图所示为某汽车行驶的路程S(km)与时间t(min)的函数关系图,观察图中所提供的信息解答下列问题:(1)汽车在前9分钟内的平均速度是多少?(2)汽车中途停了多长时间?(3)当16≤t≤30时,求S与t的函数关系式?【分析】(1)根据速度=路程÷时间,列式计算即可得解;(2)根据停车时路程没有变化列式计算即可;(3)利用待定系数法求一次函数解析式解答即可.【解答】解:(1)平均速度==km/min;(2)从9分到16分,路程没有变化,停车时间t=16﹣9=7min.(3)设函数关系式为S=kt+b,将(16,12),C(30,40)代入得,,解得.所以,当16≤t≤30时,求S与t的函数关系式为S=2t﹣20.【点评】本题考查了一次函数的应用,待定系数法求函数解析式,比较简单,准确识图并获取信息是解题的关键.24.(10分)已知y与x+2成正比例,且当x=2时,y=4.(1)y与x之间的函数关系式.(2)当x=4时,求y的值.(3)当y=7时,求x的值.【分析】(1)根据题意设y与x之间的函数关系式y=k(x+2)(k≠0).然后把x、y 的值代入,求得k的值;(2)把x=4代入(1)中的函数解析式,求得相应的y的值;(3)把y=7代入(1)中的函数解析式,求得相应的x的值.【解答】解:(1)设y=k(x+2)(k≠0).把x=2,y=4代入,得4=k(2+2)解得k=1则y与x之间的函数关系式y=x+2;(2)把x=4代入y=x+2,得y=6;(3)把y=7代入y=x+2,得7=x+2解得x=5.【点评】本题考查了待定系数法求一次函数的解析式.解题时,注意是y与(x+2)成正比例关系,不是y与x成正比例关系.25.(10分)已知:如图,四边形ABCD四条边上的中点分别为E、F、G、H,顺次连接EF、FG、GH、HE,得到四边形EFGH(即四边形ABCD的中点四边形).(1)四边形EFGH的形状是平行四边形,证明你的结论;(2)当四边形ABCD的对角线满足互相垂直条件时,四边形EFGH是矩形;(3)你学过的哪种特殊四边形的中点四边形是矩形?菱形.【分析】(1)连接BD,根据三角形的中位线定理得到EH∥BD,EH=BD,FG∥BD,FG═BD,推出,EH∥FG,EH=FG,根据一组对边平行且相等的四边形是平行四边形得出四边形EFGH是平行四边形;(2)根据有一个角是直角的平行四边形是矩形,可知当四边形ABCD的对角线满足AC ⊥BD的条件时,四边形EFGH是矩形;(3)菱形的中点四边形是矩形.根据三角形的中位线平行于第三边并且等于第三边的一半可得EH∥BD,EF∥AC,再根据矩形的每一个角都是直角可得∠1=90°,然后根据平行线的性质求出∠3=90°,再根据垂直定义解答.【解答】解:(1)四边形EFGH的形状是平行四边形.理由如下:如图,连结BD.∵E、H分别是AB、AD中点,∴EH∥BD,EH=BD,同理FG∥BD,FG=BD,∴EH∥FG,EH=FG,∴四边形EFGH是平行四边形;(2)当四边形ABCD的对角线满足互相垂直的条件时,四边形EFGH是矩形.理由如下:如图,连结AC、BD.∵E、F、G、H分别为四边形ABCD四条边上的中点,∴EH∥BD,HG∥AC,∵AC⊥BD,∴EH⊥HG,又∵四边形EFGH是平行四边形,∴平行四边形EFGH是矩形;(3)菱形的中点四边形是矩形.理由如下:如图,连结AC、BD.∵E、F、G、H分别为四边形ABCD四条边上的中点,∴EH∥BD,HG∥AC,FG∥BD,EH=BD,FG=BD,∴EH∥FG,EH=FG,∴四边形EFGH是平行四边形.∵四边形ABCD是菱形,∴AC⊥BD,∵EH∥BD,HG∥AC,∴EH⊥HG,∴平行四边形EFGH是矩形.故答案为:平行四边形;互相垂直;菱形.【点评】本题主要考查对三角形的中位线定理,平行四边形的判定,矩形的判定,菱形的性质等知识点的理解和掌握,熟练掌握各定理是解决此题的关键.26.(10分)如图,一次函数y=ax+b的图象与正比例函数y=kx的图象交于点M.(1)求正比例函数和一次函数的解析式;(2)根据图象写出使正比例函数的值大于一次函数的值的x的取值范围;(3)求△MOP的面积.【分析】(1)将(2,2)代入y=kx解出正比例函数的解析式,将(2,2)(1,0)代入一次函数解析式解答即可;(2)根据图象得出不等式的解集即可;(3)利用三角形的面积公式计算即可.【解答】解:(1)将(2,2)代入y=kx,解得:k=1,所以正比例函数解析式为:y=x,将(2,2)(1,0)代入一次函数解析式,可得:,解得:.故一次函数的解析式为:y=2x﹣2;(2)因为正比例函数的值大于一次函数的值,可得:x<2;(3)△MOP的面积为:=1.【点评】此题考查两条直线平行问题,关键是根据待定系数法解出解析式.27.(10分)如图,在四边形ABCD中,AD∥BC,AB=3,BC=5,连接BD,∠BAD的平分线分别交BD、BC于点E、F,且AE∥CD(1)求AD的长;(2)若∠C=30°,求CD的长.【分析】(1)根据角平分线和平行线的性质:∠BAF=∠AFB,所以AB=BF=3,再证明四边形AFCD是平行四边形,可得结论;(2)作高线BG,根据特殊的三角函数或勾股定理可得FG的长,所以得AF的长,由(1)知:四边形AFCD是平行四边形,得结论.【解答】解:(1)∵AD∥BC,∴∠DAF=∠AFB,∵AF平分∠DAB,∴∠DAF=∠BAF,∴∠BAF=∠AFB,∴AB=BF=3,∵BC=5,∴CF=5﹣3=2,∵AD∥BC,AE∥CD,∴四边形AFCD是平行四边形,∴AD=CF=2;(2)过B作AF的垂线BG,垂足为G.∵AF∥DC,∴∠AFB=∠C=30°,在Rt△BGF中,GF=BF•cos30°=3×=,∵AB=BF,BG⊥AF,∴AF=2FG=3,由(1)知:四边形AFCD是平行四边形,∴DC=AF=3.【点评】本题考查了平行四边形的判定,三角函数的应用(或勾股定理)、等腰三角形的判定、平行线的性质,正确作出辅助线是关键.28.(10分)如图,在△ABC中,∠ACB=90°,D,E分别为AB,AC的中点,延长DE 到F,使得EF=DE,连接AF,CF.(1)求证:四边形ADCF是菱形;(2)请给△ABC添加一个条件,使得四边形ADCF是正方形,则添加的条件为CA=CB或∠B=45°.【分析】(1)利用菱形和平行四边形的判定得出即可;(2)根据当菱形内角是90°则是正方形,进而得出答案.【解答】(1)证明:∵E为线段AC的中点,∴AE=EC.∵EF=DE∴四边形ADCF是平行四边形.又∵D为线段AB的中点,∴DE∥BC,∵∠AED=∠ACB=90°,∴AC⊥FD.∴平行四边形ADCF是菱形.(2)CA=CB或∠B=45°,∵CA=CB,AD=DB,∴CD⊥AB,∴∠CDA=90°,∵ADCF是菱形,∴ADCF是正方形.故答案为:CA=CB或∠B=45°【点评】此题主要考查了平行四边形、菱形、正方形的判定,正确区分它们是解题关键.人教版八年级第二学期下册期中模拟数学试卷(含答案)一、选择题(每小题3分,共30分)1.(3分)如图,在平行四边形ABCD中,∠A=40°,则∠C大小为()A.40°B.80°C.140°D.180°2.(3分)如图,矩形ABCD中,对角线AC,BD交于点O.若∠AOB=60°,BD=8,则AB的长为()A.4B.C.3D.53.(3分)如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的()A.B.C.D.4.(3分)已知P1(﹣1,y1),P2(2,y2)是一次函数y=﹣x+1图象上的两个点,则y1,y2的大小关系是()A.y1=y2B.y1<y2C.y1>y2D.不能确定5.(3分)函数y=x﹣2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.(3分)矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.对角线平分对角7.(3分)一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是()A.x<0B.x>0C.x<2D.x>28.(3分)在下列命题中,是真命题的是()A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相平分的四边形是平行四边形D.两条对角线互相垂直且相等的四边形是正方形9.(3分)如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,若BF=12,AB=10,则AE的长为()A.13B.14C.15D.1610.(3分)如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P从点A出发,沿路径A→D→C→E运动,则△APE的面积y与点P经过的路径长x之间的函数关系用图象表示大致是()A.B.C.D.二、填空题(每小题3分,共30分)11.(3分)将正比例函数y=﹣2x的图象向上平移3个单位,则平移后所得图象的解析式是.12.(3分)若方程组的解是,则直线y=﹣2x+b与直线y=x﹣a的交点坐标是.13.(3分)如图,∠B=∠ACD=90°,BC=3,AB=4,CD=12,则AD=.14.(3分)在Rt△ABC中,∠ACB=90°,∠A=30°,BC=4,CD垂直于AB,垂足为点D,则DC=,AD=.15.(3分)已知菱形的两条对角线长分别为1和4,则菱形的面积为.16.(3分)如图,在平行四边形ABCD中,BE平分∠ABC,交AD于点E,AB=3cm,ED =1cm,则平行四边形ABCD的周长是.17.(3分)如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将纸片折叠使直角边落在斜边AB上且与AE重合,折痕为AD.则CD=.18.(3分)四边形ABCD中,已知∠A=∠B=∠C=90°,再添加一个条件,使得四边形ABCD为正方形,可添加的条件是.19.(3分)如图,在点A测得某岛C在北偏东60°方向上,且距A点18海里,某船以每小时36海里的速度从点A向正东方向航行,航行半小时后到达B点,此时测得岛C 在北偏东30°方向上,已知该岛周围16海里内有暗礁.B点与C岛的距离是B点暗礁区域(填内或外)20.(3分)弹簧挂上物体后会伸长,测得﹣弹簧的长度y(cm)与所挂重物的质量x(㎏)有下面的关系:那么弹簧总长y(cm)与所挂重物x(㎏)之间的函数关系式为.三、解答题(共8小题,满分40分)21.(5分)已知,一次函数y=kx+3的图象经过点A(1,4).(1)求这个一次函数的解析式;(2)分别求出图象与x轴,与y轴交点坐标.22.(5分)如图,在平行四边形ABCD中,点E、F分别在AD、BC上,且AE=CF,求证:四边形BFDE是平行四边形.23.(5分)如图,在△MBN中,已知BM=6,BN=7,MN=10,点A,C,D分别是MB,NB,MN的中点,(1)求证:四边形ABCD是平行四边形(2)四边形ABCD的周长为(直接写出答案).。
2022-2023学年四川省成都七中八年级(下)期中数学试卷1. 下列图形中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D.2. 如果,那么下列各项中正确的是( )A. B.C. D.3. 下列各式中,从左到右的变形是分解因式的是( )A. B.C. D.4. 在平面直角坐标系中,若点在第二象限,则x的取值范围是( )A. B. C. D.5. 设等腰三角形的一边长为5,另一边长为10,则其周长为( )A. 15B. 20C. 25D. 20或256.如图,函数与的图象相交于点,则关于x的不等式的解集是( )A.B.C.D.7. 下列命题的逆命题为假命题的是( )A. 直角三角形两条直角边的平方和等于斜边的平方B. 两直线平行,同位角相等C. 若一个三角形的三边相等,则它的三个角也相等D. 若,则8. 如图,一副三角板的直角边靠在一起,直角顶点重合,现将等腰沿BC方向平移一段距离,使顶点恰好落在的AC边上,若,,则平移的距离为( )A. B. C. D. 9cm9. 多项式的公因式是______ .10. 函数的自变量x的取值范围是______ .11. 如图,,AP平分,,,若,则______ .12.如图,在中,,,将绕点B按逆时针方向旋转度得到若点刚好落在AC边上,则______ .13. 如图,在等腰中,,按以下步骤作图:①分别以点B和点C为圆心,以大于的长为半径作圆,相交于点M和点N;②作直线MN交AB于点若,则______.14. 分解因式:;解不等式组,并求出所有整数解的和.15. 如图,在平面直角坐标系中,的三个顶点分别是,,与关于点O成中心对称,画出对应的;将以点为旋转中心顺时针旋转,画出旋转后对应的;若将看作由旋转得到的,那么旋转角的度数为_______,旋转中心坐标为_________.16.如图,在中,的平分线交AC于点D,过点D作交AB于点求证:;若,,求的度数.17. 如图,在平面直角坐标系中,一次函数的图象与x轴交于点,与y轴交于点B,且与正比例函数的图象交于点求m的值和一次函数的表达式;求的面积;在x轴上是否存在点M,使得是等腰三角形?若存在,请直接写出所有符合条件的点M的坐标;若不存在,请说明理由.18. 已知两个等腰,有公共顶点C,,连接AF,M是AF的中点,连接MB,ME,如图1,当C,B,E三点共线时,若,B为CE中点,求CM的长;如图1,探索线段BM与EM的关系,并说明理由;将图1中绕点C顺时针旋转至图2所示,中的结论是否仍然成立,若成立,请证明;若不成立,请说明理由.19. 已知,,则多项式的值为______.20. 如果关于x的不等式组恰有3个整数解,则m的取值范围是______ .21. 定义:在平面直角坐标系中,对于任意两点,,如果点满足:,,那么称点M是点A,B的“双减点”.若点,的“双减点”M的坐标是,则点B的坐标是______ ;若点,的“双减点”是点F,当点F在直线的上方时,则m的取值范围是______ .22. 如图,在中,,,,将绕点B逆时针旋转至,连接AD,则线段______ .23. 如图,在中,,,点D在边AC上,且,长度为1的线段EF在边AB上运动,则线段DE的最大值为______ ,四边形DEFC面积的最大值为______ .24. 为倡导健康环保,自带水杯已成为一种好习惯,某超市销售甲,乙两种型号水杯,进价和售价均保持不变,其中甲种型号水杯进价为25元/个,乙种型号水杯进价为45元/个,下表是前两月两种型号水杯的销售情况:销售数量个销售收入元销售收入=售价销售数量时间甲种型号乙种型号第一月2281100第二月38242460求甲、乙两种型号水杯的售价;第三月超市计划再购进甲、乙两种型号水杯共80个,这批水杯进货的预算成本不超过2600元,且甲种型号水杯最多购进55个,在80个水杯全部售完的情况下设购进甲种号水杯a个,利润为w元,写出w与a的函数关系式,并求出第三月的最大利润.25. 角平分线性质定理描述了角平分线上的点到角两边距离的关系,小周发现将角平分线放在三角形中,还可以得出一些线段比例的关系,请完成下列探索过程:【研究情景】如图1,在中,的角平分线交AC于点【初步思考】若,,则______ ;【深入探究】请判断和之间的数量关系,并证明;【应用迁移】如图2,和都是等边三角形,的顶点A在的边ED上,CD交AB于点F,若,,求AC的长和的面积.26. 如图,在平面直角坐标系xOy中,直线AB:交x轴于点A,交y轴于点B,一次函数:的图象交x轴于点C,交y轴于点D,与直线AB 交于点用m,n表示点P的坐标,并求的度数;若四边形PDOA的面积是,且BD::2,试求点P的坐标及直线AB的关系式;如图2,在的条件下,将直线AB向下平移9个单位得到直线l,直线l交y轴于点M,交x轴于点N,若点E为射线MN上一动点,连接PE,在坐标轴上是否存在点F,使是以PE为底边的等腰直角三角形,直角顶点为若存在,请求出点F的坐标;若不存在,请说明理由.答案和解析1.【答案】C【解析】解:由题意知,图形既是轴对称图形,又是中心对称图形,故选:根据轴对称和中心对称的概念得出结论即可.本题主要考查轴对称和中心对称的知识,熟练掌握轴对称和中心对称的概念是解题的关键.2.【答案】B【解析】解:A、,,故不合题意;B、,,故符合题意;C、,,故不合题意;D、,,故不合题意.故选:A、利用不等式的性质1即可判定;B、利用不等式的性质3即可判定;C、利用不等式的性质2即可判定;D、利用不等式的性质3即可判定.此题主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加或减同一个数或式子,不等号的方向不变.不等式两边乘或除以同一个正数,不等号的方向不变.不等式两边乘或除以同一个负数,不等号的方向改变.3.【答案】C【解析】解:根据因式分解的定义,不是由多项式变形为整式乘积的形式,那么不是因式分解,故A不符合题意.B.根据因式分解的定义,不是由多项式变形为整式乘积的性质,那么不是因式分解,故B不符合题意.C.根据因式分解的定义,是由多项式变形为整式的乘积的形式,那么是因式分解,故C符合题意.D.根据因式分解的定义,不是由多项式变形为整式乘积的形式,那么不是因式分解,故D不符合题意.故选:根据因式分解的定义由多项式变形为几个整式乘积的形式的变形是因式分解解决此题.本题主要考查因式分解,熟练掌握因式分解的定义是解决本题的关键.4.【答案】C【解析】【解答】解:点在第二象限,,解得故选【分析】根据第二象限的点的横坐标是负数,纵坐标是正数列出不等式组求解即可.本题考查了各象限内点的坐标的符号特征以及解不等式组,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限;第二象限;第三象限;第四象限5.【答案】C【解析】【分析】本题考查了三角形的三边关系,等腰三角形的性质以及分类讨论思想的运用.题目给出等腰三角形有两条边长为5和10,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:分两种情况:当腰长为5时,,所以不能构成三角形;当腰长为10时,,所以能构成三角形,周长是:故选:6.【答案】D【解析】解:函数过点,,解得:,,不等式的解集为故选:首先利用待定系数法求出A点坐标,再以交点为分界,结合图象写出不等式的解集即可.此题主要考查了一次函数与一元一次不等式,关键是求出A点坐标.7.【答案】D【解析】解:A、逆命题为:两边的平方和等于第三边的平方的三角形是直角三角形,正确,为真命题,不符合题意;B、逆命题为:同位角相等,两直线平行,正确,为真命题,不符合题意;C、逆命题为:若一个三角形的三角相等,则它的三条边也相等,正确,为真命题,不符合题意;D、逆命题为:若,则,错误,为假命题,符合题意.故选:写出原命题的逆命题后利用勾股定理逆定理、平行线的判定、等边三角形的判定等知识分别判断后即可确定正确的选项.本题主要考查了命题与定理以及勾股定理等知识,解题的关键是了解勾股定理逆定理、等边三角形的判定、平行线的判定等知识,难度不大.8.【答案】A【解析】解:由题意得,平移的距离为BC,在中,,,,,,,舍去负值,平移的距离为,故选:由题意得,平移的距离为BC,根据含直角三角形的性质和勾股定理即可求出本题主要考查了含直角三角形的性质,勾股定理及平移的性质,知道平移的距离为BC是解决问题的关键.9.【答案】【解析】解:系数的最大公约数是3,各项相同字母的最低指数次幂是,故公因式是先确定系数的最大公约数,再确定各项的相同字母,并取相同字母的最低指数次幂.本题主要考查公因式的定义,准确掌握公因式的确定方法是解题的关键.10.【答案】【解析】解:根据题意得:,解得:故答案是:根据分式的意义,分母不等于0,可以求出x的范围.本题考查了函数的自变量的取值范围:函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.11.【答案】3【解析】解:平分,,,平分,,,,,,,,即,负值舍去,,故答案为:由角平分线的性质得,根据角平分线的定义可得,然后根据含30度角的直角三角形的性质及勾股定理可得答案.此题考查的是角平分线的性质、勾股定理等知识,掌握其性质定理是解决此题的关键.12.【答案】【解析】解:,,,将绕点B按逆时针方向旋转度得到若点刚好落在AC边上,,,,,故答案为:根据三角形内角和定理可得,再利用旋转的性质得出,从而求出的度数,即可解决问题.本题主要考查了旋转的性质,三角形内角和定理,等腰三角形的性质等知识,熟练掌握旋转的性质是解题的关键.13.【答案】【解析】解:在等腰中,,,,,根据作图过程可知:MN是BC的垂直平分线,连接CD,,,,,故答案为:根据勾股定理可得AB的长,根据作图过程可知:MN是BC的垂直平分线,连接CD,根据等腰直角三角形的性质可得,进而可得结果.本题考查了作图-复杂作图,等腰直角三角形,解决本题的关键是掌握基本作图方法.14.【答案】解:;,由①得:,由②得:,不等式组的解集为,则不等式组的整数解为:,0,所有整数解的和为【解析】原式提取公因式,再利用完全平方公式分解即可;分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,进而求出整数解即可.此题考查了提公因式法与公式法的综合运用,解一元一次不等式组,以及一元一次不等式组的整数解,熟练掌握各自的性质是解本题的关键.15.【答案】【解析】解:如图,;即为所求作;即为所求作;若将看作由旋转得到的,那么旋转角的度数为,旋转中心P坐标为故答案为:,分别作出A ,B ,C 的对应点,,即可;分别作出A ,B ,C 的对应点,,即可;对应点连线段的垂直平分线的交点即为旋转中心.本题考查作图-旋转变换,中心对称等知识,理解题意,灵活运用所学知识是解决问题的关键.16.【答案】证明:的平分线交AC 于点D ,,,,,;解:,,,平分,,【解析】根据角平分线的定义和平行线的性质可得,即可得证;先求出的度数,根据角平分线的定义可得的度数,进一步可得的度数.本题考查了等腰三角形的判定和性质,平行线的性质,涉及角平分线的定义,熟练掌握这些知识是解题的关键.17.【答案】解:将点代入,,,,设一次函数的解析式为,,,;在中,令得,,;在x轴上存在一点M,使得是等腰三角形,理由如下:,,,,当B为等腰三角形顶角顶点时,M点与A点关于y轴对称,;当A为等腰三角形顶角顶点时,,或;当M为等腰三角形顶角顶点时,设,,,解得,,综上所述:M点坐标为或或或【解析】将点代入,可得,再用待定系数法求一次函数的解析式即可;求出B的坐标,用三角形面积公式可得答案;分三种情况:当B为等腰三角形顶点顶点时,M点与A点关于y轴对称;当A为等腰三角形顶角顶点时,;当M为等腰三角形顶角顶点时,设,由列方程求出t,即可得到答案.本题考查一次函数的图象及性质,熟练掌握一次函数的图象及性质,等腰三角形的性质是解题的关键.18.【答案】解:,B为CE中点,,和是等腰直角三角形,,,,,,,,是AF的中点,;,,理由:如图1,延长BM交EF于D,,,,,,是AF的中点,,在和中,,≌,,,,,,是等腰直角三角形,,;成立,证明:如图2,延长BM交CF于D,连接BE,DE,将图1中绕点C顺时针旋转至图2所示,,,,,,是AF的中点,,在和中,,≌,,,,在与中,,≌,,,,是等腰直角三角形,,【解析】根据等腰直角三角形的性质得到,,求得,,,根据勾股定理得到,于是得到;如图1,延长BM交EF于D,根据平行线的性质得到,根据全等三角形的性质得到,,推出是等腰直角三角形得到,;如图2,延长BM交CF于D,连接BE,DE,根据旋转的性质得到,求得,根据平行线的性质得到,根据全等三角形到现在得到,,求得,根据全等三角形到现在得到,,于是得到结论.本题是几何变换综合题,考查了等腰三角形的判定和性质,全等三角形的判定和性质,以及斜边上的中线等于斜边的一半,添加合适的辅助线,证明三角形全等是解题的关键.19.【答案】42【解析】解:把,代入上式:原式故答案为:本题应先提公因式,把分解因式,再把条件代入即可求值.此题主要考查了因式分解的运用,有公因式时,要先考虑提取公因式;注意运用整体代入法求解.20.【答案】【解析】解:,解①得,,不等式组的解集为,由不等式组恰有3个整数解,得到整数解为、、,故答案为:表示出不等式组的解集,由不等式组恰有3个整数解,确定出m的范围即可.此题考查了一元一次不等式组的整数解,表示出不等式组的解集是解本题的关键.21.【答案】【解析】解:点,的“双减点”M的坐标是,,,,点B坐标故答案为:;点,点的“双减点”是点F,,即,点F在直线上方,,解得故答案为:根据点M是点A、B的“双减点”的定义可求点B坐标;点,点的“双减点”是点F,可表示出点F的坐标,根据点F在直线上方可得出关于m的不等式,解不等式即可.此题考查了一次函数的图象和性质,一次函数图象上点的坐标特征,能够利用新定义表示出点的坐标是解题的关键.22.【答案】【解析】解:连接CD,过D作于F,绕点B逆时针旋转至,为等边三角形,,,,,,,而,,在中,故答案为:连接CD,过D作于F,利用旋转的性质可以得到为等边三角形,然后利用勾股定理和已知条件可以分别求出DF、CF,最后在中利用勾股定理即可求解.此题主要考查了旋转的性质,同时也利用了等边三角形的性质及勾股定理,有一定的综合性,对于学生的能力要求比较高.23.【答案】【解析】解:当F与B重合时,DE最大,过点E作于点M,如图,,,,,,,,,,,,线段DE的最大值为;在中,,,,的边BC的高为3,作于点N,于点P,如图,设,则,,,四边形DEFC面积,四边形DEFC面积,,四边形DEFC面积随x的增大而增大.的最大值为,四边形DEFC面积的最大值为故答案为:,当F与B重合时,DE最大,过点E作于点M,解直角三角形即可求出线段DE的最大值;设,利用四边形DEFC面积为,得出四边形DEFC面积与x的函数关系式,利用一次函数的性质即可得出结论.本题主要考查了含30度角的直角三角形的性质,等腰三角形的性质,解直角三角形,利用一次函数的性质求四边形DEFC面积的最大值是解题的关键.24.【答案】解:设甲、乙两种型号水杯的销售单价分别为x元、y元,,解得,,答:甲、乙两种型号水杯的销售单价分别为30元、55元;由题意可得,,解得:,,故当时,W有最大值,最大为550,答:第三月的最大利润为550元.【解析】本题考查一次函数的应用、二元一次方程组的应用,解答本题的关键是明确题意,利用一次函数的性质解答.根据表格中的数据可以列出相应的二元一次方程组,从而可以求得甲、乙两种型号水杯的销售单价;根据题意,可以得到w与a的函数关系式.25.【答案】【解析】解:过点D作于点M,作于点N,平分,,,,;故答案为:;理由如下:如图2,过点B作于点E,则,由知:,;如图3,连接BD,过点C作于点H,过点A作于点G,,,,是等边三角形,,,,,,,和都是等边三角形,,,,,,,≌,,,,平分,由知:,,,,,,过点D作于点M,作于点N,运用角平分线性质可得,再利用三角形面积公式即可求得答案;过点B作于点E,运用等高的两个三角形面积比等于底的比可得,再结合的结论即可得出答案;连接BD,过点C作于点H,过点A作于点G,由等边三角形性质和勾股定理求出,,再证得≌,得出,,推出DC平分,运用的结论推出,即可运用三角形面积公式求得答案.本题是三角形综合题,主要考查了角平分线性质,等边三角形判定和性质,全等三角形的判定和性质,直角三角形性质,勾股定理,三角形面积公式等;熟练掌握全等三角形的判定和性质,勾股定理等相关知识是解题关键.26.【答案】解:根据题意联立解析式得:,解得:,点P的坐标为,把代入可得:,,,把代入可得:,,,,为等腰直角三角形,,即;如图所示,连接OP,把代入可得:,点B的坐标为,,,::2,,即,①,把代入可得:,点A的坐标为,,四边形PDOA的面积是,,由知点P的坐标为,②,联立①②可解得负值已舍去,,直线AB的关系式为;在坐标轴上存在点F,使是以PE为底边的等腰直角三角形,理由如下:将直线直线AB:向下平移9个单位得到直线l,直线l解析式为,令得,令得,,,设,,①当F在x轴上时,设,,过F作轴,过P作于K,过E 作于T,如图:是以PE为底边的等腰直角三角形,,,,,≌,,,,解得,,,此时E不在射线MN上,不符合题意,舍去;②当F在y轴上时,设,,过F作轴,过P作于G,过E作于H,如图:同理可证≌,,,,解得,,,综上所述,F的坐标为【解析】联立,即可解得点P的坐标为,求出,,可得为等腰直角三角形,故;由BD::2,可得①,根据四边形PDOA的面积是,知,故②,联立①②可解得,从而可得答案;将直线直线AB:向下平移9个单位得到直线l解析式为,分两种情况:①当F在x轴上时,设,,过F作轴,过P作于K,过E作于T,证明≌,可得,②当F在y轴上时,设,,过F作轴,过P作于G,过E作于H,证≌,可得,分别解方程组可得答案.本题考查一次函数的综合应用,涉及待定系数法,四边形和三角形面积,等腰直角三角形等知识,解题的关键是用含字母的代数式表示相关点坐标和相关线段的长度.。
成都七中实验学校八年级(下)数学第三次月考试卷(考试时间:120分 满分:150分)A 卷(共100分)一、选择题(每小题3分,共30分)1、下列全国各地地铁标志图中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .2、下列各式:()x -121,34-πx ,222y x -,b a +1,y x 25其中分式共有( )A .2个B .3个C .4个D .5个3、下列各式从左到右的变形中,为因式分解的是( )A .x (a ﹣b )=ax ﹣bxB .x 2﹣1+y 2=(x ﹣1)(x+1)+y 2C .y 2﹣1=(y+1)(y ﹣1)D .ax+by+c =x (a+b )+c4、下列不等式变形正确的是( )A .由a >b ,得ac >bcB .由a >b ,得a ﹣2<b ﹣2C .由121->-,得a a->-2 D .由a >b ,得c ﹣a <c ﹣b5、下列说法不正确的是( )A .有两组对边分别平行的四边形是平行四边形B .平行四边形的对角线互相平分C .平行四边形的对角互补,邻角相等D .平行四边形的对边平行且相等6、函数y =kx+b (k 、b 为常数,k ≠0)的图象如图,则关于x 的不等式kx+b >0的解集为() A .x >0 B .x <0 C .x <2 D .x >27、如图,在△ABC 中,AB =AC =6,D 是BC 上的点,DF ∥AB 交AC 于点F ,DE ∥AC 交AB 于E ,那么四边形AFDE 的周长为( )A .6B .12C .24D .488、如图,M 是△ABC 的边BC 的中点,AN 平分∠BAC ,BN ⊥AN 于点N ,且AB =10,BC =15,MN =3,则AC 的长是( )A .12B .14C .16D .189、如图,O 是菱形ABCD 的对角线AC ,BD 的交点,E ,F 分别是OA ,OC 的中点.下列结论:①S △ADE =S △EOD ;②四边形BFDE 也是菱形;③△DEF 是轴对称图形;④∠ADE =∠EDO ;⑤四边形ABCD 面积为EF ×BD .其中正确的结论有( )A .5个B .4个C .3个D .2个10、如图,在Rt △ABC 中,∠B =90°,AB =6,BC =8,点D 在BC 上,以AC 为对角线的所有平行四边形ADCE 中,DE 的最小值是( )A .10B .8C .6D .5二、填空题(每小题4分,共20分)11、分解因式:2x 2﹣2= .12、当分式21+-x x 的值为0时,x 的值是 . 13、一个多边形的内角和为900°,则这个多边形的边数为 .14、如图,△ABC 中,∠BAC =110°,AB 、CD 的垂直平分线分别交BC 于点E 、F ,则∠EAF 的度数为 °.15、如图,△ABC 中,∠BAC =90°,∠B =30°,AD ⊥BC 于D ,CE 是∠ACB 的平分线,且交AD 于P 点.如果AP =2,则AB 的长为 .三、解答题(共50分)16、(每小题5分,共20分)(1)因式分解:9(m+n )2﹣(m ﹣n )2. (2)解方程:132112-+=+-x x x x .(3)解下列不等式组,并把解在数轴上表示上出来:()⎪⎩⎪⎨⎧<-+≤+321234x x x x .(4)先化简,再求值:244442122++--+-÷⎪⎭⎫ ⎝⎛-x x x x x x ,其中x 2+2x ﹣15=0.17、(7分)已知二次三项式x 2﹣4x+m 有一个因式是(x+3),求另一个因式以及m 的值.18、(7分)如图,在平面直角坐标系xOy 中,△ABC 的三个顶点坐标分别为A (1,1),B (4,0),C (4,4).(1)按下列要求作图:①将△ABC 向左平移4个单位,得到△A 1B 1C 1;②将△A 1B 1C 1绕点B 1逆时针旋转90°,得到△A 2B 2C 2.(2)求点C 1在旋转过程中所经过的路径长.19、(8分)若关于x 的不等式组()⎪⎩⎪⎨⎧->++≤-xa x x x 23512321,有且仅有五个整数解,且关于x 的分式方程3121=----xa x x 有整数解,则所有满足条件的整数a 的值之和.20、(8分)如图,在四边形ABCD 中,∠BAC =∠ACD =90°,∠B =∠D .(1)求证:四边形ABCD 是平行四边形;(2)若AB =6cm ,BC =10cm ,AE =31AB ,点P 从B 点出发,以2cm/s 的速度沿BC →CD →DA 运动至A 点停止,则从运动开始经过多少时间,△BEP 为等腰三角形?B 卷(共50分)一、填空题(每小题4分,共20分)21、已知关于x 的方程323-=--x m x x 有一个正数解,则m 的取值范围 . 22、若关于x 的分式方程6523212+-=---x x x a x 无解,求a = . 23、等腰三角形一腰上的高与另一腰的夹角为30°,腰长为6,则其底边长是 .24、如图,在矩形ABCD 中,AB =2,BC =3,两顶点A 、B 分别在平面直角坐标系的x 轴、y 轴的正半轴上滑动,点C 在第一象限,连接OC ,则当OC 为最大值时,点C 的坐标是 .25、如图,四边形ABCD中,对角线AC⊥BD,且AC=2,BD=4,各边中点分别为A1、B1、C1、D1,顺次连接得到四边形A1B1C1D1,再取各边中点A2、B2、C2、D2,顺次连接得到四边形A2B2C2D2,…,依此类推,这样得到四边形A n B n C n D n,则四边形A n B n C n D n的面积为.二、解答题(共30分)26、(10分)某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A 款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B 款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?27、(10分)如图,矩形ABCD 中,AD =2AB ,E 是AD 边上一点,DE =n1AD (n 为大于2的整数),连接BE ,作BE 的垂直平分线分别交AD ,BC 于点F ,G ,FG 与BE 的交点为O ,连接BF 和EG .(1)试判断四边形BFEG 的形状,并说明理由;(2)当AB =a (a 为常数),n =3时,求FG 的长;(3)记四边形BFEG 的面积为S 1,矩形ABCD 的面积为S 2,当301721 S S 时,求n 的值.(直接写出结果,不必写出解答过程)28、(10分)如图,将边长为15的正方形OEFP 置于直角坐标系中,OE 、OP 分别与x 轴、y 轴的正半轴重合,边长为32的等边△ABC 的边BC 垂直于x 轴,△ABC 从点A 与点O 重合的位置开始,以每秒1个单位长的速度先向右平移,当BC 边与直线EF 重合时,继续以同样的速度向上平移,当点C 与点F 重合时,△ABC 停止移动.设运动时间为x 秒,△PAC 的面积为y .(1)当x 为何值时,P 、A 、B 三点在同一直线上,求出此时A 点的坐标;(2)在△ABC 向右平移的过程中,当x 分别取何值时,y 取最大值和最小值?最大值和最小值分别是多少?(3)在△ABC 向上移动的过程中,当x 分别取何值时,y 取最大值和最小值?最大值和最小值分别是多少?2016-2017学年四川省成都七中实验学校八年级(下)第三次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列全国各地地铁标志图中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,也不是中心对称图形.故错误;B、不是轴对称图形,也不是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、是轴对称图形,不是中心对称图形.故错误.故选:C.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.(3分)下列各式:(1﹣x),,,,其中分式共有()A.2个B.3个C.4个D.5个【分析】依据分式的分母中含有字母进行判断即可.【解答】解:(1﹣x)是整式;π是数字,不是字母,故是整式;是整式;是分式;是分式.故选:A.【点评】本题主要考查的是分式的定义,熟练掌握分式的定义是解题的关键.3.(3分)下列各式从左到右的变形中,为因式分解的是()A.x(a﹣b)=ax﹣bxB.x2﹣1+y2=(x﹣1)(x+1)+y2C.y2﹣1=(y+1)(y﹣1)D.ax+by+c=x(a+b)+c【分析】根据因式分解是把一个多项式转化成几个整式积,可得答案.【解答】解:A、是整式的乘法,故A错误;B、没把一个多项式转化成几个整式积,故B错误;C、把一个多项式转化成几个整式积,故C正确;D、没把一个多项式转化成几个整式积,故D错误;故选:C.【点评】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积是解题关键.4.(3分)下列不等式变形正确的是()A.由a>b,得ac>bc B.由a>b,得a﹣2<b﹣2C.由﹣>﹣1,得﹣>﹣a D.由a>b,得c﹣a<c﹣b【分析】分别利用不等式的基本性质判断得出即可.【解答】解:A、由a>b,得ac>bc(c>0),故此选项错误;B、由a>b,得a﹣2>b﹣2,故此选项错误;C、由﹣>﹣1,得﹣>﹣a(a>0),故此选项错误;D、由a>b,得c﹣a<c﹣b,此选项正确.故选:D.【点评】此题主要考查了不等式的基本性质,正确掌握不等式基本性质是解题关键.5.(3分)下列说法不正确的是()A.有两组对边分别平行的四边形是平行四边形B.平行四边形的对角线互相平分C.平行四边形的对角互补,邻角相等D.平行四边形的对边平行且相等【分析】根据平行四边形的判断方法和各种性质解答即可.【解答】解:A、平行四边形的判定定理:有两组对边分别平行的四边形是平行四边形,故本选项正确;B、平行四边形的性质:平行四边形的对角线互相平分,故本选项正确;C、平行四边形的对角相等,邻角互补,故本选项错误;D、平行四边形的性质:平行四边形的对边平行且相等,故本选项正确;故选:C.【点评】本题考查了平行四边形的判定与性质,熟记平行四边形的各种性质以及各种判断方法是解题的关键.6.(3分)函数y=kx+b(k、b为常数,k≠0)的图象如图,则关于x的不等式kx+b>0的解集为()A.x>0 B.x<0 C.x<2 D.x>2【分析】从图象上得到函数的增减性及与x轴的交点的横坐标,即能求得不等式kx+b>0的解集.【解答】解:函数y=kx+b的图象经过点(2,0),并且函数值y随x的增大而减小,所以当x<2时,函数值大于0,即关于x的不等式kx+b>0的解集是x<2.故选:C.【点评】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用,注意几个关键点(交点、原点等),做到数形结合.7.(3分)如图,在△ABC中,AB=AC=6,D是BC上的点,DF∥AB交AC于点F,DE∥AC交AB于E,那么四边形AFDE的周长为()A.6 B.12 C.24 D.48【分析】由于DE∥AC,DF∥AB,则可以推出四边形AFDE是平行四边形,然后利用平行四边形的性质可以证明▱AFDE的周长等于AB+AC.【解答】解:∵DE∥AC,DF∥AB,则四边形AFDE是平行四边形,∠B=∠FDC,∠EDB=∠C∵AB=AC,∴∠B=∠C,∴∠B=∠EDB,∠C=∠FDC∴BE=ED,DF=FC,所以:▱AFDE的周长等于AB+AC=12.故选:B.【点评】本题考查了平行四边形的性质,以及等腰三角形的判定和性质,根据平行四边形的性质,找出对应相等的边,利用等腰三角形的性质把四边形周长转化为已知的长度去解题.8.(3分)如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=10,BC=15,MN=3,则AC的长是()A.12 B.14 C.16 D.18【分析】延长线段BN交AC于E,易证△ABN≌△AEN,可得N为BE的中点;由已知M是BC的中点,可得MN是△BCE的中位线,由中位线定理可得CE的长,根据AC=AE+CE可得AC的长.【解答】解:延长线段BN交AC于E.∵AN平分∠BAC,∴∠BAN=∠EAN,在△ABN与△AEN中,∵,∴△ABN≌△AEN(ASA),∴AE=AB=10,BN=NE,又∵M是△ABC的边BC的中点,∴CE=2MN=2×3=6,∴AC=AE+CE=10+6=16.故选:C.【点评】本题主要考查了中位线定理和全等三角形的判定及性质.解决本题的关键是作出辅助线,利用全等三角形得出线段相等,进而应用中位线定理解决问题.9.(3分)如图,O是菱形ABCD的对角线AC,BD的交点,E,F分别是OA,OC的中点.下列结论:①S△ADE =S△EOD;②四边形BFDE也是菱形;③△DEF是轴对称图形;④∠ADE=∠EDO;⑤四边形ABCD面积为EF×BD.其中正确的结论有()A.5个B.4个C.3个D.2个【分析】①正确,根据三角形的面积公式可得到结论.②根据已知条件利用菱形的判定定理可证得其正确.③正确,根据菱形的面积等于对角线乘积的一半即可求得.④不正确,根据已知可求得∠FDO=∠EDO,而无法求得∠ADE=∠EDO.⑤正确,由已知可证得△DEO≌△DFO,从而可推出结论正确.【解答】解:①正确∵E、F分别是OA、OC的中点.∴AE=OE.∵S△ADE=×AE×OD=×OE×OD=S△EOD∴S△ADE=S△EOD.②正确∵四边形ABCD是菱形,E,F分别是OA,OC的中点.∴EF⊥OD,OE=OF.∵OD=OD.∴DE=DF.同理:BE=BF∴四边形BFDE是菱形.③正确∵菱形ABCD的面积=AC×BD.∵E、F分别是OA、OC的中点.∴EF=AC.∴菱形ABCD的面积=EF×BD.④不正确由已知可求得∠FDO=∠EDO,而无法求得∠ADE=∠EDO.⑤正确∵EF⊥OD,OE=OF,OD=OD.∴△DEO≌△DFO.∴△DEF是轴对称图形.∴正确的结论有四个,分别是①②③⑤,故选B.【点评】此题主要考查学生对菱形的性质等知识的理解及运用能力.10.(3分)如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,点D在BC上,以AC为对角线的所有平行四边形ADCE中,DE的最小值是()A.10 B.8 C.6 D.5【分析】平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小,根据三角形中位线定理即可求解.【解答】解:平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小.∵OD⊥BC,BC⊥AB,∴OD∥AB,又∵OC=OA,∴OD是△ABC的中位线,∴OD=AB=3,∴DE=2OD=6.故选:C.【点评】此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半,正确理解DE最小的条件是关键.二、填空题(每小题4分,共20分)11.(4分)分解因式:2x2﹣2=2(x+1)(x﹣1).【分析】先提取公因式2,再根据平方差公式进行二次分解即可求得答案.【解答】解:2x2﹣2=2(x2﹣1)=2(x+1)(x﹣1).故答案为:2(x+1)(x﹣1).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.12.(4分)当分式的值为0时,x的值是 1 .【分析】根据分式值为0的条件:分子为0且分母不为0进行计算即可.【解答】解:∵分式的值为0;∴x﹣1=0,∴x=1,故答案为1.【点评】本题考查的是分式的值为0的条件,即分式值为零的条件是分子等于零且分母不等于零.13.(4分)一个多边形的内角和为900°,则这个多边形的边数为7 .【分析】本题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.【解答】解:设这个多边形的边数为n,则有(n﹣2)×180°=900°,解得:n=7,∴这个多边形的边数为7.故答案为:7.【点评】本题主要考查多边形的内角和定理,解题的关键是根据已知等量关系列出方程从而解决问题.14.(4分)如图,△ABC中,∠BAC=110°,AB、CD的垂直平分线分别交BC于点E、F,则∠EAF的度数为40 °.【分析】利用垂直平分线的性质求EA=EB,则∠B=∠EAG,FA=FC,则∠C=∠FAH,再利用三角形的内角和计算.【解答】解:∵AB、AC的垂直平分线分别交BC于点E、F,∴EA=EB,则∠B=∠EAG,设∠B=∠EAG=x度,∵FA=FC,则∠C=∠FAH,设∠C=∠FAH=y,∵∠BAC=110°,∴x+y+∠EAF=110°,根据三角形内角和定理,x+y+x+y+∠EAF=180°,解得∠EAF=40°.故答案为:40.【点评】此题考查了线段垂直平分线的性质、等腰三角形的判定与性质以及三角形外角的性质.此题难度适中,注意掌握数形结合思想与整体思想的应用.15.(4分)如图,△ABC中,∠BAC=90°,∠B=30°,AD⊥BC于D,CE是∠ACB的平分线,且交AD于P 点.如果AP=2,则AB的长为 6 .【分析】易得△AEP的等边三角形,则AE=AP=2,在直角△AEC中,利用含30度角的直角三角形的性质来求EC的长度,然后在等腰△BEC中得到BE的长度,则易求AB的长度.【解答】解:∵△ABC中,∠BAC=90°,∠B=30°,∴∠ACB=60°.又∵CE是∠ACB的平分线,∴∠ECB=30°,∴∠AEC=∠B+∠ECB=60°,∠B=∠ECB∴∠AEP=60°,BE=EC.又AD⊥BC,∴∠BAD=∠EAP=60°,则∠AEP=∠EAP=60°,∴△AEP的等边三角形,则AE=AP=2,在直角△AEC中,∠ACE=30°,则EC=2AE=4,∴BE=EC=4,∴AB=BE+AE=6.故答案是:6.【点评】本题考查了含30度角的直角三角形的性质、角平分线的性质以及等边三角形的判定与性质.利用三角形外角定理得到∠AEC=60°是解题的关键.三、计算题(每小题20分,共20分)16.(20分)(1)因式分解:9(m+n)2﹣(m﹣n)2.(2)解方程:1﹣=.(3)解下列不等式组,并把解在数轴上表示上出来:.(4)先化简,再求值:(1﹣)÷﹣,其中x2+2x﹣15=0.【分析】(1)利用平方差公式直接分解因式得出即可.(2)观察可得最简公分母是(x+1)(x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.(3)先把两个不等式分别进行化简求值,再求不等式的解集,最后在数轴上表示出解集即可.(4)首先化简分式,利用异分母的分式的减法法则,计算括号内的式子,把除法转化成乘法运算,然后进行异分母的分式的减法,即可把分式进行化简,然后把x2+2x﹣15=0变形代入即可求解.【解答】解:(1)9(m+n)2﹣(m﹣n)2=[3(m+n)+(m﹣n)][3(m+n)﹣(m﹣n)]=4(2m+n)(m+2n).(2)1﹣=,方程的两边同乘(x+1)(x﹣1),得x2﹣1﹣x2+x=2x+3,整理得,x﹣1=2x+3解得x=﹣4.检验:把x=﹣4代入(x+1)(x﹣1)=15≠0.故原方程的解为:x=﹣4.(3),由①得,x≥﹣1;由②得,x<3;∴不等式组的解集为:﹣1≤x<3,此解集在数轴上表示为:.(4)原式=•﹣=﹣=,∵x2+2x﹣15=0,∴x2+2x=15,∴原式=.【点评】本题考查了解一元二次方程、分式的化简求值、解分式方程、解一元一次不等式组.四、解答题(17、18题各7分,19、20题各8分)17.(7分)已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.【分析】设另一个因式为x+a,根据多项式乘以多项式法则得出(x+3)(x+a)=x2+(3+a)x+3a,即可求出a、m.【解答】解:设另一个因式为x+a,则(x+3)(x+a)=x2+(3+a)x+3a,∵x2﹣4x+m=(x+3)(x+a),∴3+a=﹣4,3a=m,∴a=﹣7,m=﹣21,即另一个因式为x﹣7,m=﹣21.【点评】本题考查了因式分解的意义和多项式乘以多项式法则,能熟练运用多项式乘以多项式法则展开是解此题的关键.18.(7分)如图,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(1,1),B(4,0),C(4,4).(1)按下列要求作图:①将△ABC向左平移4个单位,得到△A1B1C1;②将△A1B1C1绕点B1逆时针旋转90°,得到△A2B2C2.(2)求点C1在旋转过程中所经过的路径长.【分析】(1)①利用点平移的坐标规律,分别写出点A、B、C的对应点A1、B1、C1的坐标,然后描点可得△A1B1C1;②利用网格特点和旋转的性质,分别画出点A1、B1、C1的对应点A2、B2、C2即可;(2)根据弧长公式计算.【解答】解:(1)①如图,△A1B1C1为所作;②如图,△A2B2C2为所作;(2)点C1在旋转过程中所经过的路径长==2π.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移的性质.19.(8分)若关于x的不等式组,有且仅有五个整数解,且关于x的分式方程=3有整数解,则所有满足条件的整数a的值之和.【分析】不等式组整理后,由题意确定出a的范围,分式方程去分母转化为整式方程,表示出整式方程的解,检验即可.【解答】解:不等式组整理得:,由不等式组有且仅有五个整数解,得到﹣1≤<0,解得:﹣4≤a<3,即整数a=﹣4,﹣3,﹣2,﹣1,0,1,2,分式方程去分母得:x+a﹣2=3x﹣3,解得:x=,当a=﹣3时,x=﹣1;a=﹣1时,x=0,则满足题意a的值之和为﹣3﹣1=﹣4.【点评】此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.20.(8分)如图,在四边形ABCD中,∠BAC=∠ACD=90°,∠B=∠D.(1)求证:四边形ABCD是平行四边形;(2)若AB=6cm,BC=10cm,AE=AB,点P从B点出发,以2cm/s的速度沿BC→CD→DA运动至A点停止,则从运动开始经过多少时间,△BEP为等腰三角形?【分析】(1)推出AD∥BC,AB∥DC,根据平行四边形的判定推出即可;(2)求出AC,当P在BC上时,①BP=EB=4,②BP=PE,作PM⊥AB于M,根据cosB求出BP,③BE=PE =4cm,作EN⊥BC于N,根据cosB求出BN;当P在CD上不能得出等腰三角形;当P在AD上时,过P作PQ ⊥BA于Q,证△QAP∽△ABC,推出PQ:AQ:AP=4:3:5,设PQ=4xcm,AQ=3xcm,在△EPN中,由勾股定理得出方程(3x+1)2+(4x)2=42,求出方程的解即可.【解答】(1)证明:∵∠BAC=∠ACD=90°,∴AB∥CD,∵∠B=∠D,∠B+∠BAC+∠ACB=∠D+∠ACD+∠DAC=180°,∴∠DAC=∠ACB,∴AD∥BC,∴四边形ABCD是平行四边形.(2)解:∵∠BAC=90°,BC=10cm,AB=6cm,′由勾股定理得:AC=8cm,即AB、CD间的最短距离是4cm,∵AB=6cm,AE=AB,∴AE=2cm,BE=4cm,设经过ts时,△BEP是等腰三角形,当P在BC上时,①BP=EB=4cm,t=2时,△BEP是等腰三角形;②BP=PE,作PM⊥AB于M,∴BM=ME=BE=2cm∵cos∠ABC===,∴BP=cm,t=时,△BEP是等腰三角形;③BE=PE=4cm,作EN⊥BC于N,则BP=2BN,∴cosB==,∴=,BN=cm,∴BP=,∴t=时,△BEP是等腰三角形;当P在CD上不能得出等腰三角形,∵AB、CD间的最短距离是8cm,CA⊥AB,CA=8cm,当P在AD上时,只能BE=EP=4cm,过P作PQ⊥BA于Q,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠QAD=∠ABC,∵∠BAC=∠Q=90°,∴△QAP∽△ABC,∴PQ:AQ:AP=4:3:5,设PQ=4xcm,AQ=3xcm,在△EPQ中,由勾股定理得:(3x+1)2+(4x)2=42,∴x=(负根已经舍弃),AP=5x=cm,∴t=,答:从运动开始经过2s或s或s或s时,△BEP为等腰三角形.【点评】本题主要考查对平行四边形的性质和判定,相似三角形的性质和判定.全等三角形的性质和判定,勾股定理,等腰三角形的性质,勾股定理等知识点的理解和掌握,综合运用这些性质进行推理是解此题的关键.一、填空题(每小题4分,共20分)21.(4分)已知关于x的方程﹣2=有一个正数解,则m的取值范围m<6且m≠3 .【分析】分式方程去分母转化为整式方程,由分式方程有正数解,确定出m的范围即可.【解答】解:去分母得:x﹣2x+6=m,解得:x=6﹣m,由分式方程有一个正数解,得到6﹣m>0,且6﹣m≠3,解得:m<6且m≠3,故答案为:m<6且m≠3【点评】此题考查了分式方程的解,始终注意分母不为0这个条件.22.(4分)若关于x的分式方程﹣=无解,求a=﹣1或2 .【分析】分式方程去分母转化为整式方程,分类讨论a的值,使分式方程无解即可.【解答】解:去分母得:3﹣x﹣a(x﹣2)=﹣2,即(a+1)x=2a+5,当a=﹣1时,显然方程无解;当a≠﹣1时,x=,当x=2时,a不存在;当x=3时,a=2,综上,a的值为﹣1或2.故答案为﹣1或2.【点评】本题考查了分式方程无解的条件,分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.23.(4分)等腰三角形一腰上的高与另一腰的夹角为30°,腰长为6,则其底边长是6或6 .【分析】分①三角形是钝角三角形时,根据直角三角形30°角所对的直角边等于斜边的一半可得AD=AB,再根据等腰三角形两底角相等和三角形的一个外角等于与它不相邻的两个内角的和求出∠ABC=30°,然后根据含30°角的直角三角形的性质解答,②三角形是锐角三角形时,判断出△ABC是等边三角形,再根据等边三角形的性质解答.【解答】解:①三角形是钝角三角形时,如图1,∵∠ABD=30°,∴AD=AB=×6=3,BD=AB=3,∵AB=AC,∴∠ABC=∠ACB=∠BAD=(90°﹣30°)=30°,∴BC=2BD=6;②三角形是锐角三角形时,如图2,∵∠ABD=30°,∴∠A=90°﹣30°=60°,∴△ABC是等边三角形,∴BC=AB=6,综上所述,其底边长是6或6.故答案为:6或6.【点评】本题考查了直角三角形30°角所对的直角边等于斜边的一半的性质,等腰三角形的性质,难点在于分情况讨论,作出图形更形象直观.24.(4分)如图,在矩形ABCD中,AB=2,BC=,两顶点A、B分别在平面直角坐标系的x轴、y轴的正半轴上滑动,点C在第一象限,连接OC,则当OC为最大值时,点C的坐标是(,).【分析】E为AB的中点,当O,E及C共线时,OC最大,此时OE=AB=1,由勾股定理求出CE=2,OC=3,求出∠COB=30°,解直角三角形求出CF和OF即可.【解答】解:E为AB的中点,当O,E及C共线时,OC最大,过C作CF⊥x轴于F,则∠CFO=90°,此时OE=BE=AB=1,由勾股定理得:CE==2,OC=1+2=3,即BE=CE,∵∠CBE=90°,∴∠ECB=30°,∠BEC=60°,∴∠AEO=60°,∵在Rt△AOB中,E为斜边AB中点,∴AE=OE,∴△AOE等边三角形,∴∠AOE=60°,∴∠COB=90°﹣60°=30°,∴CF=OC==,由勾股定理得:OF===,所以点C的坐标是(,).故答案为:(,).【点评】本题主要考查对直角三角形斜边上的中线,勾股定理,坐标与图形性质等知识点的理解和掌握,能根据题意求出OC的最大值是解此题的关键.25.(4分)如图,四边形ABCD中,对角线AC⊥BD,且AC=2,BD=4,各边中点分别为A1、B1、C1、D1,顺次连接得到四边形A1B1C1D1,再取各边中点A2、B2、C2、D2,顺次连接得到四边形A2B2C2D2,…,依此类推,这样得到四边形A n B n∁n D n,则四边形A n B n∁n D n的面积为.【分析】根据三角形的面积公式,可以求得四边形ABCD的面积是4;根据三角形的中位线定理,得A1B1∥AC,A1B1=AC,则△BA1B1∽△BAC,得△BA1B1和△BAC的面积比是相似比的平方,即,因此可得四边形A1B1C1D1的面积是四边形ABCD的面积的,探究规律可得四边形A n B n∁n D n的面积=•S四边形ABCD.【解答】解:∵四边形A1B1C1D1的四个顶点A1、B1、C1、D1分别为AB、BC、CD、DA的中点,∴A1B1∥AC,A1B1=AC.∴△BA1B1∽△BAC.∴△BA1B1和△BAC的面积比是相似比的平方,即.即S=S△ABC,同理可证:S=S△ADC,S=S△ABD,S=S△BDC,∴S=•S 四边形ABCD,同法可证S=•S=•S四边形ABCD,=S 四边形ABCD又四边形ABCD的对角线AC=2,BD=4,AC⊥BD,∴四边形ABCD的面积是4.∴=•S 四边形ABCD=.故答案为.【点评】此题综合运用了三角形的中位线定理、相似三角形的判定及性质.注意:对角线互相垂直的四边形的面积等于对角线乘积的一半.二、解答题(每小题10分)26.(10分)某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A 款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B 款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?【分析】(1)求单价,总价明显,应根据数量来列等量关系.等量关系为:今年的销售数量=去年的销售数量.(2)关系式为:99≤A款汽车总价+B款汽车总价≤105.(3)方案获利相同,说明与所设的未知数无关,让未知数x的系数为0即可;多进B款汽车对公司更有利,因为A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,所以要多进B款.【解答】解:(1)设今年5月份A款汽车每辆售价m万元.则:,解得:m=9.经检验,m=9是原方程的根且符合题意.答:今年5月份A款汽车每辆售价9万元;(2)设购进A款汽车x辆.则:99≤7.5x+6(15﹣x)≤105.解得:6≤x≤10.∵x的正整数解为6,7,8,9,10,∴共有5种进货方案;(3)设总获利为W万元,购进A款汽车x辆,则:W=(9﹣7.5)x+(8﹣6﹣a)(15﹣x)=(a﹣0.5)x+30﹣15a.当a=0.5时,(2)中所有方案获利相同.此时,购买A款汽车6辆,B款汽车9辆时对公司更有利.【点评】本题考查分式方程和一元一次不等式组的综合应用,找到合适的等量关系及不等关系是解决问题的关键.27.(10分)如图,矩形ABCD中,AD=2AB,E是AD边上一点,DE=AD(n为大于2的整数),连接BE,作BE的垂直平分线分别交AD,BC于点F,G,FG与BE的交点为O,连接BF和EG.(1)试判断四边形BFEG的形状,并说明理由;(2)当AB=a(a为常数),n=3时,求FG的长;(3)记四边形BFEG的面积为S1,矩形ABCD的面积为S2,当=时,求n的值.(直接写出结果,不必写出解答过程)【分析】(1)先求证△EFO≌△BGO,可得FO=GO,再根据对角线互相垂直且平分的四边形是菱形,即可证明四边形BFEG为菱形;(2)根据菱形面积不同的计算公式(底乘高和对角线乘积的一半两种计算方式)可计算FG的长度;(3)根据菱形面积底乘高的计算方式可以求出BG长度,根据勾股定理可求出AF的长度,即可求出ED的长度,即可计算n的值.【解答】解:(1)∵AD∥BC,∴∠EFO=∠BGO,∵FG为BE的垂直平分线,∴BO=OE;∵在△EFO和△BGO中,,∴△EFO≌△BGO,∴FO=GO∵EO=BO,且BE⊥FG∴四边形BGEF为菱形.。
人教版八年级第二学期下册期中模拟数学试卷(含答案)一、选择题(每小题3分,共30分)1.(3分)如图,在平行四边形ABCD中,∠A=40°,则∠C大小为()A.40°B.80°C.140°D.180°2.(3分)如图,矩形ABCD中,对角线AC,BD交于点O.若∠AOB=60°,BD=8,则AB的长为()A.4B.C.3D.53.(3分)如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的()A.B.C.D.4.(3分)已知P1(﹣1,y1),P2(2,y2)是一次函数y=﹣x+1图象上的两个点,则y1,y2的大小关系是()A.y1=y2B.y1<y2C.y1>y2D.不能确定5.(3分)函数y=x﹣2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.(3分)矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.对角线平分对角7.(3分)一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是()A.x<0B.x>0C.x<2D.x>28.(3分)在下列命题中,是真命题的是()A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相平分的四边形是平行四边形D.两条对角线互相垂直且相等的四边形是正方形9.(3分)如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,若BF=12,AB=10,则AE的长为()A.13B.14C.15D.1610.(3分)如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P从点A出发,沿路径A→D→C→E运动,则△APE的面积y与点P经过的路径长x之间的函数关系用图象表示大致是()A.B.C.D.二、填空题(每小题3分,共30分)11.(3分)将正比例函数y=﹣2x的图象向上平移3个单位,则平移后所得图象的解析式是.12.(3分)若方程组的解是,则直线y=﹣2x+b与直线y=x﹣a的交点坐标是.13.(3分)如图,∠B=∠ACD=90°,BC=3,AB=4,CD=12,则AD=.14.(3分)在Rt△ABC中,∠ACB=90°,∠A=30°,BC=4,CD垂直于AB,垂足为点D,则DC=,AD=.15.(3分)已知菱形的两条对角线长分别为1和4,则菱形的面积为.16.(3分)如图,在平行四边形ABCD中,BE平分∠ABC,交AD于点E,AB=3cm,ED =1cm,则平行四边形ABCD的周长是.17.(3分)如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将纸片折叠使直角边落在斜边AB上且与AE重合,折痕为AD.则CD=.18.(3分)四边形ABCD中,已知∠A=∠B=∠C=90°,再添加一个条件,使得四边形ABCD为正方形,可添加的条件是.19.(3分)如图,在点A测得某岛C在北偏东60°方向上,且距A点18海里,某船以每小时36海里的速度从点A向正东方向航行,航行半小时后到达B点,此时测得岛C 在北偏东30°方向上,已知该岛周围16海里内有暗礁.B点与C岛的距离是B点暗礁区域(填内或外)20.(3分)弹簧挂上物体后会伸长,测得﹣弹簧的长度y(cm)与所挂重物的质量x(㎏)有下面的关系:那么弹簧总长y(cm)与所挂重物x(㎏)之间的函数关系式为.三、解答题(共8小题,满分40分)21.(5分)已知,一次函数y=kx+3的图象经过点A(1,4).(1)求这个一次函数的解析式;(2)分别求出图象与x轴,与y轴交点坐标.22.(5分)如图,在平行四边形ABCD中,点E、F分别在AD、BC上,且AE=CF,求证:四边形BFDE是平行四边形.23.(5分)如图,在△MBN中,已知BM=6,BN=7,MN=10,点A,C,D分别是MB,NB,MN的中点,(1)求证:四边形ABCD是平行四边形(2)四边形ABCD的周长为(直接写出答案).24.(5分)已知:如图,E是正方形ABCD对角线AC上一点,且AE=AB,EF⊥AC,交BC于F.求证:BF=EC.25.(5分)已知,如图,Rt△ABC中,∠ABC=90°.(1)利用直尺和圆规按要求完成作图(保留作图痕迹);①作线段AC的垂直平分线,交AC于点M;②连接BM,在BM的延长线上取一点D,使MD=MB,连接AD、CD.(2)试判断(1)中四边形ABCD的形状,并说明理由.26.(5分)在一次蜡烛燃烧实验中,蜡烛燃烧时剩余部分的高度y(cm)与燃烧时间x(h)之间为一次函数关系.根据图象提供的信息,解答下列问题:(1)求出蜡烛燃烧时y与x之间的函数关系式并写出自变量取值范围;(2)求蜡烛从点燃到燃尽所用的时间.27.(5分)(1)自主阅读:在三角形的学习过程,我们知道三角形一边上的中线将三角形分成了两个面积相等三角形,原因是两个三角形的底边和底边上的高都相等,在此基础上我们可以继续研究:命题:两条平行线中,一条上的两点与另一条上任一点所构成的三角形面积相等.如图1,AD∥BC,连接AB,AC,BD,CD,则S△ABC=S△BCD.证明:分别过点A和D,作AF⊥BC于F.DE⊥BC于E,由AD∥BC,可得AF=DE,又因为S△ABC=×BC×AF,S△BCD=.所以S△ABC=S△BCD所以此命题为真(2)应用拓展:如图2,将大小不同的两个正方形放在一起,连接AF,CF,若大正方形的面积是80cm2,则图中阴影三角形的面积是cm2.请直接写出答案并用(1)中的命题结论说明理由28.(5分)如图,△ABC中,∠ACB=90°,D、E分别是BC、BA的中点,连接DE,F 在DE延长线上,且AF=AE.(1)求证:四边形ACEF是平行四边形;(2)若四边形ACEF是菱形,求∠B的度数.附加题(5分)(答对计入总分100分封顶,答错或不答不扣分)29.以四边形ABCD的边AB、AD为边分别向外侧作等边三角形ABF和ADE,连接EB、FD,交点为G.(1)当四边形ABCD为正方形时(如图1),EB和FD的数量关系是;(2)当四边形ABCD为矩形时(如图2),EB和FD具有怎样的数量关系?请加以证明;(3)四边形ABCD由正方形到矩形到一般平行四边形的变化过程中,∠EGD是否发生变化?如果改变,请说明理由;如果不变,请在图3中求出∠EGD的度数.2016-2017学年北京四十一中八年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.【解答】解:∵四边形ABCD是平行四边形,∴∠C=∠A=40°.故选:A.2.【解答】解:∵四边形ABCD是矩形,∴OA=AC,OB=最新人教版八年级(下)期中模拟数学试卷及答案一、选择题(本大题共10小题,每小题3分,共30分。
2011~2012学年度下期半期学业水平检测试题八 年 级 数 学说明:本试卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分,全卷总分150分;考试时间120分钟.A 卷(共100分)一、选择题(每小题3分,共30分) 1.下列式子是分式的是( ) A .B .C .D .2.下列等式不成立...的是( ) A . B . C .D .3.把不等式组的解集表示在数轴上,正确的是( )A .B .C .D . 4.使分式有意义的的取值范围是( ) A .B .C .D .5.下列约分正确的是( )A .B .C .D .6.已知,则的值是( ) A . 2 B . C .D .7.若关于的方程的解大于2,那么的取值范围是( )A .B .C .D .题号A 卷 A 卷 总分B 卷 B 卷 总分 全卷 总分 一二 三 四 五 一 二 三 四 得分8.在边长为的正方形中挖去一个边长为的小正方形()(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证() A . B . C .D .9.解关于的方程产生增根,则常数的值等于( ) A .-2B .-1C .1D .210.直线与直线在同一直角坐标系中的图象如图所示,则关于的不等式的解集是( )A .B .C .D .二、填空题(每小题4分,共20分) 11.若,,则的值为 .12.若,则.13.已知分式,当时,分式无意义,则 .14.如果关于的不等式组的解集为,那么的取值范围是 .15.甲计划用若干天完成某项工作,在甲独立工作两天后,乙加入此项工作,且甲、乙两人工效相同,结果提前两天完成任务.设甲计划完成此项工作的天数是,则的值是_____________.三、解答题(本大题共5个小题,共50分)16.(本小题满分16分,(1)(2)每题5分,(3)题6分) (1)分解因式: (2)分解因式:a b bb b a 图乙图甲O(3)解方程:17.(本小题满分7分)解不等式组,并求不等式组所有整数解.....的和...18.(本小题满分8分)先化简,然后从不等式组的解集中,选取一个你认为符合题意....的的值代入求值.19.(本小题满分9分)若方程组的解满足<1且>1,求整数的值.20.(本小题满分10分)为了保护环境,某化工厂一期工程完成后购买了3台甲型和2台乙型污水处理设备,共花费资金54万元,且每台乙型设备的价格是每台甲型设备价格的7 5%,实际运行中发现,每台甲型设备每月能处理污水200吨,每台乙型设备每月能处理污水160吨,且每年用于每台甲型设备的各种维护费和电费为1万元,每年用于每台乙型设备的各种维护费和电费为1.5万元.今年该厂二期工程即将完成,产生的污水将大大增加,于是该厂决定再购买甲、乙两型设备共8台用于二期工程的污水处理,其购买资金不超过...84万元,每月处理污水至少1340吨.(1)请你计算每台甲型设备和每台乙型设备的价格各是多少元?(2)请你求出用于二期工程的污水处理设备的所有购买方案;(3)若两种设备的使用年限都为10年,请你说明在(2)的所有方案中,哪种购买方案的总费用最少?(总费用=设备购买费+各种维护费和电费)B卷(共50分)一、填空题(每小题4分,共20分)21.若关于的不等式的解集为,则.22.已知一次函数的图象过第一、二、四象限,且与轴交于点(2,0),则关于的不等式的解集为.23.若关于的分式方程无解,则.24.某市打市话的收费标准是:每次3分钟以内(含3分钟)收费元,以后每分钟收费元(不足1分钟按1分钟计).某天小芳给同学打了一个6分钟的市话,所用电话费为元;小刚现准备给同学打市话6分钟,他经过思考以后,决定先打3分钟,挂断后再打3分钟,这样只需电话费元.如果你想给某同学打市话,准备通话10分钟,则你所需要的电话费至少为元.25.若关于的不等式组有5个整数解,则的取值范围是.二、解答题(本大题共3个小题,共30分)26.(本小题满分8分)先阅读理解下面的例题,再按要求解答:例题:解一元二次不等式.解:∵∴原不等式可化为:由有理数的乘法法则“两数相乘,同号得正”,有:(1),(2)解不等式组(1),得,解不等式组(2),得,故的解集为或,即一元二次不等式的解集为或.问题:求不等式的解集.27.(本小题满分10分)观察下列各式:,,,,,……(1)请猜想出表示上面各式的特点的一般规律,用含(表示正整数)的等式表示出来_____________________________________.(2)请利用上述规律计算:.(为正整数)(3)请利用上述规律,解方程:.28.(本小题满分12分)某厂接受了生产一批高质量医用口罩的任务.要求在8天之内(含8天)生产A型和B型两种型号的口罩共5万只,其中A型口罩不得少于1.8万只.该厂的生产能力是:每天只能生产一种型号的口罩,若生产A型口罩每天能生产0.6万只,若生产B型口罩每天能生产0.8万只.已知生产一只A型口罩可获利0.5元,生产一只B型口罩可获利0.3元.设该厂在这次任务中生产了A型口罩万只...(1)请用含的代数式分别表示出该厂在这次任务中生产A型和生产B型口罩可获得的利润;(2)设该厂这次生产口罩的总利润是万元,试写出关于的函数关系式,并求出自变量的取值范围;(3)如果你是该厂厂长:①在完成任务的前提下,你如何安排生产A型和B型口罩的只数,使获得的总利润最大?最大利润是多少?②若要在最短时间内完成任务,你又如何安排生产A型和B型口罩的只数?最短时间是多少?八年级数学参考答案A卷(共100分)一、选择题(每小题3分,共30分)1-5 BDBAC 6—10 BDCDA二、填空题(每小题4分,共20分)11.10;12.;13.6;14.;15.6.三、解答题:(本大题共5个小题,共50分)16.解:(1)原式………2分………5分(2)原式………1分………3分………5分(3)………2分………3分………4分………5分检验:将代入原方程,得:左边=1=右边∴原方程的解为………6分17.解:由①得:…………2分由②得:…………4分∴不等式组的解集为:…………5分∴不等式组的所有整数....解为:-3,-2,-1,0,1,…………6分∴其和为:-5 …………7分18.解:原式…………3分…………4分解不等组得:…………6分又由题知选取的数字不为5,-5,0∴取,原式…………8分(说明:此题答案不唯一)19.解:由得…………4分∵∴…………5分解不等式组得:…………8分∴的整数解为0,1 …………9分20.解:(1)设一台甲型设备的价格为x万元,由题得…………1分解得x=12,∴12×75%=9 …………2分∴一台甲型设备的价格为12万元,一台乙型设备的价格是9万元(2)设二期工程中购买甲型设备a台,由题意有…………3分解得:…………5分由题意a为正整数,∴a=2,3,4 …………6分∴所有购买方案有三种,分别为:方案一:甲型2台,乙型6台;方案二:甲型3台,乙型5台方案三:甲型4台,乙型4台;…………7分(3)设二期工程10年用于治理污水的总费用为W万元,由题得:化简得:-2a+192 …………9分∵,∴W随a的增大而减少∴当a=4时,W最小∴按方案四甲型购买4台,乙型购买4台的总费用最少.…………10分(说明:求总费用最少也可采用逐一验算的办法)B卷(共50分)一、填空题(每小题4分,共20分)21.; 22.; 23.-2或1; 24.;25..二、解答题(本大题共3个小题,共30分)26.解:由有理数的除法法则“两数相除,同号得正”,有(1)(2)…………3分解不等式组(1),得,…………5分解不等式组(2),得无解,…………7分故分式不等式的解集为…………8分27.解:(1)…………2分(2)解:原式…………4分…………5分(3)解:…………7分…………8分…………9分检验:将代入原方程得:左边右边∴原方程的根为.…………10分28.(1),……………3分(2)……………4分∵……………6分解得:……………8分(3)①∵,∴随的增大而增大∴当时,(万元)……………9分②若要在最短时间内完成任务,令总耗时为T,则:……………11分∵,∴随的增大而增大∵,∴word版数学当时,(天)……………12分答:①安排生产A型口罩4.2万只,使总利润最大,最大为2.34万元;②要使最短时间内完成任务,应该安排A型口罩1.8万只,最短时间为7天.11 / 11。
一、选择题(每小题3分,共30分) 1.下列图形中,是中心对称图形的是( )A .B .C .D .2.下列几组数不能作为直角三角形的三边长的是( )A .3,4,5B .7,12,13C .1,1,2D .9,12,15 3.下列各数中,是无理数的是( )A .227 B .2πC .D . 4.下列式子正确的是( ) A .30900±= B .321941= C .21213>- D .5212583-=- 5.下列一次函数中,y 的值随x 的增大而减小的是( ) A .910-=x y B .x y 3.02+-= C .45-=x y D .x y )32(-=6.下列不等式一定成立的是( )A .a a 34>B .a a 2->-C .x x -<-43D .aa 23> 7.若一个多边形的每个外角都等于60°,则这个多边形是( ) A .三角形 B .四边形 C .五边形 D .六边形 8.下列说法正确的是( )A .对角线互相垂直且相等的四边形是正方形B .两条对角线相等的四边形是等腰梯形C .矩形的两条对角线相等D .两边相等的平行四边形是菱形9.已知函数m x y +=21与n x y -=2的图象如右图所示,则方程组222x y mx y n-=-⎧⎨-=⎩的解是( ) A .22x y =⎧⎨=⎩ B .12x y =⎧⎨=⎩ C .22x y =-⎧⎨=-⎩D .21x y =⎧⎨=⎩10.如果不等式ax +4<0的解集在数轴上表示如图,那么a 的值是( ) A .a >0 B .a <0 C .a =-2 D .a =2 二、填空题:(每小题3分,共l 5分)11.不等式2x -1<3的非负整数解是 . 12.设x <y ,用“<”或“>”号填空:(1)4_____4--x y (2)y x 4______4-- (3)y x 4_______4 (4)4_______4yx --. 13.一次函数321+-=x y 的图象不经过第 象限.14.已知四边形ABCD 是菱形,O 是两条对角线的交点,若AB=10, AO=6,则该菱形的面积是 .15.如图,在Rt△ABC 中,∠ACB =90°,∠A =︒40,以点C 为旋转中心,将△ABC 旋转到△C B A ''的位置,使点B 落在B A ''上,A C ' 交AB 于点D .则∠B BC '的度数是 . 三、解答题:(本大题共5个小题,共55分) 16.(本小题满分20分,每题5分) (12- (2)2163)326(-⨯-(3)解方程组134342x yx y ⎧-=⎪⎨⎪-=⎩(4)解不等式 31+y -21-y ≥61-y .17.(本小题满分7分)一个工程队原定在10天内至少要挖土600m 3,在前两天一共完成了120 m 3,由于整个工程调整工期,要求提前两天完成挖土任务。
成都七中育才学校2023—2024学年度(下)半期学业质量监测八年级数学A 卷(共100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1. 下列图形中,不是中心对称图形的是( )A. B. C. D.2. 下列从左边到右边的变形,是因式分解的是( )A. B. C. D. 3. 实数a 、b 在数轴上对应的点如图所示,则下列结论正确的是( )A. B. C. D. 4. 如图,在中,,,且,.则长为( )A. 1B. 2C. 3D. 45. 如图,已知∠1+2+∠3+∠4=280°,那么∠5度数为( )A. 70°B. 80°C. 90°D. 100°6. 先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立,这种证明方法称为反证法.已知五个正数的和等于1,用反证法证明:这五个正数的()23434m m m m --=--()()2111m m m +-=-()()22422m n m n m n +=--()224529m m m --=--0a b +<0a b +>0ab >0b a ->ABC AB AC =AD BC ⊥6BC =5AC =AD中至少有一个大于或等于,先要假设这五个正数( )A. 都大于 B. 都小于C. 没有一个小于 D. 没有一个大于7. 如图所示,在边长为1的小正方形组成的的网格中有A ,B 两个格点,在网格的格点上任取一点C (点A ,B 除外),恰能使为等腰三角形的概率是( )A. B. C. D. 8. 在直角坐标平面内,一次函数的图象如图所示,那么下列说法错误的是( )A. 当时,B. 方程的解是C. 当时,D. 不等式的解集是二、填空题(本大题共5个小题,每小题4分,共20分)9. 分解因式的结果为_________.10. 若分式的值为0,则x 的值为__________.11. 一次函数的图象经过第一、二、三象限,则m 的取值范围是___________.151515151522⨯ABC 5747372725y x =-0x >5y >-250x -=52x =0y <5x <-250x ->52x >24x y y -293x x -+()233y m x =-+12. 如图,在中,,分别以点A 、点B为圆心,大于的长为半径画弧交于两点,过这两点的直线交于点D ,连接,,,则的周长为_______cm .13. 如图,在正方形网格中,格点绕某点逆时针旋转得到格点,点A 与点,点B 与点,点C 与点是对应点,请写出旋转中心的坐标__________.三、解答题(本大题共5个小题,共48分)14. (1)解方程:;(2)解不等式组:15. 如图,在平面直角坐标系中,的三个顶点的坐标分别为,,(每个小方格都是边长为1个单位长度的正方形),请完成以下画图并填空.ABC 90C ∠=︒12AB BC AD 10cm AB =6cm AC =ACD ABC ()0180αα︒<<111A B C △1A 1B 1C 31122x x x=+--4211123x x x x +>-+⎧⎪-⎨-≤⎪⎩ABC ()2,4A -()4,2B -()1,1C -(1)将先向左平移1个单位长度,再向下平移5个单位长度,画出平移后的;(2)画出关于原点O 成中心对称的;(3)将绕点O 顺时针旋转,画出旋转后得到的,则的坐标为________.16. 如图,已知中,D 、E 、F 分别为、、边上的中点.(1)求证:四边形是平行四边形;(2)若的周长为12,求的周长.17. 小王和小明约定远足一次,他们从相距的A 、B 两地同时出发相向而行,小王从A 地出发匀速步行到B 地,小明从B 地出发匀速y 千米步行到A 地,设他们的步行时间为x 小时,小王、小明距离A 地的距离分别为千米,与x 的函数关系图象如图所示,根据图象解答下列问题:(1)求出与x 的函数关系式;(2)x 为何值时,两人相距4千米?18. 如图1,在中,,,.ABC 111A B C △ABC 222A B C △ABC 90︒333A B C △3B ABC AB AC BC AEFD ABC DEF 10km 12y y 、12y y 、12y y 、ABCD Y 60A ∠=︒4=AD 8AB =(1)请计算的面积;(2)如图2,将沿着翻折,D 点的对应点为,线段交于点M ,请计算的长度;(3)如图3,在(2)的条件下,点P 为线段上一动点,过点P 作于点N ,交的延长线于点G .在点P的长度是否为定值?如果是,请计算出这个定值;如果不是,请说明理由.B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19. 如果的值为___________.20. 若关于x 的分式方程有增根,则m 的值为__________.21. 若一个正整数k 可以写成两个正整数a 、b 的平方差的形式,即:(其中a ,b 都是正整数,且),那么我们称为正整数k 的“欢喜数对”.如:,那么正整数9的“欢喜数对”为.今年是2024年,那么正整数2024的“欢喜数对”为__________(请写出所有满足条件的“欢喜数对”).22. 如图,在锐角中,点O 为和的角平分线交点,过点O 作一条直线l ,交线段,分别于点N ,点M .点B 关于直线l 的对称点为,连接,,分别交线段于点E ,点F .连接,.若,那么的度数为____________(用含有m 的代数式表示).ABCD Y ADC △AC D ¢CD 'AB AM CM PN AC ⊥PG AD '⊥AD 'PG +a b -=222a b a b a a b ⎛⎫+-⋅ ⎪-⎝⎭21533x m x x+=---22k a b =-1a b >>(),a b 22954=-()5,4ABC CAB ∠ABC ∠AB BC B 'B M 'B N 'AC EO FO ABC m ∠=︒EOF ∠23. 如图,在平面直角坐标系中,四边形为正方形,.直线分别交线段于点E ,G .直线分别交线段OA ,BC 于点D ,F .连接DE ,FG .四边形DEFG 的面积为__________;的最小值为___________.二、解答题(本大题共3个小题,共30分)24. 随着“低碳生活、绿色出行”理念的普及,新能源汽车逐渐成为人们喜爱的交通工具.某汽车销售中心决定采购A 型和B 型两款新能源汽车,已知每辆A 型汽车进价是每辆B 型汽车进价的1.5倍,若用300万元购进A 型汽车的数量比用240万元购进B 型汽车的数量少2辆.(1)每辆A 型和B 型汽车的进价分别为多少万元?(2)该汽车销售中心购进A 型和B 型汽车共20辆,且A 型汽车数量不超过B 型汽车的数量的2倍.已知A 型汽车的售价为35万元,B 型汽车的售价为23万元.如何制定进货方案,可以使得销售中心利润最大,请求出最大利润和此时的购进方案.25 如图1,直线与x ,y 轴分别交于B ,A 两点.直线与直线交于点C.的.OABC 8OA =1:2l y x m =+AB OC ,21:3l y x n =+EF DG +1:4l y x =+2:l y =1l(1)求点A 、B 的坐标;(2)如图2,若D 为直线上一点,连接,.的面积为,求D 点坐标;(3)如图3,绕O 旋转至.在旋转一周的过程中,直线上是否存在点G ,使得点B 、E 、F 、G 四点为顶点的四边形是平行四边形?若存在,请直接写出G 点坐标;若不存在,请说明理由.26. 探究式学习是新课程倡导的重要学习方式,某兴趣小组拟做以下探究,在中,,,,D 为线段上一点.【初步感知】(1)如图1,连接,将绕点C 逆时针旋转至.连接,求度数;【深入探究】(2)如图2,将沿折叠至.射线与射线交于点F .若,求的面积;【拓展应用】(3)如图3,,连接.G 为线段AC 上一点,作点G 关于直线对称点H ,点G 绕B 顺时针旋转至点K ,连接.当时,求的长度.的的2l AD BD ABD△16AOB FOE V 2l Rt ABC △90ACB ∠=︒=45ABC ∠︒AB =AB CD CD 90︒CE ,AE DE BAE ∠ACD CD ECD CD BE 3FE EB =CEF △BD BC =CD CD 45︒HK HB ,HK HB =CG。
成都七中育才学校八年级数学半期试卷A卷(共100分)第I卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项.其中只有一项符合题目要求,答案涂在答题卡上)1. 如图所示,其中是中心对称图形的是()A B C D2.下列各式由左边到右边的变形中,是分解因式的为()A、(a+3)(a-3)=a2-9B、x2+x-5=(x-2)(x+3)+1C、x2+1=x(x+)D、a2b+ab2=ab(a+b)3. 已知a>b, c为任意实数,则下列不等式中总是成立的是()A.a+c<b+cB. ac<bcC.ac>bcD.a-c>b-c4. 已知等腰三角形的两边长分别为8㎝、4㎝,则该等腰三角形的周长是()A.12㎝B.16㎝ C.20㎝D.16㎝或20㎝5.下列各式中能用完全平方公式进行因式分解的是()A.x2+x+1 B.x2+2x﹣1 C.x2﹣1 D.x2﹣6x+96. 如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=20°,则∠B的度数是()A.70° B.65°C.60° D.55°7. 如果把分式yxx23-中的 x,y都扩大7倍,那么分式的值()A、扩大7倍B、扩大14倍C、扩大21倍D、不变(6题)(8题)(10题)8.如图,函数y1=k1x和y2=k2x+4的图像相交于点)3,23(A,则不等式k1x<k2x+4的解集为()A. x< B. x<3 C. x> D. x>39. 若多项式24x mx++能用完全平方公式分解因式,则m的值可以是()A.4B. 4± C.2 D. 2±x1()⎪⎩⎪⎨⎧+<-≤+--131512153122x x x x )(10. 如图,O 是△ABC 的两边垂直平分线的交点,∠BAC=70°,则∠BOC= ( ) A 、120° B 、125° C 、130° D 、140°第II 卷(非选择题,共70分)二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上) 11.满足6.2->x 的负整数解是 .12. 点P (-2,-3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为__________. 13、化简:11222-+-a a a = .14. 如图所示,在△ABC 中,∠B=90°,AB=3,AC=5,将△ABC 折叠,使点C 与点A 重合,折痕为DE ,则△ABE 的周长为 .(14题) 三、解答题(本大题共6个小题,共54分。
最新人教版八年级(下)期中模拟数学试卷及答案一、选择题(本大题共10小题,每小题3分,共30分。
每小题都有四个选项,其中有且只有一个选项正确)1.若二次根式a―2有意义,则a的取值范围是()A.a≥0 B.a≥2 C.a>2 D.a≠22.根据下列条件,不能判定四边形是平行四边形的是()A.一组对边平行且相等的四边形 B.两组对边分别相等的四边形C.对角线相等的四边形 D.对角线互相平分的四边形3.在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,下列结论中不正确的是( ) A.如果∠A﹣∠B=∠C,那么△ABC是直角三角形B.如果a2=b﹣2c2,那么△ABC是直角三角形且∠C=90°C.如果∠A:∠B:∠C=1:3:2,那么△ABC是直角三角形D.如果a2:b2:c2=9:16:25,那么△ABC是直角三角形4.如图,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定四边形ABCD为平行四边形的是()A.AB∥CD,AD∥BC ;B.OA=OC,OB=OD;C.AD=BC,AB∥CD;D.AB=CD,AD=BC5.如图,在周长为20cm的▱ABCD中,AB≠AD,对角线AC、BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为()A.4cm B.6cm C.8cm D.10cm6.化简(3―2)2018•(3+2)2019的结果为()A.―1 B.3+2 C.3―2 D.―3―27.实数a、b在数轴上对应的位置如图,则=()A.b﹣a B.2﹣a﹣b C.a﹣b D.2+a﹣b8.如图,在直角坐标系中,将矩形OABC沿OB对折,使点A落在A1处,已知OA=,AB=1,则点A 1的坐标是( )A .()B .()C .()D .()9.如图,在△ABC 中,∠C=90°,AC=2,D 在BC 边上,∠ADC=2∠B ,AD=,BC 长为 ( )A .﹣1 B .+1 C .﹣1 D .+110.如图,DE 是△ABC 的中线,F 是DE 的中点,CF 的延长线交AB 于点G ,若△CEF 的面积为18cm 2,则SDGF 等于( )二、填空题(本大题共6小题,每小题3分,共18分) 11.计算的结果是 .12.如图,已知正方形ABCD 的边长为4,对角线AC 与BD 相交于点O ,点E 在DC 边的延长线上.若∠CAE=15°,则CE= .13.在ABC ∆中,=90C ∠︒,分别以AB 、AC 为边向外作正方形,面积分别记为12,S S .若91621==S S ,,则BC=______.14.如图,在Rt △ABC 中,∠ACB=90°,点D 、E 、F 分别是AB 、AC 、BC 中点,若CD=5,则EF 长为 .15.如图,ABCD 是对角线互相垂直的四边形,且OB=OD ,请你添加一个适当的条件 ,使ABCD 成为菱形(只需添加一个即可)16. a 的取值范围为 . 三、解答题(本大题共9小题,共72分) 17.计算:(1)(3+)(3﹣) (2)(﹣3)-2+﹣|1﹣2|﹣(﹣3)0(32(1.-18.在某校组织的“交通安全宣传教育月”活动中,八年级数学兴趣小组的同学进行了如下的课外实践活动.具体内容如下:在一段笔直的公路上选取两点A 、B ,在公路另一侧的开阔地带选取一观测点C ,在C 处测得点A 位于C 点的南偏西45°方向,且距离为100米,又测得点B 位于C 点的南偏东60°方向.已知该路段为乡村公路,限速为60千米/时,兴趣小组在观察中测得一辆小轿车经过该路段用时13秒,请你帮助他们算一算,这辆小车是否超速?(参考数据:≈1.41,≈1.73,计算结果保留两位小数)19.如图,在 ABCD中,点E,F分别是边AB,CD的中点,(1)求证:△CFB≌△AED;(2)若∠ADB=90°,判断四边形BFDE的形状,并说明理由;20.如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM ⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.21.如图,在□ABCD中,E是BC的中点,连接AE并延长交DC的延长线于点F.(1)试说明:AB=CF;(2)连接DE,若AD=2AB.试说明:DE⊥AF.22. 若1x =+,1y =,求代数式22x y -的值。
成都七中初中学校2024-2024学年下2025届期中质量检测数 学(满分150分,120分钟完成)A 卷(满分100分)一、选择题(每小题4分,共32分)1. 以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是( )A. B. C. D.【答案】B【解析】【分析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合.【详解】解:A 、不是中心对称图形,不符合题意;B 、是中心对称图形,符合题意;C 、不是中心对称图形,不符合题意;D 、不是中心对称图形,不符合题意;故选:B .【点睛】本题考查了中心对称图形,解题的关键是根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合.2. 下列等式从左边到右边的变形,属于因式分解的是( )A. B. C. D. 【答案】C【解析】【分析】根据因式分解是把一个多项式化为几个整式的积的形式,可得答案.【详解】A 、,原结果有误,故此选项不符合题意;B 、是整式的乘法,不是因式分解,故此选项不符合题意;C 、把一个多项式化为几个整式的积的形式,故此选项符合题意;()ax ay a a x y ++=+()()2224x x x -+=-()22693m m m -+=-()()2211x y x y x y -+=+-+()1ax ay a a x y ++=++()()2224x x x -+=-()22693m m m -+=-D 、没把一个多项式化为几个整式积的形式,不是因式分解,故此选项不符合题意;故选:C .【点睛】此题考查因式分解的意义,解题关键在于因式分解是把一个多项式转化成几个整式积的形式.3. 若,则下列结论不正确的是( )A. B. C. D. 【答案】D【解析】【分析】根据不等式的性质逐项判断即得答案.【详解】解:A 、若,则,所以本选项变形正确,不符合题意;B 、若,则,所以本选项变形正确,不符合题意;C 、若,则,所以本选项变形正确,不符合题意;D 、若,则,所以本选项变形错误,符合题意.故选:D .【点睛】本题考查了不等式的性质,属于基础题型,熟记不等式的性质是解题的关键.4. 在数轴上表示不等式组的解集,正确的是( )A.B.C.D.【答案】B【解析】【分析】根据一元一次不等式解集在数轴上的表示方法进行判断即可.【详解】解:x ≥﹣2在数轴上表示时用实心点,而x <3则用空心点,的()()2211x y x y x y -+=+-+x y <22x y<22x y -<-22x y <22x y -<-x y <22x y <x y <22x y -<-x y <22x y <x y <22x y ->-23x x ≥-⎧⎨<⎩因此选项B 中的表示方法符合题意,故选B .【点睛】本题主要考查了在数轴上表示不等式的解集,解题的关键在于能够熟练掌握在数轴上表示等式的解集.5. 在平面直角坐标系中,点关于原点对称的点的坐标是( )A. B. C. D. 【答案】D【解析】【分析】本题考查了求关于原点对称的点的坐标,关于原点对称的两点,其横、纵坐标均互为相反数,据此即可求解.【详解】解:∵关于原点对称的两点,其横、纵坐标均互为相反数,∴关于原点对称的点的坐标是 故选:D .6. 三条公路将A ,B ,C 三个村庄连成一个如图的三角形区域,如果在这个区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,那么这个集贸市场应建的位置是( )A. 三条高线的交点B. 三条中线的交点C. 三条角平分线的交点D. 三边垂直平分线的交点【答案】C【解析】【分析】本题主要考查了角平分线上的点到角的两边的距离相等的性质.根据角平分线上的点到角的两边的距离相等解答即可.【详解】解:在这个区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,根据角平分线的性质,集贸市场应建在、、的角平分线的交点处.故选:C .7. 若二次三项式可分解为,则的值为( )A. 1B. 2C. -2D. -1()3,2()2,3--()3,2()3,2-()3,2--()3,2()3,2--A ∠B ∠C ∠26x mx +-()()32x x -+m【答案】D【解析】【分析】先根据多项式乘以多项式法则进行计算,再根据已知条件得出答案即可.【详解】解:(x ﹣3)(x +2)=x 2+2x ﹣3x ﹣6=x 2﹣x ﹣6,∵二次三项式x 2+mx ﹣6可分解为(x ﹣3)(x +2),∴m =﹣1,故选:D .【点睛】本题考查了多项式乘以多项式法则和分解因式,注意:分解因式的方法有:提取公因式法,公式法,十字相乘法,分组分解法等.8. 直线与直线在同一平面直角坐标系中的位置关系如图所示,则关于的不等式的解集为()A. B. C. D. 【答案】A【解析】【分析】结合函数图象,写出直线在直线上方所对应的自变量的范围即可.【详解】解∶直线与直线的交点的横坐标为2,当时,,关于的不等式的解集为.故选:A .【点睛】本题考查了一次函数与一元一次不等式,熟练掌握图象法解不等式,是解题的关键.二、填空题(每小题4分,共20分)111:l y k x =222:l y k x b =+x 12k x k x b >+2x >2x <3x >3x <1l 2l 111:l y k x =222:l y k x b =+∴2x >12y y >∴x 12k x k x b >+2x >9. 分解因式: _______________.【答案】【解析】【分析】先提取公因数m ,然后再运用平方差公式因式分解即可;灵活运用提取公因式法和公式法因式分解成为解答本题的关键.【详解】解:.故答案为.10. 次知识竞赛中共20道题,对于每一道题,答对了得10分,答错了或不答扣5分,选手至少要答对________道题,其得分才不低于95分.【答案】13【解析】【分析】可设答对x 道题,则答错或不答的题目就有(20-x )道,再根据得分才会不少于95分,列出不等式,解出x 的取值即可.【详解】解:设答对x 道,则答错或不答的题目就有(20-x )道.即10x -5(20-x )≥95去括号:10x -100+5x ≥95∴15x ≥195x ≥13因此选手至少要答对13道.故答案为:13.【点睛】本题考查的是一元一次不等式的运用,解此类题目时常常要设出未知数再根据题意列出不等式解题即可.11. 如图,一块长方形草坪的长为5米,宽为3米,在草坪中间,有一条处处为宽的弯曲小路,则这块草地的面积为_____.【答案】【解析】【分析】本题考查了平移的实际应用,有理数的运算,根据草地的面积长方形草坪的面积弯曲小路的面积即可求解.34m m -=()()22m m m +-()()()324422m m m m m m m -=-=+-()()22m m m +-1m 2m 12=-【详解】解:这块草地的面积为:,故答案为:.12. 如图,在△中,,的平分线交于,若,,则为_____.【答案】【解析】【分析】本题考查了角平分线性质定理:角平分线上的点到角两边的距离相等,作,根据求出,然后根据角平分线的性质定理即可求解.【详解】解:作,如图所示:则,∵,,∴∴∵平分,∴故答案为:.的533112⨯-⨯=2m 12ABC 90C ∠=︒A ∠BC D 222cm ABD S = 10cm AB =CD cm 225DE AB ⊥12ABD S AB DE =⨯⨯ DE DE AB ⊥12ABD S AB DE =⨯⨯ 222cm ABD S = 10cm AB =122102DE =⨯⨯22cm 5DE =AD CAB ∠90ACD AED ∠=∠=︒22cm 5CD DE ==22513. 如图,在中,,分别以点A 和点C为圆心,大于的长为半径画弧,两弧相交于点M ,N ,作直线,交于点D ,连接,则的度数为________.【答案】##度【解析】【分析】本题主要考查了三角形内角和定理,等边对等角,线段垂直平分线的性质和尺规作图,先由三角形内角和为180度求出,由作图方法可知垂直平分,则,可得,则.【详解】解:∵在中,,∴,由作图方法可知垂直平分,∴,∴,∴,故答案为:.三、解答题(共48分)14. 因式分解:(1)(2)【答案】(1)(2)【解析】【分析】本题考查因式分解,熟练掌握提取公因式法和公式法是解题的关键.(1)先提取公因式y ,再利用完全平方公式因式分解即可;(2)利用平方差公式和完全平方公式进行因式分解即可.ABC 7030B C ∠=︒∠=︒,12AC MN BC AD BAD ∠50︒5080BAC ∠=︒MN AC AD CD =30DAC C ∠=∠=︒50BAD BAC DAC =-=︒∠∠∠ABC 7030B C ∠=︒∠=︒,18080BAC C B ∠=︒-∠-∠=︒MN AC AD CD =30DAC C ∠=∠=︒50BAD BAC DAC =-=︒∠∠∠50︒2232x y xy y -+()22214y y +-()2-y x y ()()2211y y +-【小问1详解】解:==;【小问2详解】解:==.15. 解不等式(组)(1)(2)【答案】(1)(2)【解析】【分析】本题考查的是解一元一次不等式(组),正确的计算是解题关键.(1)去括号、移项、合并同类项即可求解;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【小问1详解】解:,,【小问2详解】解:解①得:;解②得:;∴原不等式组的解集为:16. 如图,在平面直角坐标系中,每个小方格都是边长为1个单位的正方形,的顶点均在格点上,2232x y xy y -+()222y x xy y-+()2-y x y ()22214y y +-()()221221y y y y ++-+()()2211y y +-()()51332x x -≤--()512125131x x x x +⎧-≤⎪⎨⎪-<+⎩①②2x ≥-32x -≤<55336x x -≤-+24x -≤2x ≥-3x ≥-2x <32x -≤<ABC ∆点B 的坐标为(1,0).(1)画出向左平移4个单位所得的;(2)画出将绕点B 按顺时针旋转90°所得的(点A 、C 分别对应点A 2、C 2);(3)线段 的长度为 .【答案】(1)见解析(2)见解析(3【解析】【分析】(1)根据平移变换的性质分别作出A ,B ,C 的对应点A 1,B 1,C 1即可.(2)根据旋转变换的性质分别作出A ,C 的对应点A 2,C 2即可.(3)利用勾股定理求解即可.【小问1详解】ABC ∆111A B C ∆ABC ∆222A B C ∆12B C如图,即为所求.【小问2详解】如图,即为所求.小问3详解】线段,.【点睛】本题考查旋转变换,解题的关键是熟练掌握旋转变换的性质,正确作出图形.17. 如图,在平面直角坐标系中,,直线交轴于,过点A 作交轴于点D .(1)求直线和直线的关系式;(2)点M 在直线上,且与的面积相等,求点M 的坐标.【答案】(1)直线的解析式为:;直线的解析式为: 【111A B C ∆222A B C ∆12B C =(3,0),(1,4)A B -BC x ()4,0AD BC ∥y BC AD AD ABM ABO AD 443y x =--BC 41633y x =-+(2)或【解析】【分析】本题考查了一次函数的解析式求解、平行线间的距离处处相等等知识点,掌握待定系数法是解题关键.(1)设直线的解析式为:,将两点代入即可求解;设直线的解析式为:,将点代入即可求解;(2)求出直线的解析式,过点作的平行线,则点M 是直线与直线的交点,据此即可求解;【小问1详解】解:设直线的解析式为:,则,解得:,∴直线的解析式为:,∵∴设直线的解析式为:,则,解得:∴直线的解析式为:,【小问2详解】解:如图所示:过点作的平行线,1212,77⎛⎫-- ⎪⎝⎭3012,77⎛⎫- ⎪⎝⎭BC y kx b =+,B C AD 43y x b '=-+A AB O AB l AD l BC y kx b =+440k b k b +=⎧⎨+=⎩16343b k ⎧=⎪⎪⎨⎪=-⎪⎩BC 41633y x =-+AD BC∥AD 43y x b '=-+()4033b =-⨯+'-4b '=-AD 443y x =--O AB l设直线的解析式为:,则,解得:,∴直线的解析式为:,则直线的解析式为:,∵点M 在直线上,且与的面积相等,∴点M 是直线与直线的交点则,解得:∴点关于点的对称点为:综上所述:点M 的坐标为或18. (1)如图1,在四边形中,,,连接,探究线段,,之间的数量关系.小芳同学探究此问题的思路是:过点D 作,交延长线于点E ,从而得出结论:,请用上述方法证明:;(2)如图2,在四边形中,,,若,,求AB y mx n =+304m n m n -+=⎧⎨+=⎩13m n =⎧⎨=⎩AB 3y x =+l y x =AD ABM ABO AD l 443y x y x =⎧⎪⎨=--⎪⎩127127x y ⎧=-⎪⎪⎨⎪=-⎪⎩1212,77M ⎛⎫-- ⎪⎝⎭1212,77M ⎛⎫-- ⎪⎝⎭()3,0A -3012,77M ⎛'⎫- ⎪⎝⎭1212,77⎛⎫-- ⎪⎝⎭3012,77⎛⎫- ⎪⎝⎭ACBD 90ACB ADB ∠=∠=︒AD BD =CD AC BC CD DE CD ⊥CA AC BC +=AC BC +=ACDB 90ACB ADB ∠=∠=︒AD BD =3AC =5BC =CD的长;(3)如图3,在中,,,点D 为外一点,且,点P ,Q 分别为的中点,连接,求的长.【答案】(1)见解析;(2;(3)【解析】【分析】(1)证得是等腰直角三角形即可求证;(2)作,证即可求解;(3)连接作,结合(1)得证明过程可得,推出,即可求解;【详解】(1)证明:由题意得:∴∵∴∵∴∴∴是等腰直角三角形∴(2)解:作,如图所示:ABC 90ACB ∠=︒6AC BC ==ABC 63CD AD ==,AB AD ,PQ PQ PQ =AED BCD ≌△△CDE DF CD ⊥DAC DBF ≌CP CQ 、,PM PQ ⊥AQP CMP V V ≌AQ CQ +=90,90CDE ADC ADE ADB ADC BDC ∠=∠+∠=︒∠=∠+∠=︒ADE BDC∠=∠90AED DCE BCD DCE ∠+∠=∠+∠=︒AED BCD∠=∠AD BD=AED BCD≌△△,DE CD AE BC==CDE AC BC AC AE CE +=+==DF CD ⊥由题意得:∴∵,∴∵∴∴∴是等腰直角三角形∵,,∴,∴(3)解:连接作,如图所示:∵,,点P 为的中点,∴∵点Q 为的中点,∴由(1)可得:∴∴是等腰直角三角形∴90,90CDF ADC ADF ADB ADF BDF ∠=∠+∠=︒∠=∠+∠=︒ADC BDF∠=∠90DAC AOC DBF BOD ∠+∠=∠+∠=︒AOC BOD∠=∠DAC DBF∠=∠AD BD=DAC DBF≌,FD CD AC BF==CDF 3AC =5BC =3BF AC ==2CF BC BF =-=CD ==CP CQ 、,PM PQ ⊥90ACB ∠=︒AC BC =AB ,90PA PC APC =∠=︒6AC CD ==,AD 90AQC ∠=︒AQP CMPV V ≌,AQ CM QP MP==QPMAQ CQ CM CQ QM +=+==∵∴∴解得:【点睛】本题考查了全等三角形的常见模型—旋转模型,涉及了等腰直角三角形的判定与性质、勾股定理等知识点,正确作出辅助线,学会举一反三是解题关键.B 卷(共50分)一、选择题(每小题4分,共20分)19. 已知,,那么_______.【答案】【解析】【分析】本题考查了求代数式的值,将变形为,再代入值进行计算即可,采用整体代入的思想是解此题的关键.【详解】解:,,,故答案为:.20. 如图,在△ABC 中,AB =AC ,BD 平分∠ABC ,交AC 于点D .若BD =BC ,则∠A =________度.【答案】36【解析】【详解】分析:题中相等的边较多,且都是在同一个三角形中,因为求“角”的度数,将“等边”转化为有关的“等角”,充分运用“等边对等角”这一性质,再联系三角形内角和为180°求解此题.13,622AQ AD CD ===CQ ==32=PQ =3m n +=2mn =22m n mn +=622m n mn +()mn m n +3m n += 2mn =()22236m n mn mn m n ∴+=+=⨯=6详解:∵BD=BC , ∴∠C=∠BDC ,∵AB=AC , ∴∠ABC=∠C ,∵BD 平分∠ABC , ∴∠ABD=∠CBD , 又∵∠BDC=∠A+∠ABD ,∴∠C=∠BDC=2∠A , 又∵∠A+∠ABC+∠C=180°, ∴∠A+2∠C=180°把∠C=2∠A 代入等式,得∠A+2×2∠A=180°,解得∠A=36°.点睛:本题反复运用了“等边对等角”,将已知的等边转化为有关角的关系,并联系三角形的内角和及三角形一个外角等于与它不相邻的两个内角的和的性质求解有关角的度数问题.21. 关于x 的不等式组恰好有3个整数解,则a 的取值范围是______.【答案】【解析】【分析】先求出不等式组的解集,根据不等式组恰好有3个整数解,列式求解即可.【详解】解:,由①,得:,由②,得:,∵不等式组恰好有3个整数解,∴不等式组的解集为:,整数解为:,∴,∴;故答案为:.【点睛】本题考查根据不等式组的解集求参数的取值范围.正确的求出不等式组的解集,是解题的关键.22. 已知点位于第二象限,并且,,均为整数,则满足条件的点的个数有_________个.【答案】110【解析】【分析】根据第二象限内的点的横坐标小于零,纵坐标大于零,可得不等式,根据解不等式,即可得出答案.【详解】解:由点在第二象限,得,,6302x x a -<⎧⎨≤⎩1012a ≤<6302x x a -<⎧⎨≤⎩①②2x >2a x ≤22a x <≤3,4,5562a ≤<1012a ≤<1012a ≤<(),P ab 223a b >-a b P (,)P a b a<00b >又因为,,解得:,,,,均为整数,;当时,,则取不到整数,有0种情况;当时,,则,有2种情况;当时,,则,有4种情况;当时,,则,有6种情况;当时,,则,有8种情况;当时,,则,有10种情况;当时,,则,有12种情况;当时,,则,有14种情况;当时,,则,有16种情况;当时,,则,有18种情况;当时,,则,有20种情况;故共有:,则满足条件的点的个数有110,故答案为:110.223a b >-2230b ∴-<1112b <0b > 10112b <<a b 1,2,3,4,5,6,7,8,9,10,11b ∴=11b =10a -<<10b =30a -<<2,1a =--9b =50a -<<4,3,2,1a =----8b =70a -<<6,5,4,3,2,1a =------7b =90a -<<8,7,6,5,4,3,2,1a =--------6b =110a -<<10,98,7,6,5,4,3,2,1a =----------5b =130a -<<12,11,10,98,7,6,5,4,3,2,1a =------------4b =150a -<<14,13,12,11,10,98,7,6,5,4,3,2,1a =--------------3b =170a -<<16,15,14,13,12,11,10,98,7,6,5,4,3,2,1a =----------------2b =190a -<<18,17,16,15,14,13,12,11,10,98,7,6,5,4,3,2,1a =------------------1b =210a -<<20,19,18,17,16,15,14,13,12,11,10,98,7,6,5,4,3,2,1a =--------------------02468101214161820110++++++++++=P【点睛】此题考查了解一元一次不等式,以及点的坐标,解题的关键是熟练掌握不等式的解法.23. 如图,在矩形中,,点E 为上一点,且,点F 为边上一动点,连接,过点A 作于点G ,连接,则最小值为______,连接,将绕点E 顺时针旋转,得到,在点F 运动的过程中,的最小值为_______.【答案】①. ## ②. ##【解析】【分析】如图所示,取中点O ,连接,则由直角三角形的性质可得,再由矩形的性质和勾股定理得到,再由,可得当三点共线,且点G 在线段上时,有最小值,最小值为;如图所示,将线段绕点E 顺时针旋转得到,连接,证明,得到;求出,,进而推出,则H 在上时,有最小值,最小值为.【详解】解:如图所示,取中点O ,连接,∵,∴,∵点O 为中点,∴,∵四边形是矩形,∴,∴,∵,的ABCD 46AB BC ==,BC 2BE =AD BF AG BF ⊥CG CG EG EG 45︒EHCH 2-2-+2-2-+AB OG OC ,122OG OB AB ===OC ==CG OC OG ≤-O C G 、、OC CG 2-OE 45︒ME MH MC ,()SAS OEG MEH ≌2MH OG ==45OEB ∠=︒ME OE ==90MEC ∠=︒CM ==CM CH 2-AB OG OC ,AG BF ⊥90AGB ∠=︒AB 122OG OB AB ===ABCD 90ABC ∠=︒OC ==CG OC OG ≤-∴当三点共线,且点G 在线段上时,有最小值,最小值为;如图所示,将线段绕点E 顺时针旋转得到,连接,由旋转的性质可得,∴,∴,∴;∵,∴,,∴,∴,∵,∴同理可得当M 、H 、C 三点共线,且点H 在上时,有最小值,最小值为,故答案为:;.【点睛】本题主要考查了矩形的性质,全等三角形的性质与判定,旋转的性质,勾股定理,直角三角形的性质,等腰直角三角形的性质等等,正确作出辅助线构造全等三角形和直角三角形是解题的关键.二、解答题(共30分)24. 为保护环境,我市某公交公司计划购买型和型两种环保节能公交车共10辆.若购买型公交车1辆,型公交车2辆,共需400万元;若购买型公交车3辆,型公交车2辆,共需600万元.(1)求购买型和型公交车每辆各需多少万元.(2)经测算,在两种公交车均购买的前提下,该公司购买公交车的总费用不得超过1150万元,则该公司有哪几种购车方案?(3)在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?【答案】(1)购买型公交车每辆需100万元,购买型公交车每辆需150万元O C G 、、OC CG 2OE 45︒ME MH MC ,45EO EM EG EH OEM GEH ====︒,,∠∠OEG MEH =∠∠()SAS OEG MEH ≌2MH OG ==290OB BE OBE ===︒,∠45OEB ∠=︒ME OE ===BEM 90∠=︒90MEC ∠=︒4CE BC BE =-=CM ==CM CH 2-22-A B A B A B A B A B(2)三种购车方案:购买型公交车7辆,购买型公交车3辆;购买型公交车8辆,购买型公交车2辆;购买型公交车9辆,购买型公交车1辆(3)购买型公交车9辆,购买型公交车1辆总费用最少,最少总费用是1050万元【解析】【分析】(1)设购买型公交车每辆需万元,购买型公交车每辆需万元,根据题意列二元一次方程组并求解即可;(2)设购买型公交车辆,则购买型公交车辆,根据题意“总费用不得超过1150万元”可得,求解并讨论即可;(3)分别求出各种购车方案总费用,即可作出判断.【小问1详解】解:设购买型公交车每辆需万元,购买型公交车每辆需万元,根据题意,可得,解得,所以,购买型公交车每辆需100万元,购买型公交车每辆需150万元;【小问2详解】在两种公交车均购买的前提下,可设购买型公交车辆,则购买型公交车辆,则有,解得,又且m 为整数,所以,8,9,则,2,1,所以,可有三种方案:购买型公交车7辆,购买型公交车3辆;购买型公交车8辆,购买型公交车2辆;购买型公交车9辆,购买型公交车1辆;【小问3详解】方案①:购买型公交车7辆,购买型公交车3辆,总费用万元;方案②:购买型公交车8辆,购买型公交车2辆,A B A B A B A B A x B y A m B (10)m -100150(10)1150m m +-≤A x B y 240032600x y x y +=⎧⎨+=⎩100150x y =⎧⎨=⎩A B A m B (10)m -100150(10)1150m m +-≤7m ≥10m <7m =(10)3m -=A B A B A B A B 100715031150⨯+⨯=A B总费用万元;方案③:购买型公交车9辆,购买型公交车1辆,总费用万元.所以,购买型公交车9辆,购买型公交车1辆总费用最少,最少总费用是1050万元.【点睛】本题主要考查了二元一次方程组以及一元一次不等式的应用,理解题意,弄清数量关系是解题关键.25. 如图,点P 为正方形的边上的一个动点,连接,点D 与点E 关于直线对称,连接,射线与射线交于点,连接.(1)当时,求的度数;(2)i )点P 在运动过程中,的度数是否发生变化?如果不变,请求出它的度数,如果改变,请说明理由;ii )求证:;(3)若P 从点C 运动到点B 时,求点F 运动路径的长度.【答案】(1)(2)i )不变化,且为;ii )证明见详解(3)【解析】【分析】(1)先根据正方形的性质得到,再根据等腰三角形的性质及三角形内角和定理求得,即可求解;(2)i :设,则,再根据等腰三角形的性质及三角形内角和定理求得,最后由三角形内角和得;ii :过点A 作于点M ,过点C 作于点N ,先证明“一线三等角”,100815021100⨯+⨯=A B 100915011050⨯+⨯=A B ABCD BC AP AP AE EB AP F CF 65DAF ∠=︒AFE ∠AFE ∠BE =AB =45︒45︒32π25PAB ∠=︒70E ABE ∠=∠=︒BAP x ∠=902BAE x ∠=︒-45E ABE x ∠=∠=︒+45AFE ∠=︒AM BF ⊥CN BF ⊥AMB BNC ≌△△再根据全等三角形的性质及勾股定理即可求证;(3)连接,取中点为点O ,连接,,证明出,继而可得点F 在以点O 为圆心,为半径的弧上运动,即路径为,再由弧长公式即可求解.【小问1详解】解:点D 与点E 关于直线对称,,,∵四边形为正方形,∴,,∴,,,,;【小问2详解】i 解:不变化,,设,,线段与关于直线对称,,,,,;ii 证明:如图2,过点A 作于点M ,过点C 作于点N ,∴,AC AC OF OB 90AFC ∠=︒OF BCAP 65DAP EAP ∴∠=∠=︒AD AE =ABCD 90DAB ∠=︒AB AD =906525PAB ∠=︒-︒=︒652540BAE ∴∠=︒-︒=︒AB AE =18040702E ABE ︒-︒∴∠=∠==︒180706545AFE ∴∠=︒-︒-︒=︒45AFE ∠=︒BAP x ∠=90DAP x ∴∠=︒- AE AD AP 90DAP EAP x ∴∠=∠=︒-902BAE x ∴∠=︒-AB AE = ()180902452x E ABE x ︒-︒-∴∠=∠==︒+180(90)(45)45AFE x x ∴∠=︒-︒--︒+=︒AM BF ⊥CN BF ⊥90AMB N ∠=∠=︒四边形是正方形,∴,∴,∴,∴,∴,∵,∴为等腰直角三角形,∴,∴,∴,∴,∵,∴同(1)可得,∵,∴,设,则,,∴;【小问3详解】ABCD ,90BC AB ABC =∠=︒139023∠+∠=︒=∠+∠12∠=∠AMB BNC ≌△△,AM BN BM CN ==45,90AFE AMF Ð=°Ð=°AMF AM MF =MF BN =BM NF =CN NF =90N ∠=︒CF =,AB AE AM BE =⊥BM M E =BM ME CN NF x ====CF =2BE x=BE =解:如图3,连接,取中点为点O ,连接,,由ii 得,而,∴,∵O 为中点,∴,∴点F 在以点O 为圆心,为半径的弧上运动,∵点P 从点C 运动到点B 时,∴点F 运动路径为,∵四边形为正方形,∴,,∵,∴同上可得,∴点P 从点C 运动到点B 时,点F运动路径长度为.【点睛】本题是四边形综合题,考查了正方形的性质,等腰三角形的性质,三角形内角和定理,轴对称的性质,全等三角形的判定和性质,弧长公式,正确添加辅助线,灵活运用这些性质解决问题是本题的关键.26. 如图,在平面直角坐标系中,直线与轴交于点,直线与轴交于AC AC OF OB 45CFN ∠=︒45AFE ∠=︒90AFC ∠=︒AC OF OA OC ==OF BCABCD OC OB =90COB ∠=︒AB =3OB BC ==90331802ππ⨯=17:424l y x =-+y A 23:64l y x =-y点,与直线交于点.(1)求点C 的坐标及的长;(2)直线分别交直线,于点,,直线与直线,交于点,,若,求的值;(3)在(2)的条件下,将△沿射线的方向以每秒个单位的长度匀速平移,设移动时间为秒.在△移动的过程中,点到直线,的距离相等,请求出此时点的坐标.【答案】(1), (2)(3)或【解析】【分析】(1)根据解析式分别求出两点的坐标即可;(2)由题意得,进一步可得,,即可求解;(3)由题意得,可知点在直线上运动;根据题意可推出点在的角平分线上,结合进而可得,据此即可求解;【小问1详解】解:,令,则;∴B 1l C AC ()0x m m =<1l 2l M N 4y =-MN 2l E F 98ME EF =m NEF BC 5t ()0t >NEF E 1l 2l E 486,55C ⎛⎫⎪⎝⎭10AC =6-26259125,A C 73,4,,6244M m m N m m ⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭(),4E m -8,43F ⎛⎫- ⎪⎝⎭()64,43E t t -+-+E 3142y x =+E ACB ∠2e l ∥DC DE =17:424l y x =-+0x =4y =()0,4A由得:∴【小问2详解】解:∵直线分别交直线,于点,,∴∵直线与直线,交于点,,∴令,解得:∴∴∵,∴,解得:【小问3详解】解:由(2)得: 由可知:当△沿射线的方向以每秒个单位的长度匀速平移,秒后,,7424364y x y x ⎧=-+⎪⎪⎨⎪=-⎪⎩48565x y ⎧=⎪⎪⎨⎪=⎪⎩486,55C ⎛⎫ ⎪⎝⎭10AC ==()0x m m =<1l 2l M N 73,4,,6244M m m N m m ⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭4y =-MN 2l E F (),4E m -3644x -=-83x =8,43F ⎛⎫- ⎪⎝⎭()778448,24243ME m m EF m =-+--=-+=-98ME EF =88378924m m -+=-6m =-()6,4E --23:64l y x =-NEF BC 5t ()64,43E t t -+-+∵故点在直线:上运动易知:∵点到直线,的距离相等,∴点在角平分线上∴∵∴∴∴由得:∴解得:或的()31436442t t -+=⨯-++E e 3142y x =+2e l ∥E 1l 2l E ACB ∠ACE BCE∠=∠2e l ∥DCE BCE∠=∠DCE DEC∠=∠DC DE=31427424y x y x ⎧=+⎪⎪⎨⎪=-+⎪⎩842515150x y ⎧=⎪⎪⎨⎪=⎪⎩151,842550D ⎛⎫ ⎪⎝⎭=2625t =9125【点睛】本题考查了一次函数与几何综合问题,涉及了一次函数的解析式求解、角平分线的判定定理、勾股定理等知识点,综合性较强.。
2022-2023学年四川省成都七中育才学校八年级(下)期中数学试卷1. 下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.2. 如果,那么下列各式中正确的是( )A. B. C. D.3. 下列各式从左到右的变形中,是因式分解的是( )A. B.C. D.4. 点向左平移3个单位,向上平移2个单位到点Q,则点Q的坐标为( )A. B. C. D.5. 平行四边形ABCD中,,则的度数为( )A. B. C. D.6. 下列说法错误的是( )A. 对角线互相平分的四边形是平行四边形B. 角平分线上的点到角的两边的距离相等C. 两个全等的三角形,一定成中心对称D. 等边三角形是轴对称图形,且有三条对称轴7. 不等式组的解集在数轴上表示为( )A. B.C. D.8.如图,在等腰直角三角形ABC中,,将沿BC方向平移得到,若,,则( )A. B. C. D.9. 分式有意义则x的取值范围是______ .10. 化分式方程为整式方程时,方程两边同乘的最简公分母为______ .11. 关于x的二次三项式因式分解的结果是,则______.12. 如图,在正方形网格中,绕某点旋转一定的角度得到,则旋转中心是点______ 请从点O、Q、P、M中选择13. 如图,在中,分别以点A、C为圆心,大于长为E,若半径画弧,两弧相交于点M、N,作直线MN分别交BC、AC于点D、,的周长为13cm,则的周长为______14. 分解因式:;分解因式:;解方程:;求不等式组的解集.15. 先化简,再求值:,其中16. 正方形网格中网格中的每个小正方形边长是,的顶点均在格点上,请在所给的直角坐标系中解答下列问题;请画出与关于原点对称的;请画出绕点A逆时针旋转得到的,并写出点的坐标______ ;求绕点A逆时针旋转后,线段AB扫过的图形面积.17. 如图,在平行四边形ABCD中,对角线AC、BD交于点O,,,垂足分别为E、求证:四边形AECF是平行四边形;若,,求四边形AECF的面积.18. 如图1,在平面直角坐标系中,直线与x轴、y轴分别交于A、B两点,现将绕点O顺时针旋转到,使得,垂足为D,此时D点坐标为,动点E从原点出发,以一个单位每秒的速度沿x轴正方向运动,设运动时间为t秒.请求出A点的坐标;如图2,当时,DE交y轴于点M,求出此时点M的坐标;为中的点,当点E在运动过程中,直线上有一点Q,是否存在以M、E、B、Q为顶点的四边形是平行四边形,若存在,请求出对应的t的值;若不存在,请说明理由.19. 若关于x的方程有增根,则m的值是______.20. 已知▱ABCD中,,,过点B作交CD所在的直线于H,若,则______21. 因式分解是中学数学中最重要的恒等变形之一,是解决许多数学问题的有力工具,七中育才帅虎同学设计了一种“因式分解密码”:对多项式进行因式分解得到,若取,,则,,,,可得密码为212714,对于代数式,若取,,可能得到的密码是______写出满足条件的一个答案即可22. 已知直线:经过点,直线:经过点,且直线与关于第一,三象限角平分线所在直线对称,则关于x的不等式的解集是______ .23. 如图,是边长为3的等边三角形,延长AC至点P,使得,点E在线段AB上,且,连接PE,以PE为边向右作等边,过点E作交FA的延长线于点M,点N为MF的中点,则四边形AEPN的面积为______ .24. 位于四川省广汉市的“三星堆”,被称为20世纪人类最伟大的考古发现之一,被誉为“长江文明之源”,昭示了长江流域与黄河流域一样,同属中华文明的母体,七中育才八年级学生计划下周前往此处开展文史探究活动,下面是两位同学对于出行方案的讨论:请根据以上信息,求出每辆甲种和每辆乙种大巴的座位数;为保证顺利出行,大巴车司机计划近期加油两次,打算采用两种加油方式:方式一:每次均按照相同油量升加油;方式二:每次均按照相同金额元加油.若第一次加油单价为x元/升,第二次加油单价为y元/升,请分别写出每种加油方式的平均单价用含x、y的代数式表示,并根据你所学知识帮助大巴车司机选择上述哪种加油方式更合算.25. 已知长为a、b、c、d的四条线段,以a、b为边构造,其中,;以c、d为边构造,其中,判断和的形状并证明;将和按照图1方式放置,当B、C、E共线时,取BE的中点M,连接AM、若,请猜想与之间的数量关系,并证明;如图2,当B、C、E不共线时,连接BE并取其中点M,连接AM、DM、若,中的猜想是否仍然成立?若成立请证明,若不成立请说明理由.26.如图1,在中,,,将线段AB绕点B逆时针旋转得线段BD,旋转角为,连接①若,则______ ;②若,求的度数.如图2,当时,过点B作于点E,CD与BE相交于点F,请探究线段CF与线段BE之间的数量关系;当时,作点A关于CD所在直线的对称点,当点在线段BC所在的直线上时,求的面积.答案和解析1.【答案】D【解析】解:A、该图形是中心对称图形,不是轴对称图形;故A不符合题意;B、该图形既不是轴对称图形,也不是中心对称图形;故B不符合题意;C、该图形是中心对称图形,不是轴对称图形;故C不符合题意;D、该图形既是轴对称图形又是中心对称图形;故D符合题意.故选:根据轴对称图形与中心对称图形的概念判断即可.本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.【答案】D【解析】解:A、两边都加或减同一个数或减同一个整式,不等号的方向不变,故A错误;B、不等式的两边都乘以或除以同一个正数,不等号的方向不变,故B错误;C、不等式的两边都乘以或除以同一个负数,不等号的方向改变,故C错误;D、不等式的两边都乘以或除以同一个负数,不等号的方向改变,故D正确;故选:根据不等式的性质,两边都加或减同一个数或减同一个整式,不等号的方向不变;不等式的两边都乘以或除以同一个正数,不等号的方向不变;不等式的两边都乘以或除以同一个负数,不等号的方向改变,可得答案.本题考查了不等式的性质,注意不等式的两边都乘以或除以同一个负数时,不等号的方向改变.3.【答案】C【解析】解:A、,是整式乘法,故此选项不合题意;B、,不符合因式分解的定义,故此选项不合题意;C、是分解因式,符合题意;D、,不符合因式分解的定义,故此选项不合题意;故选:直接利用因式分解的定义得出答案.此题主要考查了因式分解的意义,正确分解因式是解题关键.4.【答案】A【解析】解:根据题意,点Q的横坐标为:;纵坐标为;即点Q的坐标是故选:让P的横坐标减3,纵坐标加2即可得到点Q的坐标.本题考查了坐标与图形变化-平移,用到的知识点为:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.5.【答案】A【解析】解:在▱ABCD中,,若,则,故选:根据平行四边形的性质可知,平行四边形的对角相等,邻角互补,再根据已知即可求解.本题考查平行四边形的性质,在应用平行四边形的性质解题时,要根据具体问题,有选择的使用,避免混淆性质,以致错用性质.6.【答案】C【解析】解:A、对角线互相平分的四边形是平行四边形,正确,故A不符合题意;B、角平分线上的点到角的两边的距离相等,正确,故B不符合题意;C、两个全等的三角形,不一定成中心对称,故C符合题意;D、等边三角形是轴对称图形,且有三条对称轴,正确,故D不符合题意.故选:由平行四边形的判定,角平分线的性质,中心对称的定义,等边三角形的性质,即可判断.本题考查平行四边形的判定,角平分线的性质,等边三角形的性质,中心对称,掌握以上知识点是解题的关键.7.【答案】B【解析】解:,解不等式①得:,解不等式②得:,不等式组的解集是表示在数轴上,如图所示:故选:根据不等式解集的表示方法即可判断.本题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来向右画;<,向左画,数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“”,“”要用实心圆点表示;“<”,“>”要用空心圆点表示.8.【答案】B【解析】解:是等腰直角三角形,,沿BC方向平移得到,,是等腰直角三角形,,的面积,,,故选:由等腰直角三角形的性质得到,由平移的性质,得到是等腰直角三角形,由三角形的面积公式求出PC长,即可求出的长,从而求出的长.本题考查平移的性质,等腰直角三角形,关键是掌握平移的性质,等腰直角三角形的性质.9.【答案】【解析】解:根据题意得,解得,即x的取值范围是根据分式有意义的条件得到,然后解不等式即可.本题考查了分式有意义的条件:分式有意义的条件是分母不等于零.10.【答案】【解析】解:化分式方程为整式方程时,方程两边同乘的最简公分母为故答案为:根据最简公分母的定义即可得出答案.本题考查了解分式方程,最简公分母,要注意:通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母,掌握最简公分母是解题的关键.11.【答案】5【解析】解:关于x的二次三项式因式分解的结果是,则,故故答案为:直接利用多项式乘法进而得出m的值.此题主要考查了多项式乘多项式,正确掌握相关运算法则是解题关键.12.【答案】P【解析】如图,连接,可得其垂直平分线相交于点P,故旋转中心是P点.故答案为:根据旋转的性质,对应点到旋转中心的距离相等,可得对应点连线的垂直平分线的交点即为旋转中心.本题考查了旋转的性质,对应点连线的垂直平分线的交点即为旋转中心,熟练掌握旋转中心的确定方法是解题的关键.13.【答案】19【解析】解:由作图得MN垂直平分AC,,,的周长为13cm,,,即,的周长故答案为:先利用基本作图得到MN垂直平分AC,,,然后利用等线段代换计算的周长.本题考查了作图-基本作图:熟练掌握5种基本作图是解决此类问题的关键.也考查了线段垂直平分线的性质.14.【答案】解:;;,方程两边都乘,得,解得:,检验:当时,,所以是增根,即分式方程无解;,解不等式①,得,解不等式②,得,所以不等式组的解集是【解析】根据提取公因式法分解因式即可;根据完全平方公式分解因式即可;方程两边都乘得出,求出方程的解,再进行检验即可;先根据不等式的性质求出不等式的解集,再关键求不等式组解集的规律求出不等式组的解集即可.本题考查了分解因式,解分式方程和解一元一次不等式组等知识点,能选择适当的方法分解因式是解的关键,能把分式方程转化成整式方程是解的关键,能根据求不等式组解集的规律求出不等式组的解集是解的关键.15.【答案】解:原式,当时,原式【解析】根据分式的减法法则、除法法则把原式化简,把x的值代入计算即可.本题考查的是分式的化简求值,掌握分式的混合运算法则是解题的关键.16.【答案】【解析】解:如图,即为所求.如图,即为所求.点的坐标为故答案为:由勾股定理得,,线段AB扫过的图形面积为根据中心对称的性质作图即可.根据旋转的性质作图,即可得出答案.利用勾股定理求出AB的长,再利用扇形面积公式计算即可.本题考查作图-旋转变换、中心对称、扇形面积公式,熟练掌握旋转和中心对称的性质、勾股定理、扇形面积公式是解答本题的关键.17.【答案】证明:四边形ABCD是平行四边形,,,,,,,,在和中,,≌,,四边形AECF是平行四边形;解:,,,,,,由可知,≌,,,四边形AECF是平行四边形,,【解析】由平行四边形的性质得,,则,再证,然后证≌,得,即可得出结论;由含角的直角三角形的性质得,则,再由全等三角形的性质得,则,然后由平行四边形面积公式即可得出结论.本题考查了平行四边形的判定与性质、全等三角形的判定与性质、含角的直角三角形的性质以及勾股定理等知识,熟练掌握平行四边形的判定与性质,证明三角形全等是解题的关键.18.【答案】解:把代入得:,解得,,在中,令得:,解得,点的坐标为;如图:在中,令得,,,,由旋转可得,,,,,,,,,,点M是OB中点,;存在以M、E、B、Q为顶点的四边形是平行四边形,理由如下:过作于K,如图:,,,,,,≌,,,,由知,,直线DM的函数解析式为,由设直线的解析式为,把代入得:,解得,直线的解析式为;设,,又,,①若QE,MB为对角线,则QE,MN的中点重合,,解得,的值为;②若QM,EB为对角线,则QM,EB的中点重合,,解得,的值为;③若QB,EM为对角线,则QB,EM的中点重合,,解得,的值为;综上所述,t的值为或或【解析】把代入得,即得,令可得A点的坐标为;在中,得,由和旋转可得,有,从而可得,,故点M是OB中点,得;过作于K,证明≌,可得,由,,可知直线DM的函数解析式为,从而可得直线的解析式为;设,,分三种情况:①若QE,MB为对角线,则QE,MN的中点重合,,②若QM,EB为对角线,则QM,EB的中点重合,,③若QB,EM为对角线,则QB,EM的中点重合,,分别解方程组可得答案.本题考查一次函数的综合应用,涉及待定系数法,函数图象上点坐标的特征,平行四边形的性质及应用等知识,解题的关键是方程思想的应用.19.【答案】2【解析】解:方程两边都乘,得,方程有增根,最简公分母,即增根是,把代入整式方程,得故答案为:增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母,得到,然后代入化为整式方程的方程算出未知字母的值.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.20.【答案】5或11【解析】解:如图1,,,,,,四边形ABCD是平行四边形,,;如图2,,,,,,四边形ABCD是平行四边形,,;综上所述,或11cm,故答案为:5或分两种情况:如图1,如图2,根据勾股定理和平行四边形的性质即可得到结论.本题考查了平行四边形的性质,勾股定理,分类讨论是解题的关键.21.【答案】315311【解析】解:当,时,即,,,,可得密码为本题通过对多项式进行因式分解,然后分别求出每个式子的值,然后组成密码.本题考查了因式分解的应用,通过因式分解,得到对应的结果.22.【答案】【解析】解:直线与关于第一,三象限角平分线所在直线对称,点关于直线的对称点一定在直线上,点关于直线的对称点一定在直线上,把,两点代入中得,,,,直线:,把,两点代入中得,,,,直线:,由得,,故答案为:分别求出点和点关于直线的对称点的坐标,利用待定系数法求出直线,直线的解析式,再解不等式即可.本题考查了一次函数与一元一次不等式的关系,待定系数法求解析式,直线的对称变换等知识,掌握点的对称变换特征是解题关键.23.【答案】【解析】解:作交AB的延长线于点G,是边长为3的等边三角形,,,,,是等边三角形,点P在AC的延长线上,,,是等边三角形,,,,在和中,,≌,,,,,,,是等边三角形,,,,在和中,,≌,,点N为MF的中点,,,作于点H,于点D,则,,,,,,故答案为:作交AB的延长线于点G,则,,,,所以是等边三角形,,而是等边三角形,则,,所以,即可证明≌,得,所以,,再证明是等边三角形,则,,可证明≌,得,则,,作于点H,于点D,则,,由勾股定理得,所以,于是得到问题的答案.此题重点考查等边三角形的判定与性质、全等三角形的判定与性质、勾股定理、根据转化思想求图形的面积等知识与方法,正确地作出所需要的辅助线是解题的关键.24.【答案】解:设每辆甲种大巴车的座位数为个,则每辆乙种大巴车的座位数为个,根据题意可得:,解得:,经检验,为原方程的解,则,每辆甲种大巴车的座位数有45个,每辆乙种大巴车的座位数有54个;按照方式一加油的平均单价为元/升,按照方式一加油的平均单价为元/升,按方式二加油的平均单价-按方式二加油的平均单价得:元/升,,,且,,,即,选择方式二加油更合算.【解析】设每辆甲种大巴车的座位数为个,则每辆乙种大巴车的座位数为个,根据“都租同一种车辆,甲种大巴车比乙种大巴车多3辆”列出方程,求解即可;根据“加油费用=加油量加油单价”分别算出两种加油方式的平均单价,再利用作差法比较两种加油方式的平均单价的大小即可求解.本题主要考查分式方程的应用、列代数式.解题关键是:正确理解题意,找准等量关系列出方程,并进行正确的求解;利用“加油费用=加油量加油单价”列出代数式,熟练掌握用作差法比较代数式大小.25.【答案】解:结论:,都是等腰三角形;理由:,,,,,都是等腰三角形;猜想:理由:延长AM 到T ,使得,连接AD ,DT ,ET ,延长AC 交ET 的延长线于点,,,≌,,,,,,,,,,≌,,,,,猜想仍然成立.理由:延长AM 到Q ,使得,连接AD ,DQ ,EQ ,延长AC 交EQ 于点,,,≌,,,,,,,,,≌,,,,,【解析】利用非负数的性质证明,,可得结论;猜想:延长AM到T,使得,连接AD,DT,ET,延长AC 交ET的延长线于点证明≌,推出,,推出,推出,再证明≌,推出,可得结论;猜想仍然成立,证明方法类似本题属于三角形综合题,考查了等腰三角形的判定和性质,全等三角形的判定和性质,平行线的判定和性质,四边形内角和定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.26.【答案】45【解析】解:①将线段AB绕点B逆时针旋转得线段BD,,,是等边三角形,,,,,,故答案为:45;②将线段AB绕点B逆时针旋转得线段BD,,,,;,理由如下:如图2,过点C作直线BE于H,,,,,,是等腰直角三角形,,,,,又,,≌,,;如图3,当点在点B的左侧时,,,,点A关于CD所在直线的对称点,,,,,,,,;如图4,当点在点B的右侧时,同理可求;综上所述:的面积为或①由旋转的性质可得,由等腰三角形的性质可求,即可求解;②由旋转的性质和等腰三角形的性质可求解;由“AAS”可证≌,可得,由等腰直角三角形的性质可求解;分两种情况讨论,由勾股定理可求,即可求解.本题是四边形综合题,考查了全等三角形的判定和性质,等腰直角三角形的性质,旋转的性质等知识,添加恰当辅助线构造全等三角形是解题的关键.。
2010-2011学年四川省成都市七中八年级(下)期中数学试卷一.选择题:(本题共有10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项是正确的,请将正确的选项涂在机读卡上..3.(3分)对于分式,下列说法正确的是()4.(3分)化简的结果为().C5.(3分)若,则的值为().C6.(3分)若解关于x的方程有增根,则m的值为()7.(3分)(2009•杭州)如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是38.(3分)(2009•浙江)在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书9.(3分)(2009•恩施州)如果一元一次不等式组的解集为x>3.则a的取值范围是()10.(3分)(2006•宜宾)“五•一”期间,一批初三同学包租一辆面包车前去竹海游览,面包车的租金为300元,出发时,又增加了4名同学,且租金不变,这样每个同学比原来少分摊了20元车费,若设参加游览的同学一共有x.C D.二、填空题:(每小题4分,共16分)请把答案填在答题卷上.11.(4分)如果a+b=10,ab=24,则a2b+ab2的值为_________.12.(4分)若分式方程的解为x=0,则a=_________.13.(4分)已知二次三项式x2+ax﹣1可分解为(x﹣2)(x+b),则a+b的值为_________.14.(4分)高4m的旗杆在水平地面上的影子长6m,此时测得附近一个建筑物的影子长36m,则该建筑物的高度是_________.三、计算题:(共28分)15.(8分)因式分解:(1)3x﹣12x3 (2)x2﹣5xy﹣6y2.16.(10分)(1)计算:(2)先化简:(a﹣)÷,然后给a选择一个你喜欢的数代入求值.17.(10分)解下列分式方程或不等式:(1)(2)解不等式组.四、解答题:(每题8分,共16分)18.(8分)已知关于x、y的方程组的解是一对正数.(1)试确定m的取值范围;(2)化简|3m﹣1|+|m﹣2|19.(8分)(2009•厦门)供电局的电力维修工甲、乙两人要到45千米远的A地进行电力抢修.甲骑摩托车先行,t(t≥0)小时后乙开抢修车载着所需材料出发.(1)若t=(小时),抢修车的速度是摩托车的1.5倍,且甲、乙两人同时到达,求摩托车的速度;(2)若摩托车的速度是45千米/小时,抢修车的速度是60千米/小时,且乙不能比甲晚到则t的最大值是多少?五、证明题(共10分)20.(10分)(2010•珠海)在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B(1)求证:△ADF∽△DEC;(2)若AB=4,AD=3,AE=3,求AF的长.六、(附加卷)填空题:(每小题4分,共20分)21.(4分)(2009•长沙)已知关于x的不等式组只有四个整数解,则实数a的取值范围是_________.22.(4分)(2002•天津)已知=,则分式的值为_________.23.(4分)如图,CD是Rt△ABC斜边AB上的高,若AB=5,AC=4,则BD=_________.24.(4分)(2010•鄂尔多斯)已知关于x的方程的解是正数,则m的取值范围为_________.25.(4分)(2010•江西)如图,一根直立于水平地面上的木杆AB在灯光下形成影子,当木杆绕点A按逆时针方向旋转直至到达地面时,影子的长度发生变化.设AB垂直于地面时的影长为AC﹙假定AC>AB﹚,影长的最大值为m,最小值为n,那么下列结论:①m>AC;②m=AC;③n=AB;④影子的长度先增大后减小.其中,正确结论的序号是_________.﹙多填或错填的得0分,少填的酌情给分﹚.七、(附加卷)(共8分)26.(8分)在△ABC中,已知三边a、b、c满足a4+2a2b2+b4﹣2a3b﹣2ab3=0.试判断△ABC的形状.八、(附加卷)(共10分)27.(10分)(2008•南充)某乒乓球训练馆准备购买n副某种品牌的乒乓球拍,每副球拍配k(k≥3)个乒乓球.已知A、B两家超市都有这个品牌的乒乓球拍和乒乓球出售,且每副球拍的标价都为20元,每个乒乓球的标价都为1元.现两家超市正在促销,A超市所有商品均打九折(按原价的90%付费)销售,而B超市买1副乒乓球拍送3个乒乓球.若仅考虑购买球拍和乒乓球的费用,请解答下列问题:(1)如果只在某一家超市购买所需球拍和乒乓球,那么去A超市还是B超市买更合算?(2)当k=12时,请设计最省钱的购买方案.九、(附加卷)(共12分)28.(12分)(2009•枣庄)如图,在平面直角坐标系中,点C(﹣3,0),点A、B分别在x轴、y轴的正半轴上,且满足+|OA﹣1|=0.(1)求点A、点B的坐标;(2)若点P从C点出发,以每秒1个单位的速度沿线段CB由C向B运动,连接AP,设△ABP的面积为S,点P 的运动时间为t秒,求S与t的函数关系式;(3)在(2)的条件下,是否存在点P,使以点A,B,P为顶点的三角形与△AOB相似?若存在,请直接写出点P的坐标;若不存在,请说明理由.。
一、选择题(每小题3分,共30分)1. 下列多项式能分解因式的是( )A 、x 2+y+y 2B 、x 2-6x+9C 、x 2+2D 、x 2-y2.若x y <,则下列各式不成立的是( )。
A 、33x y -<-B 、33x y <C 、33x y -<-D 、3232x y -+>-+3. 如果把分式52ab a b-中的a 、b 都扩大5倍,那么分式的值一定( ) A 、是原来的5倍 B 、是原来的25倍 C 、不变 D 、是原来的15 4. 当x=3时,分式bx a x -+3的值为0,而当x=1时,分式没有意义,则a+b 的值为( ) A 、6 B 、1 C 、0 D 、-15.若方程223-=--x m x x 有增根,则m 的值为( )A 、2B 、 1C 、 -1D 、06.下列由左到右变形,属于因式分解的是( )A 、94)32)(32(2-=-+x x xB 、1)2(411842-+=-+x x x xC 、22244)2(y xy x y x +-=-D 、)3)(3(92-+=-x x x7. 若dc b a =,且a 、b 、c 、d 均为正数,则下列变形式中,错误..的是( ) A 、b d a c = B 、d c d b c a =++ C 、dd c b b a +=+ D 、d 1c b 1a +=+ 8.按下面的程序计算,若开始输入的值x 为正数,最后输出的结果为656,则满足条件的x 的不同值最多有( )A .2个B .3个C .4个D .5个9.不等式组⎩⎨⎧>-<+-mx x x 62的解集是4>x ,那么m 的取值范围是( )A .4≥mB .4≤mC .4<mD .4=m10. “退耕还林还草”是我国实施的一项重要生态工程,某地规划退耕面积共69000公顷,退耕还林与退耕还草的面积比为5:3,设退耕还林的面积为x 公顷,下列所列方程哪一个是不正确的?( )A 、5690003x x =-B 、5690003x x -=C 、6900035x x -= D 、69000535x += 二、填空题(每小题3分,共18分)11.若3)3(+>+a x a 的解集是1<x ,那么a 取值范围是12. 已知点P ()2,5a a --在第四象限,那么a 的取值范围是 .13.当x=1时,分式nx m x -+2无意义,当x=4时分式的值为零, 则n m +=__________. 14. 在比例尺为1:3000的地图上测得AB 两地间的图上距离为6cm ,则AB 两地间的实际距离为_____米.15.符号“cd ab ”称为二阶行列式,规定它的运算法则为:bc ad cdab -=,请你根据上述规定求出下列等式中的x 的值.111112--x x =1 则x =___________.16.在一段坡路,小明骑自行车上坡的速度为每小时V 1千米,下坡时的速度为每小时V 2千米,则他在这段路上、下坡的平均速度是每小时 千米 。
一、选择题(每小题3分,共30分)
1. 下列多项式能分解因式的是( )
A 、x 2+y+y 2
B 、x 2-6x+9
C 、x 2+2
D 、x 2-y
2.若x y <,则下列各式不成立的是( )。
A 、33x y -<-
B 、33x y <
C 、33x y -<-
D 、3232x y -+>-+
3. 如果把分式52ab a b
-中的a 、b 都扩大5倍,那么分式的值一定( ) A 、是原来的5倍 B 、是原来的25倍 C 、不变 D 、是原来的
15 4. 当x=3时,分式b
x a x -+3的值为0,而当x=1时,分式没有意义,则a+b 的值为( ) A 、6 B 、1 C 、0 D 、-1
5.若方程2
23-=--x m x x 有增根,则m 的值为( ) A 、2 B 、 1 C 、 -1 D 、0
6.下列由左到右变形,属于因式分解的是( )
A 、94)32)(32(2-=-+x x x
B 、1)2(411842-+=-+x x x x
C 、22244)2(y xy x y x +-=-
D 、)3)(3(92-+=-x x x
7. 若d
c b a =,且a 、b 、c 、
d 均为正数,则下列变形式中,错误..的是( ) A 、b d a c = B 、d c d b c a =++ C 、d
d c b b a +=+ D 、d 1c b 1a +=+ 8.按下面的程序计算,若开始输入的值x 为正数,最后输出的结果为656,则满足条件的x 的不同值最多有( )
A .2个
B .3个
C .4个
D .5个
9.不等式组⎩⎨⎧>-<+-m
x x x 62的解集是4>x ,那么m 的取值范围是( )
A .4≥m
B .4≤m
C .4<m
D .4=m
10. “退耕还林还草”是我国实施的一项重要生态工程,某地规划退耕面积共69000公顷,退耕还林与退耕还草的面积比为5:3,设退耕还林的面积为x 公顷,下列所列方程哪一个是不正确的?( )
A 、5690003x x =-
B 、5690003x x -=
C 、6900035
x x -= D 、69000535x += 二、填空题(每小题3分,共18分)
11.若3)3(+>+a x a 的解集是1<x ,那么a 取值范围是
12. 已知点P ()2,5a a --在第四象限,那么a 的取值范围是 .
13.当x=1时,分式n
x m x -+2无意义,当x=4时分式的值为零, 则n m +=__________. 14. 在比例尺为1:3000的地图上测得AB 两地间的图上距离为6cm ,则AB 两地间的实际距离为_____米.
15.符号“cd ab ”称为二阶行列式,规定它的运算法则为:bc ad cd
ab -=,请你根据上述规定求出下列等式中的x 的值.11
1112
--x x =1 则x =___________.
16.在一段坡路,小明骑自行车上坡的速度为每小时V 1千米,下坡时的速度为每小时V 2千米,则他在这段路上、下坡的平均速度是每小时 千米 。
三、解答题(共52分)
17.(本小题6分)解不等式组⎪⎩⎪⎨⎧-≥+-<-x x x 22
1132并求出所有整数解。
18. (本小题6分)解方程:
.4
1622222-+-+=+-x x x x x
19.(本小题12分,每小题6分)把下列各式因式分解:
(1)c b a c ab b a 233236128+- (2)22)(16)(9n m n m --+
20.(本小题7分)先化简,再求值:2
4)4412a 2-a (
22+-÷++--+a a a a a a ,其中a 满足2270a a +-=.
21. (本小题7分)某实验中学为初二住宿的男学生安排宿舍。
如果每间住4人,那么有20人无法安排;如果每间住8人,那么有一间宿舍不空也不满。
求宿舍间数和住宿男学生人数。
22、(本小题7分)某商厦进货员预测一种夏季衬衫能畅销市场,就用8万元购进这种衬衫,面市后果然供不应求,商厦又用17.6万元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了4元,商厦销售这种衬衫时每件定价都是58元,最后剩下的150件按八折销售,很快售完,在这两笔生意中,商厦共赢利多少元。
23、(本小题7分) 阅读理解并回答问题.
(1)观察下列各式: 211121121-=⨯= , 3
12132161-=⨯= 4131431121-=⨯=, 5
141541201-=⨯= 6
151651301-=⨯=, ……… (2) 请你猜想出表示(1)中的特点的一般规律,用含x (x 表示整数)的等式表示出来________.(2分)
(3)请利用上速规律计算:(要求写出计算过程)(2分)
)
1(1)1(11216121++-++++n n n n
(4)请利用上速规律,解方程(3分) 111111(3)(4)(2)(3)(1)(2)(1)(1)1
x x x x x x x x x x x ++++=-------++ 解:原方程可变形如下:
B 卷(50分)
一、填空题(每小题4分,共20分)
24.如果不等式组⎩⎨⎧≥+≤-m
x m x 211无解,则不等式m mx x +<+22的解集是__________. 25.已知:k c
b a b a
c a c b =+=+=+,则k= 26.关于x 的不等式组()⎪⎩
⎪⎨⎧->-+--<-325251263x x a x x 有四个整数解,则a 的取值范围是______________. 27.若关于x 的方程1
71312-=-++x x x k 无解,则k= 28、如果我们定义f(x) = x 1+x ,(例如:f(5)= 51+5 = 56
),那么: (1)猜想:f(a)+f(a
1)=_______(a 是正整数)(2分) (2)根据你的猜想,试计算下面算式的值:(2分)
f( 12004 )+ …… +f( 12 )+f( 11
)+ f(0) + f(1) + f(2) + …… + f(2004)= 。
二、解答题(共30分)解答时每小题必须给出必要的演算过程或推理步骤.
29.(本小题8分)对于形如x 2+2ax+a 2这样的二次三项式,可以用公式法将它分解成(x+a)2
的形式.但对于二次三项式x 2+2ax-3a 2,就不能直接运用公式了.此时,我们可以在二次三项式x 2+2ax-3a 2中先加上一项a 2,
使它与x 2+2ax 的和成为一个完全平方式,再减去a 2
,整个式子的值不变,于是有: x 2+2ax-3a 2= (x 2+2ax+a 2)- a 2-3a 2
=(x+a)2-(2a)2
=(x+3a)(x-a).
像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.
(1)利用“配方法”分解因式:①a 2-6a —7;②a 4+a 2b 2+b 4. (4分)
(2)若a+b=5,ab=6,求:①a 2+b 2;②a 4+b 4的值. (4分)
30.(本小题10分)如表:方程1、方程2、方程3……是按照一定规律排列的一列方程:
(1) 若方程11=--b x x a )(b a >的解是10,621==x x ,求a 、b 的值。
(6分)
(2) 请写出这列方程中第n 个方程和它的解(4分)
31.(本小题12分)
为了保护环境,某化工厂一期工程完成后购买了3台甲型和2 台乙型污水处理设备,共花费资金54
万元,且每台乙型设备的价格是每台甲型设备价格的75%,实际运行中发现,每台甲型设备每月能处理污水200吨,每台乙型设备每月能处理污水160吨,且每年用于每台甲型设备的各种维护费和电费为1万元,每年用于每台乙型设备的各种维护费和电费为1.5万元.今年该厂二期工程即将完成,产生的污水将大大
增加,于是该厂决定再购买甲、乙两型设备共8台用于二期工程的污水处理,预算本次购买资金不超过
...84
万元,预计二期工程完成后每月将产生不少于
...1300吨污水.
(1)请你计算每台甲型设备和每台乙型设备的价格各是多少元?(4分)
(2)请你求出用于二期工程的污水处理设备的所有购买方案;(4分)
(3)若两种设备的使用年限都为10年,请你说明在(2)的所有方案中,哪种购买方案的总费用最少?
最少费用是多少?(总费用=设备购买费+各种维护费和电费)(4分)。