南京师大附中10-11学年高一上学期期中考试(数学)
- 格式:doc
- 大小:323.50 KB
- 文档页数:9
2019-2020学年江苏省南京师大附中高一(上)期中数学试卷一、选择题(本大题共4小题,共12.0分)1.己知集合A={−1,0,1,2},B={x|x2=1},则A∩B=()A. {0}B. {1}C. {−1,1}D. {0,1,2}2.下列函数中,在其定义域内是奇函数的是()(e是自然对数的底数)A. y=x+lnxB. y=e x2C. y=x3+sinxD. y=x3+3x3.函数y=log a x,y=a x,y=x+a在同一坐标系中的图象可能是()A. B.C. D.4.函数f(x)=x2−4x+2在区间[1,4]上的值域为()A. [−1,2]B.C. (−2,2)D. [−2,2]二、填空题(本大题共10小题,共30.0分)5.已知幂函数f(x)=x a(a为常数)的图象经过点(2,√2),则f(9)=______.6.已知a=0.91.1,b=1.10.9,c=log20.9,则a、b、c按从小到大的顺序排列为__________.7.设集合A={x||x−2|<1},B={x|x>a},若A∩B=A,则实数a的取值范围是______.8.函数y=√8−4x的定义域是________.9.已知函数f(x)={2x(x>1),−x−2(x≤1),则f(f(−5))=__________.若f(a2+2)+f(1−a2)=4,则实数a的值是__________.10.已知2m=5n=10,则2m +2n=_________.11.已知函数f(x)=−2x,x∈[1,2],则f(x)的最小值为______.12.已知偶函数f(x)在区间[0,+∞)上单调递减,且f(3)=0.若f(m+1)>0,则实数m的取值范围是______ .13.已知函数f(x)=log12ax−2x−1(a为常数)在区间(2,4)上是减函数,则实数a的取值范围是________.14.设偶函数f(x)在区间[0,+∞)上单调递增,则满足f(2x−1)≤f(1)的x的取值范围是_____.三、解答题(本大题共6小题,共58.0分)15. (1)(279)0.5+(0.1)−2+(21027)−13−3(π0)+712; (2)lg 32+lg 35+3lg2lg5;16. 设全集U =R ,集合A ={x|2≤x <4,x ∈R},B ={x|3x −7≥8−2x,x ∈R},求A ∪B ,(∁U A)∪(∁U B)17. 已知函数f(x)=log a (x +1),g(x)=log a (1−x)(a >0且a ≠1)(1)若F(x)=f(x)+g(x),求函数F(x)的定义域;(2)若f(−14)<1,求a 取值范围.18. 已知定义域为R 的函数f(x)=−2x +b 2x+1+2是奇函数.(1)求b 的值;(2)解关于x 的不等式f(x)≤f(1).19. 某服装批发市场销售季节性流行服装F ,当季节即将来临时,价格呈上升趋势,开始时每件定价为120元,并且每周(7天)每件涨价10元(第1周每件定价为120元,第2周每件定价为130元),4周后开始保持每件160元的价格销售;8周后当季节即将过去时,平均每周每件降价10元,直到第12周末,该服装不再销售。
师大附中— 度高一上学期期中考试试题〔数学〕本试卷分第一卷、第二卷.本试卷共4页.第一卷和第二卷总分值150分,考试时间120分钟.考前须知:将答案填写在答卷纸上,考试结束后只交答案卷.第I 卷 共100分一、选择题:本大题有10小题,每题5分,共50分,在每题给出的四个选项中,只有一项符合题目要求.1、全集{1,2,3,4,5}U =,{3,4,5}A =,{1,3}B =,那么()U A C B ⋂等于A.{4,5}B.{2,4,5}C.{1}D.{3} 2、以下函数与函数||y x =为相等函数的是A.2y = B.y C .{,(0),(0)x x y x x >=-< D .log a xy a=3、集合{1,2}A =,{3,4}B =,那么从A 到B 的映射共有A.1个B.2个C.3个D.4个 4、函数()log (43)a f x x =-过定点A.〔1,0〕B.〔3,04〕C.〔1,1〕D.〔3,14〕5、设全集U 是实数集R ,{|2}M x x =>,{|13}N x x =<<,那么图中阴影局部所表示的集合是 A .{|23}x x << B .{|3}x x < C .{|12}x x <≤D .{|2}x x ≤6、幂函数()y f x =的图像经过点(4,2),那么(9)f 的值为A. 3B. 3±C. 81D.81± 7、以下大小关系正确的选项是A. 30.440.43log 0.3<<B. 30.440.4log 0.33<< C. 30.44log 0.30.43<< D. 0.434log 0.330.4<<8、函数)(log 3)(2x x f x--=的零点所在区间是A.)2,25(--B.)1,2(--C.〔1,2〕D.25,2(9、设函数()f x 是定义在R 上的奇函数,假设当(0,)x ∈+∞时,()ln f x x =,那么满足()0f x <的x 的取值范围是A .(,1)-∞-B .(0,1)C .(,1)-∞D .(,1)(0,1)-∞-⋃h 和时间t 之间的关系,其中正确的有B.2个二、填空题:本大题有3小题,每题4分,共12分,把答案填在答卷的相应位置.11、函数()1lg(1)2f x x x =-+-的定义域是 *** ;12、.计算:52log 232851ln log 16e ⨯+= *** ;13、设函数22 1 (0)()+1 (02)3 1 (2)x x f x x x x x +≤⎧⎪=<<⎨⎪-≥⎩,假设()3f x =,那么x = *** .三、解答题:本大题有3题,共38分,解容许写出文字说明、证明过程或演算步骤. 14、〔本小题总分值12分〕设2{|560}A x x x =-+=,}01|{=-=ax x B . 〔I 〕假设13a =,试判定集合A 与B 的关系;〔II 〕假设A B ⊆,求实数a 的取值组成的集合C .15、〔本小题总分值12分〕函数112)(++=x x x f .〔I 〕用定义证明函数在区间[)+∞,1是增函数; 〔II 〕求该函数在区间[]2,4上的最大值与最小值.16、〔本小题14分〕()f x 是定义在R 上的偶函数,且0x ≤时,12()log (1)f x x =-+.〔I 〕求(0)f ,(1)f ; 〔II 〕求函数()f x 的解析式;〔Ⅲ〕假设(1)1f a -<-,求实数a 的取值范围.第II 卷 共50分一、填空题:本大题有2小题,每题4分,共8分,把答案填在答卷的相应位置.17、如果函数()22f x x ax =-+在区间11[,]24-上是单调函数,那么实数a 的取值范围是 *** ; 18、设函数22)(k x x x f --=,以下判断:①存在实数k ,使得函数()f x 有且仅有一个零点; ②存在实数k ,使得函数()f x 有且仅有两个零点; ③存在实数k ,使得函数()f x 有且仅有三个零点; ④存在实数k ,使得函数()f x 有且仅有四个零点.其中正确的选项是 *** 〔填相应的序号〕.二、选择题:本大题有2小题,每题4分,共8分,在每题给出的四个选项中,只有一项符合题目要求.||()xx a f x =(01)a <<A .B .C .D . 20、假设函数()log (1)a f x ax =+在区间(3,2)--上单调递减,那么实数a 的取值范围是A .1(0,)3 B .1(0,]3 C .1(0,]2 D .(0,1)三、解答题:本大题有3题,共34分,解容许写出文字说明、证明过程或演算步骤.21、(本小题总分值10分)函数1()4226x x f x +=-⋅-,其中[0,3]x ∈. 〔I 〕求函数()f x 的最大值和最小值;〔II 〕假设实数a 满足:()0f x a -≥恒成立,求a 的取值范围.22、(本小题总分值12分)某服装厂生产一种服装,每件服装的本钱为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出厂单价就降低0.02元.根据市场调查,销售商一次订购量不会超过500件.〔I 〕设一次订购量为x 件,服装的实际出厂单价为P 元,写出函数P=f 〔x 〕的表达式; 〔II 〕当销售商一次订购多少件时,该服装厂获得的利润最大,最大利润是多少元? 〔服装厂售出一件服装的利润=实际出厂单价-本钱〕 23、〔本小题总分值12分〕设二次函数()()R c b a c bx ax x f ∈++=,,2满足以下条件:①当R x ∈时,)(x f 的最小值为0,且图像关于直线1-=x 对称;②当()5,0∈x 时,()112+-≤≤x x f x 恒成立.〔I 〕求()1f 的值; 〔II 〕求()x f 的解析式;〔Ⅲ〕假设()x f 在区间[]m m ,1-上恒有()214x f x -≤,求实数m 的取值范围.附加题:本大题有2小题,每题5分,共10分,把答案填在答卷的相应位置. 说明:得分计入总分,超过150分, 总分计为150分.1、设函数()f x x x a =-,假设对于任意21,x x 21),,3[x x ≠+∞∈,不等式)()(2121>--x x x f x f恒成立,那么实数a 的取值范围是 *** . 2、函数)(x f y =定义域为D ,假设满足:①()f x 在D 内是单调函数; ②存在[]D n m ⊆,使()f x 在[]n m ,上的值域为⎥⎦⎤⎢⎣⎡2,2n m ,那么就称)(x f y =为“减半函数〞.假设函数)0,1,0)((log )(≥≠>+=t a a t a x f xa 是“减半函数〞,那么t 的取值范围为 *** .参考答案 第I 卷11、()()1,22,⋃+∞ 12、83-13三、解答题: 14、〔本小题总分值12分〕 解:A ={2,3}〔I 〕假设13a =,那么B={3},∴B ⊆A〔II 〕∵B ⊆A , ∴B =Φ或{2}B =或{3}B =∴0a =或12a =或13a = ∴11{0,,}32C =15、〔本小题总分值12分〕〔I 〕证明:任取[)+∞∈,1,21x x ,且12x x <,112112)()(221121++-++=-x x x x x f x f )1)(1()(2121++-=x x x x∵120x x -<,()()12110x x ++>,∴()()120f x f x -<,即()()12f x f x <,∴函数()f x 在[)+∞,1上是增函数.〔II 〕由〔I 〕知函数()f x 在[]2,4上是增函数.∴max 2419[()](4)415f x f ⨯+===+, min[()]f x =2215(2)213f ⨯+==+. 16、〔本小题总分值14分〕 解:〔I 〕()00f = (1)(1)1f f =-=-〔II 〕令0x >,那么0x -<12()log (1)()f x x f x -=+=∴0x >时,12()log (1)f x x =+∴1212log (1),(0)()log (1),(0)x x f x x x +>⎧⎪=⎨-+≤⎪⎩〔Ⅲ〕∵12()log (1)f x x =-+在(,0]-∞上为增函数,∴()f x 在(0,)+∞上为减函数 ∵(1)1(1)f a f -<-= ∴11a -> ∴2a >或0a <第II 卷 共50分 一、填空题:17、(,2][1,)-∞-⋃+∞ 18、 ②③. 二、选择题:三、解答题:19 20 DB21、(本小题总分值10分) 解:〔I 〕 2()(2)426(03)x x f x x =-⋅-≤≤令2xt =,03x ≤≤,18t ∴≤≤∴22()46(2)10h t t t t =--=--〔18t ≤≤〕∴当[1,2]t ∈时,()h t 是减函数;当(2,8]t ∈时,()h t 是增函数;min ()(2)10f x h ∴==-,max ()(8)26f x h ==〔II 〕()0f x a -≥恒成立,即()a f x ≤恒成立,∴min ()10a f x ≤=-∴a 的取值范围为(,10]-∞- 22、(本小题总分值12分) 解:〔I 〕当0<x≤100时,P=60当100<x≤500时,600.02(100)6250xP x =--=-∴**60,0100,62,100500,50x x N P x x x N ⎧<≤∈⎪=⎨-+<≤∈⎪⎩〔II 〕设销售商的一次订购量为x 件时,工厂获得的利润为L 元,那么*2*(40)20,0100,22,100500,50P x x x x N L x x x x N ⎧-=<≤∈⎪=⎨-+<≤∈⎪⎩当0<x≤100时,L 单调递增,此时当x=100时,Lmax=当100<x≤500时,L 单调递增, 此时当x=500时,Lmax=6000 综上所述,当x=500时,Lmax=6000答:当销售商一次订购500件时,该服装厂获得的利润最大,最大利润是6000元. 23、〔本小题总分值12分〕 解:〔I 〕在②中令1=x ,有()111≤≤f ,故()11=f .〔II 〕当R x ∈时,)(x f 的最小值为0且二次函数关于直线1-=x 对称, 故设此二次函数为()()()012>+=a x a x f .∵()11=f ,∴41=a .∴()()2141+=x x f .〔Ⅲ〕()()222111144424x x f x x x -=+-=+, 由()214x f x -≤即11||124x +≤,得5322x -≤≤∵()x f 在区间[]m m ,1-上恒有()214x f x -≤∴只须51232m m ⎧-≥-⎪⎪⎨⎪≤⎪⎩,解得3322m -≤≤∴实数m 的取值范围为33[,]22-.附加题:每题5分,共10分 1、3a ≤ 2、⎪⎭⎫ ⎝⎛41,0。
2014-2015学年江苏省南京师大附中高一(上)期中数学试卷一、填空题:(本大题共14小题;每小题3分,共42分,把答案填在答题卡的相应位置.)1.(3分)设全集U={0,1,2,3,4},A={0,1,2,3},B={2,3,4},则(∁∪A)∪(∁∪B)=.2.(3分)函数y=log2(3x﹣2)的定义域是.3.(3分)如图,设实数a,b,c,d>0,且不等于1,曲线①,②,③,④分别表示函数y=a x,y=b x,y=log c x,y=log d x在同一坐标系中的图象,则a,b,c,d的大小顺序为.4.(3分)某高级中学高一特长班有100名学生,其中学绘画的学生有67人,学音乐的学生有45人,而学体育的学生既不能学绘画,也不能学音乐,人数是21人,那么同时学绘画和音乐的学生有人.5.(3分)已知幂函数y=xα的图象过点(8,4),则这个函数的解析式是.6.(3分)已知函数f(n)=,其中n∈N,则f(8)等于.7.(3分)设lg2=a,lg3=b,则log512=.8.(3分)函数y=lg(x2﹣2x)的单调递增区间是.9.(3分)f(x)是定义在(0,+∞)上的单调增函数,若f(x)>f(2﹣x),则x的取值范围是.10.(3分)(log43+log83)(log32+log92)+log=.11.(3分)函数f(x)=xlog2x﹣3的零点所在区间为(k,k+1)(k∈Z),则k的值是.12.(3分)已知函数f(x)=的定义域是一切实数,则m的取值范围是.13.(3分)若函数y=x2﹣3x﹣4的定义域为[0,m],值域为[﹣,﹣4],则m的取值范围是.14.(3分)已知f(x)是R上的奇函数,满足f(x+2)=f(x),当x∈(0,1)时,f(x)=2x﹣2,则f(log6)=.二、解答题:(本大题共6小题,共计58分,解答应写出文字说明、证明过程或演算步骤.解答写在答题卡的指定区域内.)15.(8分)集合A={x|3≤x<10},B={x|2<x<7},C={x|x<a},(1)求A∪B;(2)求(∁R A)∩B;(3)若A∩C≠∅,求a的取值范围.16.(8分)函数y=a2x+2a x﹣1(a>0且a≠1)在区间[﹣1,1]上有最大值14,试求a的值.17.(10分)已知a为实数,当a分别为何值时,关于x的方程|x2﹣6x+8|﹣a=0有两个、三个、四个互不相等的实数根?18.(10分)某校学生研究性学习小组发现,学生上课的注意力指标随着听课时间的变化而变化.老师讲课开始时学生的兴趣激增,接下来学生的兴趣将保持较理想的状态一段时间,随后学生的注意力开始分散.该小组发现注意力指标f(t)与上课时刻第t分钟末的关系如下(t∈(0,40],设上课开始时,t=0):f(t)=(a>0且a≠1).若上课后第5分钟末时的注意力指标为140,(1)求a的值;(2)上课后第5分钟末和下课前5分钟末比较,哪个时刻注意力更集中?(3)在一节课中,学生的注意力指标至少达到140的时间能保持多长?19.(10分)已知函数f(x)=2ax+(a∈R).(1)当0<a≤时,试判断f(x)在(0,1]上的单调性并用定义证明你的结论;(2)对于任意的x∈(0,1],使得f(x)≥6恒成立,求实数a的取值范围.20.(12分)已知函数f(x)=lg.(1)判断函数f(x)的奇偶性;(2)若f(x)≤1,求实数x的取值范围;(3)关于x的方程10f(x)=ax有实数解,求实数a的取值范围.2014-2015学年江苏省南京师大附中高一(上)期中数学试卷参考答案与试题解析一、填空题:(本大题共14小题;每小题3分,共42分,把答案填在答题卡的相应位置.)1.(3分)设全集U={0,1,2,3,4},A={0,1,2,3},B={2,3,4},则(∁∪A)∪(∁∪B)={0,1,4}.考点:交、并、补集的混合运算.专题:集合.分析:由全集U,以及A,B,求出A的补集与B的补集,找出两补集的并集即可.解答:解:∵全集U={0,1,2,3,4},A={0,1,2,3},B={2,3,4},∴∁∪A={4},∁∪B={0,1},则(∁∪A)∪(∁∪B)={0,1,4},故答案为:{0,1,4}点评:此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.2.(3分)函数y=log2(3x﹣2)的定义域是{x|x>}.考点:函数的定义域及其求法.分析:对数函数的真数一定要大于0,即,3x﹣2>0,从而求出x的取值范围.解答:解:因为3x﹣2>0,得到x故答案为:{x|x>}点评:对数函数定义域经常考,注意真数一定要大于0.3.(3分)如图,设实数a,b,c,d>0,且不等于1,曲线①,②,③,④分别表示函数y=a x,y=b x,y=log c x,y=log d x在同一坐标系中的图象,则a,b,c,d的大小顺序为d>c>a>b.考点:对数函数的图像与性质;指数函数的图像与性质.专题:函数的性质及应用.分析:根据指数函数的和对数的函数的图象和性质判断即可.解答:解:由函数的图象可得①y=a x 是减函数,②y=b x是减函数,故底数a,b都是大于0且小于1的实数.作出直线x=1和函数①②图象的交点,可得a>b,故0<b<a<1.由函数的图象可得函数③y=log c x 和④y=log d x是增函数,故底数c,d都是大于1的实数.作出直线y=1和函数③④图象的交点,可得d>c,故有d>c>1.综上可得d>c>a>b故答案为:d>c>a>b点评:本题主要考查了指数函数和对数函数的图象和性质,属于基础题4.(3分)某高级中学高一特长班有100名学生,其中学绘画的学生有67人,学音乐的学生有45人,而学体育的学生既不能学绘画,也不能学音乐,人数是21人,那么同时学绘画和音乐的学生有33人.考点:Venn图表达集合的关系及运算.专题:集合.分析:根据学生学特长之间的关系即可得到结论.解答:解:∵学体育的学生既不能学绘画,也不能学音乐,人数是21人,∴学绘画和学音乐的人数是100﹣21=79人,∵学绘画的学生有67人,学音乐的学生有45人,∴同时学绘画和音乐的学生有67+45﹣79=33人,故答案为:33点评:本题考查两个集合的交集、并集、补集的定义,比较基础.5.(3分)已知幂函数y=xα的图象过点(8,4),则这个函数的解析式是f(x)=.考点:幂函数的概念、解析式、定义域、值域.专题:函数的性质及应用.分析:设幂函数f(x)=xα,把点(8,4)代入即可解出.解答:解:设幂函数f(x)=xα,把点(8,4)代入可得4=8α,解得.α=∴f(x)=.故答案为:f(x)=.点评:本题考查了幂函数的定义,属于基础题.6.(3分)已知函数f(n)=,其中n∈N,则f(8)等于7.考点:函数的值.专题:计算题.分析:根据解析式先求出f(8)=f[f(13)],依次再求出f(13)和f[f(13)],即得到所求的函数值.解答:解:∵函数f(n)=,∴f(8)=f[f(13)],则f(13)=13﹣3=10,∴f(8)=f[f(13)]=10﹣3=7,故答案为:7.点评:本题是分段函数求值问题,对应多层求值按“由里到外”的顺序逐层求值,一定要注意自变量的值所在的范围,然后代入相应的解析式求解.7.(3分)设lg2=a,lg3=b,则log512=.考点:对数的运算性质.专题:计算题.分析:利用换底公式进行转化求解是解决本题的关键,然后将所得分式的分子与分母的真数化为2,3的乘积的形式进行代入计算出结果.解答:解:log512==.故答案为:.点评:本题考查对数换底公式的运用,考查对数运算性质的应用,考查学生等价转化的能力和运算化简得能力.8.(3分)函数y=lg(x2﹣2x)的单调递增区间是(2,+∞).考点:对数函数的单调性与特殊点.专题:计算题.分析:由x2﹣2x>0,得x<0或x>2,u=x2﹣2x在(2,+∞)内单调递增,而y=lgu是增函数,由“同增异减”,知函数y=lg(x2﹣2x)的单调递增区间是(2,+∞).解答:解:由x2﹣2x>0,得x<0或x>2,u=x2﹣2x在(2,+∞)内单调递增,而y=lgu是增函数,由“同增异减”,知函数y=lg(x2﹣2x)的单调递增区间是(2,+∞).故答案为:(2,+∞).点评:本题考查对数函数的单调性和应用,解题时要认真审题,注意灵活运用“同增异减”求解复合函数的单调区间的方法.9.(3分)f(x)是定义在(0,+∞)上的单调增函数,若f(x)>f(2﹣x),则x的取值范围是(1,2).考点:函数单调性的性质.专题:计算题;函数的性质及应用;不等式的解法及应用.分析:由于f(x)是定义在(0,+∞)上的单调增函数,则f(x)>f(2﹣x),等价为,解出即可.解答:解:由于f(x)是定义在(0,+∞)上的单调增函数,则f(x)>f(2﹣x),等价为,解得,即有1<x<2.则解集为(1,2).故答案为:(1,2).点评:本题考查函数的单调性的运用:解不等式,考查运算能力,属于基础题.10.(3分)(log43+log83)(log32+log92)+log=﹣.考点:对数的运算性质.专题:函数的性质及应用.分析:利用对数的运算法则和换底公式求解.解答:解:(log43+log83)(log32+log92)+log=(log6427+log649)(log94+log92)+=log64243•log98+=﹣=﹣=1﹣=﹣.故答案为:﹣.点评:本题考查对数式化简求值,是基础题,解题时要认真审题,注意对数性质和运算法则的合理运用.11.(3分)函数f(x)=xlog2x﹣3的零点所在区间为(k,k+1)(k∈Z),则k的值是2.考点:函数零点的判定定理.专题:函数的性质及应用.分析:求f′(x),判断函数f(x)取得最值的情况,以及取得零点的情况,及零点的个数,并且能够得到函数f(x)只有一个零点,并且是在(2﹣ln2,+∞)内.容易判断f(2)<0,f(3)>0,所以零点在区间(2,3)内,所以根据已知f(x)在(k,k+1),k∈Z,内有零点,所以k=2.解答:解:f′(x)=ln2+log2x,令f′(x)=0得,x=2﹣ln2,且0<2﹣ln2<1;∴x∈(0,2﹣ln2)时,f′(x)<0,x∈(2﹣ln2,+∞)时,f′(x)>0;∴f(x)在(0,2﹣ln2)上单调递减,在(2﹣ln2,+∞)上单调递增;又x趋向于0时,log2x<0,x>0,∴xlog2x<0,即函数f(x)在(0,2﹣ln2)内不存在零点;又∵f(2)=2﹣3<0,f(3)=3log23﹣3>0;∴f(x)在区间(2,3)内存在一个零点,且在(2﹣ln2,+∞)内只有一个零点;由已知f(x)零点所在区间为(k,k+1),(k∈Z);∴k=2.故答案为:2.点评:考查通过判断函数导数符号判断函数单调性的方法,以及函数零点的概念,以及单调函数取得零点的情况.12.(3分)已知函数f(x)=的定义域是一切实数,则m的取值范围是0≤m≤4.考点:一元二次不等式的应用.专题:不等式的解法及应用.分析:问题等价于mx2+mx+1≥0对一切x∈R恒成立,分m=0,和m≠0两种情况可得答案.解答:解:∵函数f(x)=的定义域是一切实数,∴mx2+mx+1≥0对一切x∈R恒成立,当m=0时,上式变为1>0,恒成立,当m≠0时,必有,解之可得0<m≤4,综上可得0≤m≤4故答案为0≤m≤4点评:本题考查二次函数的性质,涉及函数的定义域和不等式恒成立问题,属基础题.13.(3分)若函数y=x2﹣3x﹣4的定义域为[0,m],值域为[﹣,﹣4],则m的取值范围是[,3].考点:二次函数的性质.专题:计算题;数形结合.分析:根据函数的函数值f()=﹣,f(0)=﹣4,结合函数的图象即可求解解答:解:∵f(x)=x2﹣3x﹣4=(x﹣)2﹣,∴f()=﹣,又f(0)=﹣4,故由二次函数图象可知:m的值最小为;最大为3.m的取值范围是:≤m≤3.故答案[,3]点评:本题考查了二次函数的性质,特别是利用抛物线的对称特点进行解题,属于基础题.14.(3分)已知f(x)是R上的奇函数,满足f(x+2)=f(x),当x∈(0,1)时,f(x)=2x﹣2,则f(log6)=.考点:抽象函数及其应用.专题:计算题;函数的性质及应用.分析:由题意先判断﹣3<log6<﹣2,从而可知先用f(x+2)=f(x)转化到(﹣1,0),再用奇偶性求函数值即可.解答:解:∵﹣3<log6<﹣2,又∵f(x+2)=f(x),∴f(log6)=f(log6+2)=f(log),∵﹣1<log<0,∴0<log2<1,又∵f(x)是R上的奇函数,∴f(log)=﹣f(log2)=﹣(﹣2)=﹣(﹣2)=,故答案为:.点评:本题考查了抽象函数的应用,属于中档题.二、解答题:(本大题共6小题,共计58分,解答应写出文字说明、证明过程或演算步骤.解答写在答题卡的指定区域内.)15.(8分)集合A={x|3≤x<10},B={x|2<x<7},C={x|x<a},(1)求A∪B;(2)求(∁R A)∩B;(3)若A∩C≠∅,求a的取值范围.考点:交、并、补集的混合运算.专题:集合.分析:(1)由A与B,求出两集合的并集即可;(2)由全集R及A,求出A的补集,找出A补集与B的交集即可;(3)根据A与C的交集不为空集,求出a的范围即可.解答:解:(1)∵A={x|3≤x<10},B={x|2<x<7},∴A∪B={x|2<x<10};(2)∵A={x|3≤x<10},B={x|2<x<7},∴∁R A={x|x<3或x≥10},则(∁R A)∩B={x|2<x<3};(3)∵A={x|3≤x<10},C={x|x<a},且A∩C≠∅,∴a>3.点评:此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.16.(8分)函数y=a2x+2a x﹣1(a>0且a≠1)在区间[﹣1,1]上有最大值14,试求a的值.考点:指数函数综合题.分析:令b=a x构造二次函数y=b2+2b﹣1,然后根据a的不同范围(a>1或0<a<1)确定b的范围后可解.解答:解:令b=a x则a2x=b2∴y=b2+2b﹣1=(b+1)2﹣2 对称轴b=﹣1若0<a<1,则b=a x是减函数,所以a﹣1>a所以0<a<b<所以y的图象都在对称轴b=﹣1的右边,开口向上并且递增所以b=时有最大值所以y=b2+2b﹣1=14∴b2+2b﹣15=0∴(b﹣3)(b+5)=0b>0,所以b==3,a=符合0<a<1若a>1则b=a x是增函数,此时0<<b<ay的图象仍在对称轴b=﹣1的右边,所以还是增函数b=a时有最大值所以y=b2+2b﹣1=14b>0,所以b=a=3,符合a>1所以a=或a=3点评:本题主要考查指数函数单调性的问题.对于这种类型的题经常转化为二次函数,根据二次函数的图象和性质进行求解.17.(10分)已知a为实数,当a分别为何值时,关于x的方程|x2﹣6x+8|﹣a=0有两个、三个、四个互不相等的实数根?考点:函数的零点与方程根的关系.专题:计算题;作图题;函数的性质及应用.分析:方程|x2﹣6x+8|﹣a=0的解的个数可转化为函数y=|x2﹣6x+8|与y=a的交点的个数,作函数y=|x2﹣6x+8|的图象,由数形结合求a.解答:解:方程|x2﹣6x+8|﹣a=0的解的个数可转化为函数y=|x2﹣6x+8|与y=a的交点的个数,作函数y=|x2﹣6x+8|的图象如下,故由图象可知,当a=0或a>1时,关于x的方程|x2﹣6x+8|﹣a=0有两个互不相等的实数根,当a=1时,关于x的方程|x2﹣6x+8|﹣a=0有三个互不相等的实数根,当0<a<1时,关于x的方程|x2﹣6x+8|﹣a=0有四个互不相等的实数根.点评:本题考查了函数图象的作法及方程的根与函数交点的关系,属于中档题.18.(10分)某校学生研究性学习小组发现,学生上课的注意力指标随着听课时间的变化而变化.老师讲课开始时学生的兴趣激增,接下来学生的兴趣将保持较理想的状态一段时间,随后学生的注意力开始分散.该小组发现注意力指标f(t)与上课时刻第t分钟末的关系如下(t∈(0,40],设上课开始时,t=0):f(t)=(a>0且a≠1).若上课后第5分钟末时的注意力指标为140,(1)求a的值;(2)上课后第5分钟末和下课前5分钟末比较,哪个时刻注意力更集中?(3)在一节课中,学生的注意力指标至少达到140的时间能保持多长?考点:分段函数的应用.专题:计算题;应用题;函数的性质及应用.分析:(1)由题意,100•﹣60=140,从而求a的值;(2)上课后第5分钟末时f(5)=140,下课前5分钟末f(35)=﹣15×35+640=115,从而可得答案;(3)分别讨论三段函数上f(t)≥140的解,从而求出f(t)≥140的解,从而求在一节课中,学生的注意力指标至少达到140的时间能保持的时间.解答:解:(1)由题意得,当t=5时,f(t)=140,即100•﹣60=140,解得,a=4;(2)f(5)=140,f(35)=﹣15×35+640=115,由于f(5)>f(35),故上课后第5分钟末比下课前5分钟末注意力更集中;(3)①当0<t≤10时,由(1)知,f(t)≥140的解集为[5,10],②当10<t≤20时,f(t)=340>140,成立;③当20<t≤40时,﹣15t+640≥140,故20<t≤,综上所述,5≤t≤,故学生的注意力指标至少达到140的时间能保持﹣5=分钟.点评:本题考查了分段函数的应用,同时考查了实际问题转化为数学问题的能力,属于中档题.19.(10分)已知函数f(x)=2ax+(a∈R).(1)当0<a≤时,试判断f(x)在(0,1]上的单调性并用定义证明你的结论;(2)对于任意的x∈(0,1],使得f(x)≥6恒成立,求实数a的取值范围.考点:利用导数求闭区间上函数的最值;利用导数研究函数的单调性.专题:导数的综合应用.分析:(1)利用定义证明即可,(2)利用导数判断函数的最值,需要分类讨论,问题得以解决解答:解:(1)f(x)在(0,1]上的单调性递减,理由如下:设x1,x2∈(0,1],且x1<x2,则f(x1)﹣f(x2)=2ax1+﹣2ax2﹣=2a(x1﹣x2)+=(1﹣2ax1x2),∵x1,x2∈(0,1],且x1<x2,0<a≤,∴x2﹣x1>0,0<x1•x2<1,0<2ax1x2<1,1﹣2ax1x2>0,∴f(x1)﹣f(x2)>0,∴f(x)在(0,1]上的单调性递减,(2)∵f(x)=2ax+,∴f′(x)=2a﹣=,①当a≤0时,f′(x)<0,∴函数f(x)在(0,1]单调递减,∴f(x)min=f(1)=2a≥6,解得a≤3,∴a≤0时,对于任意的x∈(0,1],使得f(x)≥6恒成立,②当a>0时,令f′(x)=0,解得x=,当f′(x)>0,即x>,函数f(x)单调递增,当f′(x)<0,即0<x<,函数f(x)单调递减,当≥1时,即0<a≤时,f(x)在(0,1]上的单调性递减,∴f(x)min=f(1)=2a≥6恒成立解得a≤3,当<1时,即a>时,∴f(x)在(0,]上的单调递减,在(,1)上单调递增,∴f(x)min=f()=2a•+≥6恒成立,解得a≥,综上所述实数a的取值范围为(﹣∞,]∪[,+∞)点评:本题主要考查了函数的单调性和导数与函数的最值问题,以及求参数的取值范围,属于中档题20.(12分)已知函数f(x)=lg.(1)判断函数f(x)的奇偶性;(2)若f(x)≤1,求实数x的取值范围;(3)关于x的方程10f(x)=ax有实数解,求实数a的取值范围.考点:指、对数不等式的解法;函数奇偶性的判断;函数的零点.专题:函数的性质及应用.分析:(1)令真数大于0可得到函数的定义域,利用对数的运算律化简f(﹣x),判断出与f(x)的关系,再由函数奇偶性的定义得出结论;(2)把f(x)≤1化为:lg≤lg10,由函数的定义域和对数函数的单调性,列出不等式组求出x的范围;(3)根据解析式把方程10f(x)=ax有实数解化为:a=在(﹣1,1)有实数解,设g(x)=,并求出g′(x)化简后,利用二次函数的性质得到单调区间,求出函数的最大值、最小值,得到函数的值域,就是实数a的取值范围.解答:解:(1)由得,(x+1)(x﹣1)<0,解得﹣1<x<1,所以函数f(x)的定义域是(﹣1,1),因为f(﹣x)=lg=lg=﹣lg=﹣f(x),所以函数f(x)是奇函数;(2)由f(x)≤1得,lg≤1=lg10,所以,即,解得﹣≤x<1,则实数x的取值范围是[﹣,1);(3)由10f(x)=ax得,=ax,且﹣1<x<1,当x=0时,方程不成立;当x≠0时,方程化为a=,设g(x)=,则方程10f(x)=ax有实数解化为a=在(﹣1,1)有实数解,即实数k属于函数g(x)=在(﹣1,1)上的值域,则g′(x)==,令h(x)=x2﹣2x﹣1=0,解得x==1,则x=1,所以当﹣1<x<1﹣时,h(x)>0,则g′(x)>0,当1<x<1时,h(x)<0,则g′(x)<0,所以g(x)在区间(﹣1,1﹣)单调递增,在(1﹣,1)上单调递减,则函数g(x)最小值是g(1﹣)==,又g(1)=0,g(﹣1)无意义,所以函数g(x)最大值是0,所以函数g(x)的值域是[,0),即实数a的取值范围是:[,0).点评:本题考查对数函数的单调性、定义域,函数奇偶性的判断,对数不等式、分式不等式的求法,以及函数与导数的应用,考查运算求解能力与化归、转化思想.属于难题.。
江苏省南京师大附中2020-2021学年高一第一学期期中考试数学试题一、单项选择题:本大题共8小题,每小题5分,共40分,请把答案直接填写在答题卡相应位置上1.已知全集{}1,0,1,2U =−, {} 1,1A =−,则集合U A =( ) A .{0,2} B .{}1,0− C .{0,1}D .{1,2} 2.“1x =”是“2540x x −+=”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 3.命题“x ∃∈R ,210x x −−>”的否定是( ).A .x ∃∈R , 210x x −−<B .x ∃∈R ,210x x −−≤C .x ∀∈R ,210x x −−≤D .x ∀∈R ,2 10x x −−>4.已知223x x −+=,则1x x −+的值为( ).AB .1 C. D .1±5.函数22),0,03(1x x x f x x x⎧−≤≤⎪=⎨<⎪⎩的值域为( ). A .[]3,1− B .(0),−∞ C .(1),−∞ D . (1],−∞6.下列四组函数中,()f x 与 ()g x (或 ()g t )表示同一个函数的是( )A.()f x = ()g x x = B.()f x =2()g t = C .22()1x x f x x +−=− ()2g x x =+ D . ()f x x =()g t =7.已知实数0a >,0b >,且1111a b +=+,则2a b +的最小值为( ) A.3+ B.1 C .4 D.32 8.函数32()1x f x x =−的图像大致为( )A .B .C .D .二、多项选择题:(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对得5分,选对但不全的得3分,有选错的得0分)9.设集合{}220A x x x =−=,则下列表述不正确的是( ).A .{}0A ∈B .2A ∉C .{}2A ∈D . 0A ∈ 10.下列四个条件中,能成为 x y >的充分不必要条件的是( )A .22xt yt >B .xt yt >C .x y >D .110x y<< 11.下列命题中是真命题的有( ).A .若函数()f x 在(0],−∞和(0,)+∞上都单调递增,则()f x 在R 上单调递增;B .狄利克雷函数1,()0,x f x x ⎧=⎨⎩为有理数为无理数在任意一个区间都不单调; C .若函数 ()f x 是奇函数,则一定有 (0)0f =;D .若函数 ()f x 是偶函数,则可能有 (0)0f =; 12.已知 1a >, 1b >,且()1ab a b −+=,那么下列结论正确的有( ).A .a b +有最大值2B .a b +有最小值2 C .ab1 D .ab有最小值3三、填空题:本大题共4小题,每小题5分,共20分,请把答案直接填写在答题卡相应位置上13.已知0,0()1,032,0x f x x x x >⎧⎪=−=⎨⎪−<⎩,则 ()()()6f f f = .14.已知函数53()7c f x ax bx x=+++, 3( 5)f −= ,则 ()3f = . 15.某水果店申报网上销售水果价格如下:梨子60元/盒,桔子65元/盒,水蜜桃80元/盒,荔枝90元/盒,为增加销量,店主对这四种水果进行促销:一次性购买水果总价达到120元,顾客就少付x 元, 每笔订单顾客网上支付成功后,店主会得到支付的80%.①10x =时,顾客一次性购买梨子、水蜜桃各一盒,需要支付 .元;②在促销活动中,为保证店主每笔订单得到的金额均不低于促销前总价的七折(即70%),则x 的最大值是 .16.()f x 为定义在R 上的偶函数,2()()2g x f x x =−在区间[0,)+∞上是增函数,则不等式() 1246()f x f x x +−+>−−的解集为 .三、解答题:本大题共6小题,共70分,请把答案填写在答题卡相应位置上.17.已知a ,b 均为正数,证明:22a b a b b a+≥+. 18.计算:(1)12ln 249e −⎛⎫++ ⎪⎝⎭(2)()223lg2lg5lg20log 3log 4+⋅+⋅.19.已知二次函数 ()f x 的值域为[)4,−+∞,且不等式0( )f x <的解集为()1,3−.(1)求()f x 的解析式;(2)若对于任意的[2,2]x ∈−,都有 2() f x x m >+恒成立,求实数m 的取值范围.20.某小区为了扩大绿化面积,规划沿着围墙(足够长)边画出一块面积为100平方米的矩形区域ABCD 修建花圃,规定ABCD 的每条边长不超过20米.如图所示,要求矩形区域 EFGH 用来种花,且点A ,B ,E ,F 四点共线,阴影部分为1米宽的种草区域.设AB x =米,种花区域EFGH 的面积为 S 平方米. (1)将S 表示为x 的函数;(2)求 S 的最大值.21.已知集合{A y y ==,集合{}220B x x x a a =−+−<. (1)若A B A ⋃=,求a 的取值范围;(2)在A B ⋂中有且仅有两个整数,求a 的取值范围.22.设()a f x x x=+(0x >,a 为大于0的常数) (1)若 ()f x 的最小值为4,求a 的值;(2)用定义证明:()f x 在)+∞上是增函数; (3)在(1)的条件下,当1x >时,都有恒成立,求实数m 的取值范围.江苏省南京师大附中2020-2021学年高一第一学期期中考试数学试题参考答案1.【答案】A ;【解析】由补集定义知选A .2.【答案】B ;【解析】因为{}1是{}2540x x x −+=的真子集,所以“1x =”是“2540x x −+=”的充分不必要条件.3.【答案】C ;【解析】存在量词命题的否定,需要把存在量词改成全称量词,并否定后面的结论,故选C .4.【答案】C ;【解析】由()212225x xx x −−+=++=,知1x x −+=,故选C .5.【答案】D ; 【解析】当 0x <时,1()f x x=单调递减,范围为(0),−∞,当03x ≤≤时,2()2f x x x =−在[0,1]上单调递增,在[1,3]上单调递减,范围是[]3,1−,所以函数值域为(1],−∞,故选D .6.【答案】D ;【解析】A 选项,() f x x =,故错误;B 选项,定义域不同,故错误;C 选项,定义域不同,故错误;D 选项,是同一函数,故选D .7.【答案】B ;【解析】22(1)2a b a b +=++−=()112121a b a b ⎛⎫+++−=⎡⎤ ⎪⎣⎦+⎝⎭()21311b a a b +++≥+,当且仅当1a =且2b =时等号成立,故选B . 8.【答案】A ; 【解析】 ()f x 定义域为(,1)(1,1)(1,)−∞−⋃−⋃+∞,是奇函数,当x →+∞时,()f x →+∞,故选A .9.【答案】ABC ;【解析】{}0,2A =,故选 ABC . 10.【答案】ACD ;【解析】A 选项,若22xt yt >,则20t ≠∣,则x y >,反之不成立,A 正确; B 选项,当0t <时,x y <,B 错误;C 选项,若x y >,由y y ≥,则x y >,反之不成立,C 正确;D 选项,1()f x x =在(0,)+∞单调递减,若110x y<<,则x y >,反之不成立,D 正确; 故选ACD .11.【答案】BD ; 【解析】A 选项,若(),0ln ,0x x f x x x ≤⎧=⎨>⎩是一个反例,A 错误; B 选项,在任意区间I 上总可以取1x ,2x Q ∈,使()()12f x f x =,则 ()f x 在I 上不单调,B 正确; C 选项,1()f x x=是一个反例,C 错误; D 选项,2()f x x =符合要求,D 正确;故选BD .12.【答案】BD ;【解析】法一:令a b s +=,ab t =,由题意可得2s >,1t >,1t s −=,由基本不等式s ≥,则1t −≥1t >可得2214t t t −+≥,则3t ≥+1a b ==取等;s ≥,由2s >可得2440s s −−≥,则2s ≥+,1a b ==取等; 故选BD ;法二:由()1ab a b −+=可得(1)(1)2a b −−=,令10m a =−>,10n b =−>,则222a b m n +=++≥+=+m n ==(1)(1)133ab m n mn m n m n =++=+++=++≥+,m n == 故选BD .13.【答案】-5【解析】()()()()()60(1)5f f f f f f ==−=−.14.【答案】9;【解析】(3)(3)7714f f +−=+=,所以(3)1459f =−=.15.【答案】130;15.【解析】①608010130+−=;②由题意可知,购买总价刚好为120元时,折扣比例最高,此时有0.8(120)0.7120x ⨯−≥⨯,解得15x ≤.16.【答案】3,2⎛⎫−∞− ⎪⎝⎭; 【解析】由()f x 为偶函数,可知()g x 也为偶函数,且在R 上先减再增, 由(1)(2)46f x f x x +−+>−−,可知22(1)2(1)(2)2(2)f x x f x x +−+>+−+,即(1)(2)g x g x +>+, 可知12x x +>+,解得32x <−. 17.【答案】详见解析. 【解析】法一:由基本不等式可得,222()a b b a a b b a +++≥=+ 当且仅当22a b b b a a==⎧⎪⎪⎨⎪⎪⎩,即a b =时取等, 则原式得证.法二:223322()a b a b a b a b b a b a ⎛⎫++=+− ⎪⎝⎭ 由0a >,0b >,可得0a b +>,30b a >,30a b>,0ab >,则2222222()2()a b a b a b a b ab a b b a ⎛⎫++≥++=++=+ ⎪⎝⎭, 由0a b +>可得22a b a b b a+≥+. 法三:()()()()()222222222a b a b a b a b a b a b b a a b b a b a ab ab−−−+−−+−+=+==, 由0a >,0b >可得()220a b a b b a +−+≥即22a b a b b a+≥+. 18.【答案】(1)32;(2)3. 【解析】(1)12l 2n 43322922e −⎛⎫++=+−= ⎪⎝⎭, (2)2223(lg2)lg5lg20log 3log 4(lg2lg5)23+⋅+⋅=++=.19.【答案】(1)2()23f x x x =−−;(2)7m <−【解析】(1)设2()f x ax bx c =++,由题意可知:(1)0(3)930(1)4f a b c f a b c f a b c −=−+==++==++=−⎧⎪⎨⎪⎩,解得123a b c ==−=−⎧⎪⎨⎪⎩,即2()23f x x x =−−;(2)243m x x <−−对[2,2]x ∈−恒成立,令2()43g x x x =−−,当[2,2]x ∈−,可知()[7,9]g x ∈−,故7m <−.20.【答案】(1)200102(520)S x x x=−−≤≤;(2)S的最大值为102− 【解析】(1)因为AB x =, 所以100AD x =,2EF x =−,1001FG x=−; 所以()10020021102S x x x x ⎛⎫=−−=−− ⎪⎝⎭因为020x <≤,100020x <≤,解得520x ≤≤,所以200102(520)S x x x =−−≤≤;(2)102102S ≤−=−x =所以S 的最大值为102−21.【答案】(1)01a ≤≤;(2)[1,0)(1,2]−⋃;【解析】(1)因为A B A ⋃=,所以B A ⊆,因为244x x −≤,所以[0,2]A =;集合B 的不等式可化为(1)()0x a x a +−−<,①B =∅,即0∆≤,解得12a =,符合; ②B ≠∅时,即12a ≠时,此时02a ≤≤,012a ≤−≤,解得01a ≤≤且12a ≠; 综上01a ≤≤;(2)集合A 中有三个整数0,1,2,{}()(1)0B x x a x a =−+−<; 由A B ⋂中有且仅有两个整数,可得B 中有0,1,2中的两个整数; 1a a <−即12a <时,(,1)B a a =−, 则B 中整数仅有有0,1或仅有1,2,若仅有0,1,则10a −≤<,112a <−≤,解得10a −≤<; 若仅有1,2,则01a ≤<,213a <−≤,无解;1a a =−即12a =时,B =∅,不满足题意; 1a a >−即12a >时,(1,)B a a =−, 则B 中整数仅有有0,1或仅有1,2,若仅有0,1,则110a −≤−<,12a <≤,解得12a <≤;若仅有1,2,则011a ≤−<,23a <≤,无解;综上,实数a 的取值范围是[1,0)(1,2]−⋃.。
一、选择题1.(0分)[ID :11821]若集合{}|1,A x x x R =≤∈,{}2|,B y y x x R ==∈,则A B =A .{}|11x x -≤≤B .{}|0x x ≥C .{}|01x x ≤≤D .∅2.(0分)[ID :11809]不等式()2log 231a x x -+≤-在x ∈R 上恒成立,则实数a 的取值范围是( ) A .[)2,+∞B .(]1,2C .1,12⎡⎫⎪⎢⎣⎭D .10,2⎛⎤ ⎥⎝⎦3.(0分)[ID :11808]已知函数()1ln 1xf x x-=+,则不等式()()130f x f x +-≥的解集为( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .11,32⎛⎤ ⎥⎝⎦C .12,43⎡⎫⎪⎢⎣⎭D .12,23⎡⎫⎪⎢⎣⎭4.(0分)[ID :11807]如图,点O 为坐标原点,点(1,1)A ,若函数xy a =及log b y x =的图象与线段OA 分别交于点M ,N ,且M ,N 恰好是线段OA 的两个三等分点,则a ,b 满足.A .1a b <<B .1b a <<C .1b a >>D .1a b >>5.(0分)[ID :11805]三个数0.32,20.3,0.32log 的大小关系为( ).A .20.30.3log 20.32<< B .0.320.3log 220.3<<C .20.30.30.3log 22<<D .20.30.30.32log 2<<6.(0分)[ID :11753]已知函数224()(log )log (4)1f x x x =++,则函数()f x 的最小值是A .2B .3116C .158D .17.(0分)[ID :11752]已知函数)245f x x x =+,则()f x 的解析式为( )A .()21f x x =+B .()()212f x x x =+≥C .()2f x x =D .()()22f x xx =≥8.(0分)[ID :11749]设x 、y 、z 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z9.(0分)[ID :11772]已知111,2,,3,23a ⎧⎫∈-⎨⎬⎩⎭,若()a f x x 为奇函数,且在(0,)+∞上单调递增,则实数a 的值是( )A .1,3-B .1,33C .11,,33-D .11,,33210.(0分)[ID :11770]已知定义在R 上的函数()f x 是奇函数且满足,3()(2)32f x f x f ⎛⎫-=-=- ⎪⎝⎭,,数列{}n a 满足11a =-,且2n n S a n =+,(其中n S 为{}n a 的前n 项和).则()()56f a f a +=()A .3B .2-C .3-D .211.(0分)[ID :11748]已知定义在R 上的函数()21()x m f x m -=-为实数为偶函数,记0.5(log 3),af 2b (log 5),c (2)f f m ,则,,a b c ,的大小关系为( )A .a b c <<B .c a b <<C .a c b <<D .c b a <<12.(0分)[ID :11744]函数3222x xx y -=+在[]6,6-的图像大致为 A . B .C .D .13.(0分)[ID :11739]函数()2log ,0,2,0,xx x f x x ⎧>=⎨≤⎩则函数()()()2384g x fx f x =-+的零点个数是( ) A .5 B .4C .3D .614.(0分)[ID :11733]设0.60.3a =,0.30.6b =,0.30.3c =,则a ,b ,c 的大小关系为( ) A .b a c <<B .a c b <<C .b c a <<D .c b a <<15.(0分)[ID :11729]已知函数f(x)={(2a −1)x +7a −2,(x <1)a x,(x ≥1)在(-∞,+∞)上单调递减,则实数 a 的取值范围是( ) A .(0,1)B .(0,12)C .[38,12)D .[38,1)二、填空题16.(0分)[ID :11928]若函数()24,43,x x f x x x x λλ-≥⎧=⎨-+<⎩恰有2个零点,则λ的取值范围是______.17.(0分)[ID :11913]某建材商场国庆期间搞促销活动,规定:如果顾客选购物品的总金额不超过600元,则不享受任何折扣优惠;如果顾客选购物品的总金额超过600元,则超过600元部分享受一定的折扣优惠,折扣优惠按下表累计计算.某人在此商场购物获得的折扣优惠金额为30元,则他实际所付金额为____元. 18.(0分)[ID :11893]已知1240x x a ++⋅>对一切(],1x ∞∈-上恒成立,则实数a 的取值范围是______.19.(0分)[ID :11889]已知偶函数()f x 满足3()8(0)f x x x =-≥,则(2)0f x ->的解集为___ ___20.(0分)[ID :11877]已知集合{}{}1,1,2,4,1,0,2,A B =-=-则A B =__________.21.(0分)[ID :11862]若幂函数()a f x x 的图象经过点1(3)9,,则2a -=__________.22.(0分)[ID :11856]定义在[3,3]-上的奇函数()f x ,已知当[0,3]x ∈时,()34()x x f x a a R =+⋅∈,则()f x 在[3,0]-上的解析式为______.23.(0分)[ID :11845]2017年国庆期间,一个小朋友买了一个体积为a 的彩色大气球,放在自己房间内,由于气球密封不好,经过t 天后气球体积变为kt V a e -=⋅.若经过25天后,气球体积变为原来的23,则至少经过__________天后,气球体积小于原来的13.(lg30.477,lg 20.301≈≈,结果保留整数)24.(0分)[ID :11839]用{}min ,,a b c 表示,,a b c 三个数中最小值,则函数{}()min 41,4,8f x x x x =++-+的最大值是 .25.(0分)[ID :11864]已知函数()266,34,x x f x x ⎧-+=⎨+⎩ 00x x ≥<,若互不相等的实数1x ,2x ,3x 满足()()()123f x f x f x ==,则123x x x ++的取值范围是__________.三、解答题26.(0分)[ID :12025]已知函数()()log 1xa f x a =-(0a >,1a ≠)(1)当12a =时,求函数()f x 的定义域; (2)当1a >时,求关于x 的不等式()()1f x f <的解集;(3)当2a =时,若不等式()()2log 12xf x m -+>对任意实数[]1,3x ∈恒成立,求实数m 的取值范围.27.(0分)[ID :11986]已知函数()1ln1xf x x+=-的定义域为集合A ,集合(),1B a a =+,且B A ⊆.(1)求实数a 的取值范围;(2)求证:函数()f x 是奇函数但不是偶函数.28.(0分)[ID :11953]设全集U=R ,集合A={x|1≤x <4},B={x|2a≤x <3-a}. (1)若a=-2,求B∩A ,B∩(∁U A);(2)若A∪B=A ,求实数a 的取值范围. 29.(0分)[ID :11932]设集合2{|40,}A x x x x R =+=∈,22{|2(1)10,}B x x a x a x R =+++-=∈.(1)若A B B ⋃=,求实数a 的值;(2)若AB B =,求实数a 的范围.30.(0分)[ID :11929]某辆汽车以x 千米/小时的速度在高速公路上匀速行驶(考虑到高速公路行车安全要求60120)x 时,每小时的油耗(所需要的汽油量)为14500()5x k x-+升,其中k 为常数,且60100k .(1)若汽车以120千米/小时的速度行驶时,每小时的油耗为11.5升,欲使每小时的油耗不超过9升,求x 的取值范围;(2)求该汽车行驶100千米的油耗的最小值.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.C2.C3.D4.A5.A6.B7.B8.D9.B10.A11.B12.B13.A14.B15.C二、填空题16.【解析】【分析】根据题意在同一个坐标系中作出函数和的图象结合图象分析可得答案【详解】根据题意在同一个坐标系中作出函数和的图象如图:若函数恰有2个零点即函数图象与轴有且仅有2个交点则或即的取值范围是:17.1120【解析】【分析】明确折扣金额y元与购物总金额x元之间的解析式结合y=30>25代入可得某人在此商场购物总金额减去折扣可得答案【详解】由题可知:折扣金额y 元与购物总金额x元之间的解析式y∵y=18.【解析】【分析】根据题意分离出参数a后转化为求函数的最值即可通过换元后利用二次函数的性质可求得最大值【详解】可化为令由得则在上递减当时取得最大值为所以故答案为【点睛】本题考查二次函数的性质函数恒成立19.【解析】【分析】通过判断函数的奇偶性增减性就可以解不等式【详解】根据题意可知令则转化为由于偶函数在上为增函数则即即或即或【点睛】本题主要考查利用函数的性质(奇偶性增减性)解不等式意在考查学生的转化能20.【解析】【分析】直接利用集合交集的定义求解即可【详解】因为集合两个集合的公共元素为所以故答案为【点睛】研究集合问题一定要抓住元素看元素应满足的属性研究两集合的关系时关键是将两集合的关系转化为元素间的21.【解析】由题意有:则:22.f(x)=4﹣x﹣3﹣x【解析】【分析】先根据计算再设代入函数利用函数的奇偶性得到答案【详解】定义在﹣33上的奇函数f(x)已知当x∈03时f(x)=3x+a4x(a∈R)当x=0时f(0)=0解得23.68【解析】由题意得经过天后气球体积变为经过25天后气球体积变为原来的即则设天后体积变为原来的即即则两式相除可得即所以天点睛:本题主要考查了指数函数的综合问题考查了指数运算的综合应用求解本题的关键是24.6【解析】试题分析:由分别解得则函数则可知当时函数取得最大值为6考点:分段函数的最值问题25.【解析】【分析】画出分段函数的图像由图像结合对称性即可得出【详解】函数的图像如下图所示不妨设则关于直线对称所以且满足则故的取值范围是【点睛】解决本题的关键是要会画分段函数的图像由图像结合对称性经过计三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题 1.C 解析:C 【解析】 【分析】求出集合B 后可得A B .【详解】因为集合{}|1,{|11}A x x x R x x =≤∈=-≤≤,{}2|,{|0}B y y x x R y y ==∈=≥则A B ={}|01x x ≤≤,选C【点睛】本题考查集合的交,注意集合意义的理解,如(){}|,x y f x x D =∈表示函数的定义域,而(){}|,y y f x x D =∈表示函数的值域,()(){},|,x y y f x x D =∈表示函数的图像.2.C解析:C 【解析】 【分析】由()2223122-+=-+≥x x x 以及题中的条件,根据对数函数的单调性性,对a 讨论求解即可. 【详解】由()2log 231a x x -+≤-可得()21log 23log -+≤a ax x a, 当1a >时,由()2223122-+=-+≥x x x 可知2123-+≤x x a无实数解,故舍去; 当01a <<时,()2212312-+=-+≥x x x a在x ∈R 上恒成立,所以12a ≤,解得112a ≤<. 故选:C本题主要考查对数函数的单调性,涉及到复合函数问题,属于中档题.3.D解析:D 【解析】 【分析】根据题意可得函数()f x 的奇偶性以及单调性,据此原不等式转化为()()31f x f x ≥-,求解可得x 的取值范围,即可得出结论. 【详解】根据题意,函数()1ln 1xf x x-=+, 则有101xx->+,解可得11x -<<, 即函数的定义域为()1,1-,关于原点对称, 又由()()11lnln 11x xf x f x x x+--==-=--+, 即函数()f x 为奇函数, 设11xt x -=+,则y lnt =, 12111x t x x -==-++,在()1,1-上为减函数, 而y lnt =在()0,∞+上为增函数, 故()1ln1xf x x-=+在区间()1,1-上为减函数, ()()()()13013f x f x f x f x +-≥⇒≥-- ()()3131111311x x f x f x x x ≤-⎧⎪⇒≥-⇒-<<⎨⎪-<-<⎩,解可得:1223x ≤<,即不等式的解集为12,23⎡⎫⎪⎢⎣⎭; 故选:D . 【点睛】本题考查函数的奇偶性与单调性的综合应用,解题时不要忽略函数的定义域,属于中档题.4.A解析:A 【解析】由,M N 恰好是线段OA 的两个三等分点,求得,M N 的坐标,分别代入指数函数和对数函数的解析式,求得,a b 的值,即可求解. 【详解】由题意知(1,1)A ,且,M N 恰好是线段OA 的两个三等分点,所以11,33M ⎛⎫ ⎪⎝⎭,22,33N ⎛⎫ ⎪⎝⎭, 把11,33M ⎛⎫ ⎪⎝⎭代入函数xy a =,即1313a =,解得127a =,把22,33N ⎛⎫ ⎪⎝⎭代入函数log b y x =,即22log 33b =,即得3223b ⎛⎫== ⎪⎝⎭,所以1a b <<. 故选A. 【点睛】本题主要考查了指数函数与对数函数的图象与性质的应用,其中解答熟练应用指数函数和对数函数的解析式求得,a b 的值是解答的关键,着重考查了推理与运算能力,属于基础题.5.A解析:A 【解析】 【分析】利用指数函数与对数函数的单调性即可得出. 【详解】∵0<0.32<1,20.3>1,log 0.32<0, ∴20.3>0.32>log 0.32. 故选A . 【点睛】本题考查了指数函数与对数函数的单调性,属于基础题.6.B解析:B 【解析】 【分析】利用对数的运算法则将函数()()()224log log 41f x x x =++化为()2221log 1log 12x x +++,利用配方法可得结果.【详解】化简()()()224log log 41f x x x =++()2221log 1log 12x x =+++22211131log log 224161616x x ⎛⎫=++-≥-= ⎪⎝⎭,即()f x 的最小值为3116,故选B.【点睛】本题主要考查对数的运算法则以及二次函数配方法求最值,属于中档题. 求函数最值常见方法有,①配方法:若函数为一元二次函数,常采用配方法求函数求值域,其关键在于正确化成完全平方式,并且一定要先确定其定义域;②换元法;③不等式法;④单调性法;⑤图象法.7.B解析:B 【解析】 【分析】利用换元法求函数解析式,注意换元后自变量范围变化. 【详解】2t =,则2t ≥,所以()()()()2224t 251,2,f t t t t =-+-+=+≥即()21f x x =+ ()2x ≥.【点睛】本题考查函数解析式,考查基本求解能力.注意换元后自变量范围变化.8.D解析:D 【解析】令235(1)x y zk k ===>,则2log x k =,3log =y k ,5log =z k∴22lg lg 3lg 913lg 23lg lg8x k y k =⋅=>,则23x y >, 22lg lg5lg 2515lg 25lg lg32x k z k =⋅=<,则25x z <,故选D. 点睛:对于连等问题,常规的方法是令该连等为同一个常数,再用这个常数表示出对应的,,x y z ,通过作差或作商进行比较大小.对数运算要记住对数运算中常见的运算法则,尤其是换底公式以及0与1的对数表示.9.B解析:B 【解析】 【分析】先根据奇函数性质确定a 取法,再根据单调性进行取舍,进而确定选项.【详解】因为()af x x =为奇函数,所以11,3,3a ⎧⎫∈-⎨⎬⎩⎭因为()()0,f x +∞在上单调递增,所以13,3a ⎧⎫∈⎨⎬⎩⎭因此选B. 【点睛】本题考查幂函数奇偶性与单调性,考查基本判断选择能力.10.A解析:A 【解析】由奇函数满足()32f x f x ⎛⎫-= ⎪⎝⎭可知该函数是周期为3T =的奇函数, 由递推关系可得:112,21n n n n S a n S a n +-=+=+-, 两式做差有:1221n n n a a a -=--,即()()1121n n a a --=-, 即数列{}1n a -构成首项为112a -=-,公比为2q 的等比数列,故:()1122,21n n n n a a --=-⨯∴=-+,综上有:()()()()()552131223f a f f f f =-+=-==--=,()()()()66216300f a f f f =-+=-==,则:()()563f a f a +=. 本题选择A 选项.11.B解析:B 【解析】由()f x 为偶函数得0m =,所以0,52log 3log 32121312,a =-=-=-=2log 521514b =-=-=,0210c =-=,所以c a b <<,故选B.考点:本题主要考查函数奇偶性及对数运算.12.B解析:B 【解析】 【分析】由分子、分母的奇偶性,易于确定函数为奇函数,由(4)f 的近似值即可得出结果. 【详解】设32()22x x x y f x -==+,则332()2()()2222x x x xx x f x f x ----==-=-++,所以()f x 是奇函数,图象关于原点成中心对称,排除选项C .又34424(4)0,22f -⨯=>+排除选项D ;36626(6)722f -⨯=≈+,排除选项A ,故选B . 【点睛】本题通过判断函数的奇偶性,缩小考察范围,通过计算特殊函数值,最后做出选择.本题较易,注重了基础知识、基本计算能力的考查.13.A解析:A 【解析】 【分析】通过对()g x 式子的分析,把求零点个数转化成求方程的根,结合图象,数形结合得到根的个数,即可得到零点个数. 【详解】 函数()()()2384g x f x f x =-+=()()322f x f x --⎡⎤⎡⎤⎣⎦⎣⎦的零点即方程()23f x =和()2f x =的根, 函数()2log ,0,2,0x x x f x x ⎧>=⎨≤⎩的图象如图所示:由图可得方程()23f x =和()2f x =共有5个根, 即函数()()()2384g x f x f x =-+有5个零点,故选:A . 【点睛】本题考查函数的零点与方程的根的个数的关系,注意结合图象,利用数形结合求得结果时作图很关键,要标准.14.B解析:B【解析】 【分析】根据指数函数的单调性得出0.60.30.30.3<,而根据幂函数的单调性得出0.30.30.30.6<,从而得出a ,b ,c 的大小关系. 【详解】 解:0.3x y =在定义域上单调递减,且0.360.<,0.60.30.30.3∴<,又0.3y x∴=在定义域上单调递增,且0.360.<,0.30.30.30.6∴<, 0.60.30.30.30.30.6∴<<,a cb ∴<<故选:B . 【点睛】考查指数函数和幂函数的单调性,以及增函数和减函数的定义.15.C解析:C 【解析】 【分析】由函数单调性的定义,若函数f(x)在(−∞,+∞)上单调递减,可以得到函数在每一个子区间上都是单调递减的,且当x =1时,f 1(x)≥f 2(x),求解即可. 【详解】若函数f(x)={(2a −1)x +7a −2,(x <1)a x,(x ≥1)在(−∞,+∞)上单调递减,则{2a −1<00<a <1(2a −1)×1+7a −2≥a ,解得38≤a <12. 故选C. 【点睛】本题考查分段函数的单调性.严格根据定义解答,本题保证y 随x 的增大而减小,故解答本题的关键是f 1(x)的最小值大于等于f 2(x)的最大值.二、填空题16.【解析】【分析】根据题意在同一个坐标系中作出函数和的图象结合图象分析可得答案【详解】根据题意在同一个坐标系中作出函数和的图象如图:若函数恰有2个零点即函数图象与轴有且仅有2个交点则或即的取值范围是: 解析:(1,3](4,)+∞.【解析】 【分析】根据题意,在同一个坐标系中作出函数4y x =-和243y x x =-+的图象,结合图象分析可得答案. 【详解】根据题意,在同一个坐标系中作出函数4y x =-和243y x x =-+的图象,如图:若函数()f x 恰有2个零点,即函数()f x 图象与x 轴有且仅有2个交点, 则13λ<或4λ>, 即λ的取值范围是:(1,3](4,)+∞故答案为:(1,3](4,)+∞.【点睛】本题考查分段函数的图象和函数的零点,考查数形结合思想的运用,考查发现问题解决问题的能力.17.1120【解析】【分析】明确折扣金额y 元与购物总金额x 元之间的解析式结合y =30>25代入可得某人在此商场购物总金额减去折扣可得答案【详解】由题可知:折扣金额y 元与购物总金额x 元之间的解析式y ∵y =解析:1120 【解析】 【分析】明确折扣金额y 元与购物总金额x 元之间的解析式,结合y =30>25,代入可得某人在此商场购物总金额, 减去折扣可得答案. 【详解】由题可知:折扣金额y 元与购物总金额x 元之间的解析式,y ()()006000.0560060011000.11100251100x x x x x ⎧≤⎪=-≤⎨⎪-+⎩,<,<,> ∵y =30>25 ∴x >1100∴0.1(x ﹣1100)+25=30 解得,x =1150,1150﹣30=1120,故此人购物实际所付金额为1120元. 【点睛】本题考查的知识点是分段函数,正确理解题意,进而得到满足条件的分段函数解析式是解答的关键.18.【解析】【分析】根据题意分离出参数a 后转化为求函数的最值即可通过换元后利用二次函数的性质可求得最大值【详解】可化为令由得则在上递减当时取得最大值为所以故答案为【点睛】本题考查二次函数的性质函数恒成立解析:3,4∞⎛⎫-+ ⎪⎝⎭【解析】 【分析】根据题意分离出参数a 后转化为求函数的最值即可,通过换元后利用二次函数的性质可求得最大值. 【详解】1240xxa ++⋅>可化为212224x x xx a --+>-=--,令2x t -=,由(],1x ∈-∞,得1,2t ⎡⎫∈+∞⎪⎢⎣⎭, 则2a t t >--,2213()24t t t --=-++在1,2⎡⎫+∞⎪⎢⎣⎭上递减,当12t =时2t t --取得最大值为34-,所以34a >-. 故答案为3,4⎛⎫-+∞ ⎪⎝⎭.【点睛】本题考查二次函数的性质、函数恒成立问题,考查转化思想,考查学生解决问题的能力.属中档题.19.【解析】【分析】通过判断函数的奇偶性增减性就可以解不等式【详解】根据题意可知令则转化为由于偶函数在上为增函数则即即或即或【点睛】本题主要考查利用函数的性质(奇偶性增减性)解不等式意在考查学生的转化能 解析:{|40}x x x ><或【解析】 【分析】通过判断函数的奇偶性,增减性就可以解不等式. 【详解】根据题意可知(2)0f =,令2x t -=,则转化为()(2)f t f >,由于偶函数()f x 在()0,∞+上为增函数,则()(2)f t f >,即2t>,即22x -<-或22x ->,即0x <或4x >.【点睛】本题主要考查利用函数的性质(奇偶性,增减性)解不等式,意在考查学生的转化能力,分析能力及计算能力.20.【解析】【分析】直接利用集合交集的定义求解即可【详解】因为集合两个集合的公共元素为所以故答案为【点睛】研究集合问题一定要抓住元素看元素应满足的属性研究两集合的关系时关键是将两集合的关系转化为元素间的解析:{}12-,【解析】 【分析】直接利用集合交集的定义求解即可. 【详解】因为集合{}{}1,1,2,4,1,0,2,A B =-=- 两个集合的公共元素为1,2- 所以{}1,2AB =-.故答案为{}1,2-.【点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合A 且属于集合B 的元素的集合.21.【解析】由题意有:则: 解析:14【解析】 由题意有:13,29aa =∴=-, 则:()22124a--=-=. 22.f (x )=4﹣x ﹣3﹣x 【解析】【分析】先根据计算再设代入函数利用函数的奇偶性得到答案【详解】定义在﹣33上的奇函数f (x )已知当x ∈03时f (x )=3x+a4x (a ∈R )当x =0时f (0)=0解得解析:f (x )=4﹣x ﹣3﹣x【解析】 【分析】先根据()00f =计算1a =-,再设30x ≤≤﹣ ,代入函数利用函数的奇偶性得到答案. 【详解】定义在[﹣3,3]上的奇函数f (x ),已知当x ∈[0,3]时,f (x )=3x +a 4x (a ∈R ), 当x =0时,f (0)=0,解得1+a =0,所以a =﹣1. 故当x ∈[0,3]时,f (x )=3x ﹣4x .当﹣3≤x ≤0时,0≤﹣x ≤3,所以f (﹣x )=3﹣x ﹣4﹣x ,由于函数为奇函数,故f (﹣x )=﹣f (x ),所以f (x )=4﹣x ﹣3﹣x .故答案为:f (x )=4﹣x ﹣3﹣x 【点睛】本题考查了利用函数的奇偶性求函数解析式,属于常考题型.23.68【解析】由题意得经过天后气球体积变为经过25天后气球体积变为原来的即则设天后体积变为原来的即即则两式相除可得即所以天点睛:本题主要考查了指数函数的综合问题考查了指数运算的综合应用求解本题的关键是解析:68 【解析】由题意得,经过t 天后气球体积变为kt V a e -=⋅,经过25天后,气球体积变为原来的23, 即25252233kk a ea e --⋅=⇒=,则225ln 3k -=, 设t 天后体积变为原来的13,即13kt V a e a -=⋅=,即13kte -=,则1ln 3kt -=两式相除可得2ln2531ln3k kt -=-,即2lg25lg 2lg30.3010.477130.3681lg30.4771lg 3t --===≈--, 所以68t ≈天点睛:本题主要考查了指数函数的综合问题,考查了指数运算的综合应用,求解本题的关键是先待定t 的值,建立方程,在比较已知条件,得出关于t 的方程,求解t 的值,本题解法比较巧妙,充分考虑了题设条件的特征,对观察判断能力要求较高,解题时根据题设条件选择恰当的方法可以降低运算量,试题有一定的难度,属于中档试题.24.6【解析】试题分析:由分别解得则函数则可知当时函数取得最大值为6考点:分段函数的最值问题解析:6 【解析】试题分析:由414,418,48x x x x x x +>++>-++>-+分别解得1, 1.4,2x x x >>>,则函数()8,2{4,1241,1x x f x x x x x -+≥=+<<+≤则可知当2x =时,函数{}()min 41,4,8f x x x x =++-+取得最大值为6 考点:分段函数的最值问题25.【解析】【分析】画出分段函数的图像由图像结合对称性即可得出【详解】函数的图像如下图所示不妨设则关于直线对称所以且满足则故的取值范围是【点睛】解决本题的关键是要会画分段函数的图像由图像结合对称性经过计解析:11(,6)3【解析】 【分析】画出分段函数的图像,由图像结合对称性即可得出。
2019-2020学年江苏省南京师大附中高一上学期期中数学试题一、单选题1.设集合{2,4,6,8,10}A =,{4,8}B =,则A C B =( ). A .{4,8} B .{2,6}C .{2,6,10}D .{2,4,6,8,10}【答案】C【解析】A C B 表示A 中不包含B 的集合,容易选出答案。
【详解】A CB 表示A 中不包含B 的集合,即AC B ={2,6,10}.故选:C 【点睛】此题考查集合的补集,熟知补集概念容易做出题目,属于简单题目. 2.若21{0,,}x x ∈,则x =( ). A .1 B .1-C .0或1D .0或1-【答案】B【解析】根据集合中元素的确定性得出1肯定是x 或者2x 的一个,又由互异性可知1只能为2x ,较易解出答案. 【详解】根据集合中元素的确定性和互异性可知,只能21x =,且1x ≠; 所以1x =-。
故选:B 【点睛】此题考查集合元素三特性中的确定性和互异性,重点是互异性的理解,即同一个集合里不能出现两个相同的元素,属于简单题目. 3.函数ln(1)y x =+-的定义域为( ).A .(1,2)B .(1,2]C .(2,1)-D .[2,1)-【答案】C【解析】根号里面大于等于零,分母不等于零,对数函数真数大于零,列出不等式即可求出定义域的取值范围. 【详解】由题意可得:24010x x ⎧->⎨->⎩,即21x -<<故选:C 【点睛】此题考查具体函数求定义域,根据根号里面大于等于零,分母不等于零,对数函数真数大于零,列出不等式求交集较易求的定义域,属于简单题目. 4.下列各组的函数,()f x 与()g x 是同一个函数的是( ).A .(),()f x x g x ==B .0()1,()f x g x x ==C .2(),()f x x g x ==D .()1,()xf xg x x==【答案】A【解析】同一函数指定义域和对应法则都相同,根据这一标准即可进行判断. 【详解】A 选项:()f x x=和()g x =R ,且()g x x ==即()f x 和()g x 的对应法则也一样,所以是同一函数,所以A 正确.B 选项:()1f x =的定义域是R ,而0()g x x =的定义域是0x ≠,所以B 不正确.C 选项:()f x x =的定义域是R ,而2()g x =的定义域是0x >,所以C 不正确.D 选项:()1f x =的定义域是R ,而()xg x x=的定义域是0x ≠,所以D 不正确. 故选:A 【点睛】此题考查同一函数概念,只有定义域和对应法则都相同时才是同一函数,属于简单题目.5.已知函数2,10(),01x x f x x x --≤≤⎧=⎨<≤⎩,则下列图像错误的是( ).A .(1)=-y f x 的图像B .()y f x =的图像C .()y f x =-的图像D .()y f x =的图像【答案】B【解析】先画出()f x 的图像,再分析每个选项的函数对应()f x 是怎样变化了即可较易选出答案。
南京师大附中2019~2020学年度第一学期期中试卷高一数学一、单项选择题:本大题共10小题,每小题2分,共计20分。
每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2,4,6,8,10A =,{}4,8B =,则A B =A .{}4,8B .{}2,6C .{}2,6,10D .{}2,4,6,10 2.若{}210,,x x ∈,则x =A .1B .1-C .0或1D .0或1- 3.函数ln(1)y x =+-的定义域为A .()1,2B .(]1,2C .()2,1-D .[)2,1-4.下列各组的函数,()f x 与()g x 是同一个函数的是A .()||f x x =,()g x =B .()1f x =,0()g x x =C .()f x x =,2()g x =D .()1f x =,()x g x x= 5.已知函数2,10(),01x x f x x x --⎧=⎨<⎩,则下列图象错误的是A B C D 6.已知2log 0x >,那么x 的取值范围是A .()0+∞,B .()1+∞,C .()01,D .(),1-∞7.若集合{}2|(2)210A x k x kx =+++=有且仅有1个元素,则实数k 的值是A .2±或1-B .2-或1-C .2或1-D .2-8.若函数2()(3)21f x k x kx =-++在区间(],0-∞上为增函数,则实数k 的取值范围是A .[)0,3B .[]0,3C .(]0,3D .()3,+∞ 9.已知函数21()x ax f x x++=若对任意()1+x ∈∞,不等式()1f x >恒成立,则实数a 的取值范围是 A .(),1-∞- B .(],1-∞- C .()1,-+∞ D .[)1,-+∞10.若函数224,1()42,1x a x f x x ax a x ⎧+≤⎪=⎨-+>⎪⎩在R 上单调递增,则实数a 的取值范围是 A .(]1,4 B .[]3,4 C .(]1,3 D .()4,+∞二、多项选择题:本题共3小题,每小题9分,共9分。
2020-2021学年江苏省南京师大附中高一(上)月考数学试卷(10月份)一、单项选择题1.(3分)不等式x2﹣3x﹣4<0的解集为()A.(﹣1,4)B.(﹣4,1)C.(﹣∞,﹣1)∪(4,+∞)D.[﹣1,4]2.(3分)命题“存在x∈Z使x2+2x+m≤0”的否定是()A.存在x∈Z使x2+2x+m>0B.不存在x∈Z使x2+2x+m>0C.对任意x∈Z使x2+2x+m≤0D.对任意x∈Z使x2+2x+m>03.(3分)已知M={x|﹣1<x≤2},N={x|x≤3},则(∁R M)∩N=()A.[2,3]B.(2,3]C.(﹣∞,﹣1]∪[2,3]D.(﹣∞,﹣1]∪(2,3]4.(3分)“|a﹣b|=|a|+|b|”是“ab<0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件5.(3分)已知命题“∃x∈R,2x2+(a﹣1)x+≤0是假命题,则实数a的取值范围是()A.(﹣∞,﹣1)B.(﹣1,3)C.(﹣3,+∞)D.(﹣3,1)6.(3分)已知不等式ax2﹣3x+2>0的解集为(﹣∞,1)∪(b,+∞),则a,b的取值分别为()A.1,2B.2,1C.﹣1,3D.﹣1,47.(3分)已知a>b>1且b=,则a+的最小值为()A.3B.4C.5D.68.(3分)已知命题p:∃x0∈R,mx02+1≤0,命题q:∀x∈R,x2+mx+1>0,若p,q为假命题,则实数m的取值范围是()A.﹣2≤m≤2B.m≤﹣2或m≥2C.m≤﹣2D.m≥29.(3分)设a,b,c∈R,且a>b,则()A.ac>bc B.C.a2>b2D.a3>b310.(3分)系统找不到该试题11.(3分)下列说法中正确的是()A.当x>0时,+≥2B.当x>2时,x+的最小值是2C.当x<时,y=4x﹣2+的最小值是5D.若a>0,则a3+的最小值为212.(3分)函数f(x)=x2﹣2ax+1有两个零点,且分别在(0,1)与(1,2)内,则实数a的取值范围是()A.﹣1<a<1B.a<﹣1或a>1C.D.三、填空题13.(3分)已知p:x≥k,q:<1,若p是q的充分不必要条件,则k的取值范围是.14.(3分)设集合A={x||2x﹣3|≤7},B={x|m+1≤x≤2m﹣1},若A∪B=A,则实数m的取值范围是.15.(3分)设题p:x2﹣4x+a2≥0恒成立:命题q:∀m∈[﹣1,1],不等式a2﹣5a﹣3≥恒成立,如果命题p和q一个为真命题,一个为假命题,则实数a的取值范围是.16.(3分)设A={x|(x2+x﹣2)(x+1)>0},B={x|x2+ax+b≤0},A∪B={x|x+2>0},A ∩B={x|1<x≤3},则实数a,b的值为.四、解答题17.已知集合A={x|2﹣a≤x≤2+a},B={x|x≤1或x≥4}.(1)当a=3时,求A∩B;(2)若A∪B=R,求实数a的取值范围.18.求下列不等式的解集:(1)2x2+5x﹣3<0;(2)﹣3x2+6x≤2;(3)4x2+4x+1>0;(4)﹣x2+6x﹣10>0.19.设p:实数x满足A={x|x≤3a,或x≥a(a<0)}.q:实数x满足B={x|﹣4≤x<﹣2}.且q是p的充分不必要条件,求实数a的取值范围.20.若x,y∈(0,+∞),x+2y+xy=30.(1)求xy的取值范围;(2)求x+y的取值范围.21.某种商品原来每件售价为25元,年销售量8万件.(Ⅰ)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?(Ⅱ)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到x元.公司拟投入(x2﹣600)万元作为技改费用,投入50万元作为固定宣传费用,投入x万元作为浮动宣传费用.试问:当该商品明年的销售量a至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.22.已知f(x)=﹣3x2+a(6﹣a)x+b.(1)解关于a的不等式f(1)>0;(2)若不等式f(x)≥b+4对于x∈[1,2]恒成立,求实数a的取值范围.2020-2021学年江苏省南京师大附中高一(上)月考数学试卷(10月份)参考答案与试题解析一、单项选择题1.【分析】把不等式化为(x﹣4)(x+1)<0,求出解集即可.【解答】解:不等式x2﹣3x﹣4<0可化为(x﹣4)(x+1)<0,解得﹣1<x<4,所以不等式的解集为(﹣1,4).故选:A.2.【分析】根据命题“存在x∈Z使x2+2x+m≤0”是特称命题,其否定命题是全称命题,将“存在”改为“任意的”,“≤“改为“>”可得答案.【解答】解:∵命题“存在x∈Z使x2+2x+m≤0”是特称命题∴否定命题为:对任意x∈Z使x2+2x+m>0故选:D.3.【分析】进行补集和交集的运算即可.【解答】解:∵M={x|﹣1<x≤2},N={x|x≤3},∴∁R M={x|x≤﹣1或x>2},(∁R M)∩N=(﹣∞,﹣1]∪(2,3].故选:D.4.【分析】根据绝对值的意义,以及充分条件和必要条件的定义进行判断即可.【解答】解:∵“|a﹣b|=|a|+|b|”,∴平方得a2﹣2ab+b2=a2+2|ab|+b2,即|ab|=﹣ab,∴ab≤0,即“|a﹣b|=|a|+|b|”是“ab<0”的必要不充分条件.故选:B.5.【分析】写出原命题的否命题,据命题p与¬p真假相反,得到2x2+(a﹣1)x+>0恒成立,令判别式小于0,求出a的范围.【解答】解:∵“∃x∈R,2x2+(a﹣1)x+≤0”的否定为“∀x∈R,2x2+(a﹣1)x+>0“∵“∃x∈R,2x2+(a﹣1)x+≤0”为假命题∴“∀x∈R,2x2+(a﹣1)x+>0“为真命题即2x2+(a﹣1)x+>0恒成立∴(a﹣1)2﹣4×2×<0解得﹣1<a<3故选:B.6.【分析】解法一、利用不等式的解集得出对应方程的实数根,由根与系数的关系求出a、b的值.解法二、利用不等式的解集得出对应方程的实数根,把根代入方程求出a的值,再解不等式求出b的值.【解答】解:解法一、不等式ax2﹣3x+2>0的解集为(﹣∞,1)∪(b,+∞),所以不等式对应的方程ax2﹣3x+2=0的实数解为1和b,由根与系数的关系知,,解得a=1,b=2.解法二、因为不等式ax2﹣3x+2>0的解集为{x|x<1或x>b},所以1和b是方程ax2﹣3x+2=0的两个实数根且a>0,把x=1代入方程ax2﹣3x+2=0中,得a﹣3+2=0,解得a=1;将a=1代入ax2﹣3x+2>0,得x2﹣3x+2>0,解得x<1或x>2,所以b=2.故选:A.7.【分析】由已知结合a,b的关系代入后利用基本不等式即可直接求解.【解答】解:因为a>b>1且b=,所以a+=a+=a﹣1+=3,当且仅当a﹣1=即a=2时取等号,此时取得最小值3.故选:A.8.【分析】直接利用存在性问题和恒成立问题的应用及真值表的应用求出结果.【解答】解:命题p:∃x0∈R,mx02+1≤0为假命题,所以m≥0,命题q:∀x∈R,x2+mx+1>0,所以△=m2﹣4<0,解得﹣2<m<2,由于该命题为假命题,所以m≥2或m≤﹣2.当p,q为假命题时,故,整理得m≥2.故选:D.9.【分析】对于A、B、C可举出反例,对于D利用不等式的基本性质即可判断出.【解答】解:A、3>2,但是3×(﹣1)<2×(﹣1),故A不正确;B、1>﹣2,但是,故B不正确;C、﹣1>﹣2,但是(﹣1)2<(﹣2)2,故C不正确;D、∵a>b,∴a3>b3,成立,故D正确.故选:D.10.11.【分析】由已知结合基本不等式的应用条件分别检验各选项即可判断.【解答】解:x>0时,≥2,当且仅当即x=1时取等号,A正确;当x>2时,y=x+单调递增,故y>,没有最小值,B错误;x<可得4x﹣5<0,y=4x﹣2+=4x﹣5++3=﹣(5﹣4x+)+3≤1,即最大值1,没有最小值,C错误;=2a,当且仅当即a=1时取等号,D正确.故选:AD.12.【分析】由题意可得f(0)×f(1)<0,f(1)×f(2)<0,解得实数a的取值范围,可得答案.【解答】解:由题意可得:f(0)×f(1)<0,且f(1)×f(2)<0,即:解得,故选:C.三、填空题13.【分析】由题意可得集合{x|x≥k}是{x|<1}的真子集,结合数轴可得答案.【解答】解:∵p:x≥k,q:<1,若p是q的充分不必要条件,∴集合{x|x≥k}是{x|<1}={x|x<﹣1,或x>2}的真子集,∴k>2,故答案为:k>214.【分析】求出A中不等式的解集确定出A,根据A与B并集为A,分B为空集与B不为空集两种情况考虑,求出m的范围即可.【解答】解:由A中的不等式解得:﹣7≤2x﹣3≤7,解得:﹣2≤x≤5,即A=[﹣2,5];当B=∅时,m+1>2m﹣1,即m<2,当B≠∅时,∵B=[m+1,2m﹣1],A∪B=A,∴,解得:﹣3≤x≤3,综上,m的取值范围是(﹣∞,3].故答案为:(﹣∞,3]15.【分析】分别求出命题p,q都为真命题时a的取值范围,再分别讨论p真q假,p假q 真的情况,从而求出a的范围.【解答】解:x2﹣4x+a2≥0恒成立,则△=16﹣4a2≤0,解得a≤﹣2或a≥2,对m∈[﹣1,1],不等式a2﹣5a﹣3≥恒成立,得a2﹣5a﹣3≥()max=3,解得a≥6或a≤﹣1.若p真q假,则,解得2≤a<6;若p假q真,则,解得﹣2<a≤﹣1.综上,实数a的取值范围为﹣2<a≤﹣1或2≤a<6.故答案为:﹣2<a≤﹣1或2≤a<6.16.【分析】由A,B,以及A与B的交集,得到3属于B,即可求出a的值.【解答】解:A={x|(x2+x﹣2)(x+1)>0}={x|﹣2<x<﹣1或x>1};A∪B={x|x+2>0}={x|x>﹣2},A∩B={x|1<x≤3},∴x2+ax+b=0的解有一个是x=3,另一个解x=﹣1,即,解得a=﹣2,b=﹣3故答案为:﹣2,﹣3.四、解答题17.【分析】(1)当a=3时,求出集合A,由此能求出A∩B.(2)推导出,由此能求出实数a的取值范围是[2,+∞).【解答】解:(1)当a=3时,集合A={x|﹣1≤x≤5},B={x|x≤1或x≥4}.∴A∩B={x|﹣1≤x≤1或4≤x≤5}.(2)∵集合A={x|2﹣a≤x≤2+a},B={x|x≤1或x≥4}.A∪B=R,∴,解得a≥2.∴实数a的取值范围是[2,+∞).18.【分析】(1)方法一(因式分解法),把不等式可化为(2x﹣1)(x+3)<0,求出解集即可.方法二(配方法),把不等式化为,求出解集即可.(2)不等式化为,求出解集即可.(3)不等式可化为(2x+1)2>0,写出不等式的解集即可.(4)不等式可化为(x﹣3)2+1<0,写出不等式的解集.【解答】解:(1)方法一(因式分解法)因为2x2+5x﹣3=(2x﹣1)(x+3),所以原不等式可化为(2x﹣1)(x+3)<0,解得,所以原不等式的解集为.方法二(配方法)原不等式化为,因为,所以原不等式可化为,即,两边开平方,得,即,所以.所以原不等式的解集为.(2)原不等式化为,因为,所以原不等式可化为,即.两边开平方,得,即或.所以或,所以原不等式的解集为.(3)原不等式可化为(2x+1)2>0,所以原不等式的解集为.(4)原不等式可化为x2﹣6x+10<0,即(x﹣3)2+1<0,即(x﹣3)2<﹣1,原不等式的解集为∅.19.【分析】根据q是p的充分不必要条件,建立条件关系即可求实数a的取值范围.【解答】解:若q是p的充分不必要条件,则B⫋A,∴﹣2≤3a或﹣4≥a,解得a≥﹣,或a≤﹣4,∵a<0,∴a的取值范围是[﹣,0)∪(﹣∞,﹣4].20.【分析】(1)由已知可得30﹣xy=x+2y,从而可求;(2)由已知可得30=x+2y+xy=x+y+y(x+1)≤x+y+()2,解不等式可求.【解答】解:(1)因为x,y∈(0,+∞),x+2y+xy=30,所以30﹣xy=x+2y,当且仅当x=2y时取等号,解可得,0<xy≤18,(2)因为x,y∈(0,+∞),30=x+2y+xy=x+y+y(x+1)≤x+y+()2,当且仅当x+1=y时取等号,所以(x+1+y)2+4(x+1+y)﹣124≥0,解可得,x+y+1或x+y+1(舍),故x+y≥8﹣321.【分析】(Ⅰ)设每件定价为x元,则提高价格后的销售量为,根据销售的总收入不低于原收入,建立不等式,解不等式可得每件最高定价;(Ⅱ)依题意,x>25时,不等式有解,等价于x>25时,有解,利用基本不等式,我们可以求得结论.【解答】解:(Ⅰ)设每件定价为x元,则提高价格后的销售量为,根据销售的总收入不低于原收入,有,(3分)整理得x2﹣65x+1000≤0,解得25≤x≤40.(5分)∴要使销售的总收入不低于原收入,每件定价最多为40元.(6分)(Ⅱ)依题意,x>25时,不等式有解,(8分)等价于x>25时,有解,(9分)∵(当且仅当x=30时,等号成立),(11分)∴a≥10.2.此时该商品的每件定价为30元(12分)∴当该商品明年的销售量a至少应达到10.2万件时,才可能使明年的销售收入不低于原收入与总投入之和,此时该商品的每件定价为30元.(13分)22.【分析】(1)将f(1)带入可得﹣a2+6a+b﹣3>0,把b看成参数讨论关于a的不等式即可;(2)分离参数,利用对勾函数的性质求解最大值,即可求实数a的取值范围.【解答】解:(1)由f(1)>0,可得﹣a2+6a+b﹣3>0,即b﹣3>a2﹣6a,那么(a﹣3)2<6+b当b≤﹣6时,此时a无解;当b>﹣6时,,∴所以不等式的解集为(3,3+).(2)由f(x)≥b+4,即﹣3x2+a(6﹣a)x≥4.∵x∈[1,2],∴a(6﹣a)≥=,又x∈[1,2],∴函数y=的最大值8,此时x=2.∴a(6﹣a)≥8,即a2﹣6a+8≤0,解得2≤a≤4;故得实数a的取值范围[2,4]。
2017-2018学年江苏省南京师大附中高一(上)期中数学试卷一、填空题1.已知集合A={1,2,3},B={2,3,5},则A∪B=.2.函数y=的定义域是.3.若函数f(x)=(a﹣1)x在(﹣∞,+∞)上单调递增,则实数a的取值范围是.4.若幂函数y=f(x)的图象过点(4,2),则f(16)=.5.若a=log23,b=,c=log0.53,则将a,b,c按从小到大的顺序排列是.6.己知y=f(x)是定义在R上的偶函数,若x≥0时,f(x)=x﹣1,则x<0时,f(x)=.7.若函数f(x)=2x+3,函数g(x)=,f(g(27))的值是.8.已知函数f(x)=,若f(x)=2,则x的值是.9.已知函数f(x)=a x+b(a>0,a≠1)的图象如图所示,则a﹣b的值为.10.若集合A=[﹣2,2],B=(a,+∞),A∩B=A,则实数a的取值范围是.11.函数f(x)=+1在[﹣3,2]的最大值是.12.若二次函数f(x)满足f(2+x)=f(2﹣x),且f(1)<f(0)≤f(a),则实数a的取值范围是.13.已知函数f(x)=2x﹣2﹣x,若对任意的x∈[1,3],不等式f(x2+tx)+f(4﹣x)>0恒成立,则实数t的取值范围是.14.已知函数f(x)=﹣(x∈R),区间M=[a,b](a<b),集合N={y|y=f (x),x∈M}.若M=N,则b﹣a的值是.二、解答题15.(8分)己知全集U=R,集合A={x|3≤x<7},B={x|2<log2 x<4}.(1)求A∪B;(2)求(∁U A )∩B.16.(8分)计算:(1);(2)log43×log32﹣.17.(10分)某旅游景区的景点A处和B处之间有两种到达方式,一种是沿直线步行,另一种是沿索道乘坐缆车,现有一名游客从A处出发,以50m/min的速度匀速步行,30min后到达B处,在B处停留20min后,再乘坐缆车回到A处.假设缆车匀速直线运动的速度为150m/mm.(1)求该游客离景点A的距离y(m)关于出发后的时间x(mm)的函数解析式,并指出该函数的定义域;(2)做出(1)中函数的图象,并求该游客离景点A的距离不小于1000m的总时长.18.(10分)己知a>0 且a≠1,若函数f(x)=log a(x﹣1),g(x)=log a(5﹣x).(1)求函数h(x)=f(x)﹣g(x)的定义域;(2)讨论不等式f(x)≥g(x)成立时x的取值范围.19.(12分)已知a∈R,函数f(x)=a﹣.(1)证明:f(x)在(﹣∞,+∞)上单调递增;(2)若f(x)为奇函数,求:①a的值;②f(x)的值域.20.(12分)对于两个定义域相同的函数f(x)、g(x),若存在实数m,n,使h(x)=mf (x)+ng(x),则称函数f(x)是由“基函数f(x),g(x)”生成的.(1)若f(x)=x2+3x和g(x)=3x+4生成一个偶函数h(x),求h(2)的值;(2)若h(x)=2x2+3x﹣1是由f(x)=x2+ax和g(x)=x+b生成,其中a,b∈R且ab≠0,求的取值范围;(3)利用“基函数f(x)=log4(4x+1),g(x)=x﹣1)”生成一个函数h(x),使得h(x)满足:①是偶函数,②有最小值1,求h(x)的解析式.2016-2017学年江苏省南京师大附中高一(上)期中数学试卷参考答案与试题解析一、填空题1.(2016秋•建邺区校级期中)已知集合A={1,2,3},B={2,3,5},则A∪B={1,2,3,5} .【考点】并集及其运算.【专题】集合.【分析】利用并集定义求解.【解答】解:∵集合A={1,2,3},B={2,3,5},∴A∪B={1,2,3,5}.故答案为:{1,2,3,5}.【点评】本题考查并集的求法,解题时要认真审题,是基础题.2.(2016春•普陀区期末)函数y=的定义域是(1,+∞).【考点】函数的定义域及其求法.【专题】函数的性质及应用.【分析】根据函数的解析式,应满足分母不为0,且二次根式的被开方数大于或等于0即可.【解答】解:∵函数y=,∴>0,即x﹣1>0,解得x>1;∴函数y的定义域是(1,+∞).故答案为:(1,+∞).【点评】本题考查了求函数的定义域的问题,解题时应使函数的解析式有意义,列出不等式(组),求出自变量的取值范围,是容易题.3.(2016秋•建邺区校级期中)若函数f(x)=(a﹣1)x在(﹣∞,+∞)上单调递增,则实数a的取值范围是(2,+∞).【考点】指数函数的图象与性质.【专题】函数思想;转化法;函数的性质及应用.【分析】根据指数函数的单调性求出a的范围即可.【解答】解:若函数f(x)=(a﹣1)x在(﹣∞,+∞)上单调递增,则a﹣1>1,解得:a>2,故答案为:(2,+∞).【点评】本题考查了指数函数的性质,考查函数的单调性问题,是一道基础题.4.(2016秋•建邺区校级期中)若幂函数y=f(x)的图象过点(4,2),则f(16)=4.【考点】幂函数的概念、解析式、定义域、值域.【专题】计算题;方程思想;函数的性质及应用.【分析】根据已知求出函数的解析式,将x=16代入可得答案.【解答】解:设幂函数y=f(x)=x a,∵幂函数y=f(x)的图象过点(4,2),∴4a=2,解得:a=,∴y=f(x)=∴f(16)=4,故答案为:4【点评】本题考查的知识点是幂函数的解析式,函数求值,难度不大,属于基础题.5.(2016秋•建邺区校级期中)若a=log23,b=,c=log0.53,则将a,b,c按从小到大的顺序排列是c<a<b.【考点】对数值大小的比较.【专题】转化思想;函数的性质及应用.【分析】利用指数函数与对数函数的单调性即可得出.【解答】解:a=log23∈(1,2),b==23=8,c=log0.53<0,∴c<a<b.故答案为:c<a<b.【点评】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.6.(2016秋•建邺区校级期中)己知y=f(x)是定义在R上的偶函数,若x≥0时,f(x)=x﹣1,则x<0时,f(x)=﹣x﹣1.【考点】函数奇偶性的性质.【专题】函数思想;转化法;函数的性质及应用.【分析】先由函数是偶函数得f(﹣x)=f(x),然后将所求区间利用运算转化到已知区间上,代入到x>0时,f(x)=x﹣1,可得x<0时,函数的解析式.【解答】解:若x≥0时,f(x)=x﹣1,不妨设x<0,则﹣x>0,则f(﹣x)=﹣x﹣1=f(x),故x<0时,f(x)=﹣x﹣1,故答案为:﹣x﹣1.【点评】本题考查了函数奇偶性的性质,以及将未知转化为已知的转化化归思想,是个基础题.7.(2016秋•建邺区校级期中)若函数f(x)=2x+3,函数g(x)=,f(g(27))的值是9.【考点】函数的值.【专题】计算题;方程思想;定义法;函数的性质及应用.【分析】先求出g(27)==3,从而f(g(27))=f(3),由此能求出结果.【解答】解:∵f(x)=2x+3,函数g(x)=,∴g(27)==3,f(g(27))=f(3)=2×3+3=9.故答案为:9.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.8.(2016秋•建邺区校级期中)已知函数f(x)=,若f(x)=2,则x的值是ln2.【考点】函数的值.【专题】计算题;分类讨论;分类法;函数的性质及应用.【分析】当x≤1时,e x=2;当x>1时,﹣x=2.由此能求出x的值.【解答】解:∵函数f(x)=,f(x)=2,∴当x≤1时,e x=2,解得x=ln2;当x>1时,﹣x=2,解得x=﹣2,(舍).∴x=ln2.故答案为:ln2.【点评】本题考查实数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.9.(2013秋•鼓楼区校级期末)已知函数f(x)=a x+b(a>0,a≠1)的图象如图所示,则a ﹣b的值为4.【考点】指数函数的图象与性质.【专题】函数的性质及应用.【分析】由已知中函数y=a x+b的图象经过(0,﹣1)点和(1,0)点,代入构造关于a,b 的方程,解方程可得答案.【解答】解:∵函数y=a x+b的图象经过(0,﹣1)点和(1,0)点,故1+b=﹣1,且a+b=0,解得:b=﹣2,a=2,故a﹣b=4,故答案为:4【点评】本题考查的知识点是待定系数法,求函数的解析式,指数函数图象的变换,难度不大,属于基础题.10.(2016秋•建邺区校级期中)若集合A=[﹣2,2],B=(a,+∞),A∩B=A,则实数a的取值范围是a<﹣2.【考点】集合的包含关系判断及应用.【专题】计算题;集合思想;集合.【分析】根据A∩B=A,A是B的子集可得.【解答】解:∵集合A=[﹣2,2],B=(a,+∞),A∩B=A,∴a<﹣2,故答案为:a<﹣2.【点评】本题考查交集及其运算,考查集合间的关系,是基础题11.(2016秋•建邺区校级期中)函数f(x)=+1在[﹣3,2]的最大值是57.【考点】函数的最值及其几何意义.【专题】综合题;函数思想;换元法;函数的性质及应用.【分析】设()x=t,转为为f(t)=t2﹣t+1=(t﹣)2+在t∈[,8]的最值问题,根据二次函数的性质即可求出.【解答】解:设()x=t,∵x∈[﹣3,2],∴t∈[,8],∴f(t)=t2﹣t+1=(t﹣)2+,∴f(t)在[,]上单调递减,在(,8)单调递增,∴f(t)max=f(8)=64﹣8+1=57,故函数f(x)=+1在[﹣3,2]的最大值是57,故答案为:57.【点评】本题考查了指数函数的和二次函数的性质,以及函数的最值问题,属于中档题.12.(2016秋•建邺区校级期中)若二次函数f(x)满足f(2+x)=f(2﹣x),且f(1)<f (0)≤f(a),则实数a的取值范围是a≤0,或a≥4.【考点】二次函数的性质.【专题】转化思想;转化法;函数的性质及应用.【分析】若二次函数f(x)满足f(2+x)=f(2﹣x),则函数f(x)的图象关于直线x=2对称,结合二次函数的图象和性质,可得实数a的取值范围.【解答】解:∵二次函数f(x)满足f(2+x)=f(2﹣x),∴函数f(x)的图象关于直线x=2对称,若f(1)<f(0)≤f(a),则a≤0,或a≥4,故答案为:a≤0,或a≥4.【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.13.(2016秋•建邺区校级期中)已知函数f(x)=2x﹣2﹣x,若对任意的x∈[1,3],不等式f(x2+tx)+f(4﹣x)>0恒成立,则实数t的取值范围是(﹣3.+∞).【考点】函数恒成立问题.【专题】转化思想;综合法;函数的性质及应用.【分析】通过判定函数f(x)=2x﹣2﹣x)=2x﹣x在R上单调递增、奇函数,脱掉”f“,转化为恒成立问题,分离参数求解.【解答】解:∵函数f(x)=2x﹣2﹣x)=2x﹣x在R上单调递增,又∵f(﹣x)=﹣(2x﹣2﹣x)=﹣f(x),故f(x)是奇函数,若对任意的x∈[1,3],不等式f(x2+tx)+f(4﹣x)>0恒成立,⇒对任意的x∈[1,3],不等式f(x2+tx)>f(﹣4+x)恒成立,⇒对任意的x∈[1,3],x2+(t﹣1)x+4>0⇒(t﹣1)x>﹣x2﹣4⇒t﹣1>﹣(x+,∵,∴t﹣1>﹣4,即t>﹣3.故答案为:(﹣3.+∞)【点评】本题考查了函数的单调性、奇函数,恒成立问题,分离参数法,属于中档题.14.(2016秋•建邺区校级期中)已知函数f(x)=﹣(x∈R),区间M=[a,b](a<b),集合N={y|y=f (x),x∈M}.若M=N,则b﹣a的值是2.【考点】函数的值域;函数的定义域及其求法.【专题】函数思想;定义法;函数的性质及应用.【分析】由题设知对于集合N中的函数f(x)的定义域为[a,b],对应的f(x)的值域为N=M=[a,b].根据M=N,找到a,b关系,可求b﹣a的值.【解答】解:函数f(x)=﹣(x∈R),化简得:f(x)=,可知函数f(x)是单调递减,∵x∈M,M=[a,b],则对于集合N中的函数f(x)的定义域为[a,b],故得N=[,]对应的f(x)的值域为N=M=[a,b].则有:=a,=b,解得:b=1,a=﹣1,故得b﹣a=2,故答案为:2.【点评】本题考查集合相等的概念,解题时要注意绝对值的性质和应用二、解答题15.(8分)(2016秋•建邺区校级期中)己知全集U=R,集合A={x|3≤x<7},B={x|2<log2 x<4}.(1)求A∪B;(2)求(∁U A )∩B.【考点】交、并、补集的混合运算;并集及其运算.【专题】集合思想;定义法;集合.【分析】(1)化简求得B,再由并集的运算即可得到;(2)求得A的补集,再求B的交集,即可得到.【解答】解:(1)全集U=R,集合A={x|3≤x<7},B={x|2<log2 x<4}={x|4<x<16|,则A∪B={x|3≤x<16};(2)(∁U A )∩B={x|x<3或x≥7}∩{x|4<x<16|={x|7≤x<16}.【点评】本题考查集合的运算,主要是交、并和补集的运算,考查运算能力,属于基础题.16.(8分)(2016秋•建邺区校级期中)计算:(1);(2)log43×log32﹣.【考点】对数的运算性质.【专题】转化思想;函数的性质及应用.【分析】(1)利用指数的运算性质即可得出.(2)利用对数的运算性质即可得出.【解答】解:(1)原式=+1﹣=+1﹣=1.(2)原式=﹣3=﹣3=﹣.【点评】本题考查了指数与对数的运算法则,考查了推理能力与计算能力,属于基础题.17.(10分)(2016秋•建邺区校级期中)某旅游景区的景点A处和B处之间有两种到达方式,一种是沿直线步行,另一种是沿索道乘坐缆车,现有一名游客从A处出发,以50m/min 的速度匀速步行,30min后到达B处,在B处停留20min后,再乘坐缆车回到A处.假设缆车匀速直线运动的速度为150m/mm.(1)求该游客离景点A的距离y(m)关于出发后的时间x(mm)的函数解析式,并指出该函数的定义域;(2)做出(1)中函数的图象,并求该游客离景点A的距离不小于1000m的总时长.【考点】函数的图象.【专题】转化思想;分类法;函数的性质及应用.【分析】(1)由题意利用利用分段函数求得函数的解析式.(2)根据函数的解析式,画出函数的图象,数形结合求得该游客离景点A的距离不小于1000m的总时长.【解答】解:(1)由题意可得50m/min=m/mm,AB=50×30=1500(m),乘坐缆车回到A处用的时间为=10(mm),该游客离景点A的距离y(m)关于出发后的时间x(mm)的函数解析式为y=,(2)(1)中函数的图象如图所示:令=1000,求得x=12000(mm),令1500﹣150x=1000,求得x=3000+=(mm),﹣1200=(mm),即该游客离景点A的距离不小于1000m的总时长为mm.【点评】本题主要考查利用分段函数求函数的解析式、函数的图象,属于中档题.18.(10分)(2016秋•建邺区校级期中)己知a>0 且a≠1,若函数f(x)=log a(x﹣1),g(x)=log a(5﹣x).(1)求函数h(x)=f(x)﹣g(x)的定义域;(2)讨论不等式f(x)≥g(x)成立时x的取值范围.【考点】对数函数的图象与性质.【专题】函数思想;转化法;函数的性质及应用.【分析】(1)根据对数函数的性质,得到关于x的不等式组,解出即可;(2)通过讨论a的范围,得到函数f(x)的单调性,解关于x的不等式组即可.【解答】解:(1)h(x)=f(x)﹣g(x)=log a(x﹣1)﹣log a(5﹣x),根据对数函数的性质得:,解得:1<x<5,故函数h(x)的定义域是(1,5);(2)若不等式f(x)≥g(x)成立,则log a(x﹣1)≥log a(5﹣x),0<a<1时,,解得:1<x≤3,a>1时,解得:3≤x<5.【点评】本题考查了对数函数的性质,考查函数的单调性以及分类讨论思想,是一道基础题.19.(12分)(2016秋•建邺区校级期中)已知a∈R,函数f(x)=a﹣.(1)证明:f(x)在(﹣∞,+∞)上单调递增;(2)若f(x)为奇函数,求:①a的值;②f(x)的值域.【考点】利用导数研究函数的单调性;函数的值域;函数单调性的判断与证明.【专题】证明题;转化思想;函数的性质及应用.【分析】(1)证法一:设x1<x2,作差比较作差可得f(x1)<f(x2),根据函数单调性的定义,可得:f(x)在(﹣∞,+∞)上单调递增;证法二:求导,根据f′(x)>0恒成立,可得:f(x)在(﹣∞,+∞)上单调递增.(2)①若f(x)为奇函数,则f(0)=0,解得a的值;②根据①可得函数的解析式,进而可得f(x)的值域.【解答】证明:(1)证法一:设x1<x2,则,,则f(x1)﹣f(x2)=(a﹣)﹣(a﹣)=<0.∴f(x1)﹣f(x2)<0,∴f(x1)<f(x2),故f(x)在(﹣∞,+∞)上单调递增;证法二:∵函数f(x)=a﹣.∴f′(x)=,∵f′(x)>0恒成立,故f(x)在(﹣∞,+∞)上单调递增;(2)①若f(x)为奇函数,则f(0)=a﹣=0,解得:a=,②f(x)=﹣,∵2x+1>1,∴0<<1,故﹣<f(x)<,故函数的值域为:(﹣,).【点评】本题考查的知识点是函数的单调性,函数的奇偶性,函数的值域,难度中档.20.(12分)(2016秋•建邺区校级期中)对于两个定义域相同的函数f(x)、g(x),若存在实数m,n,使h(x)=mf(x)+ng(x),则称函数f(x)是由“基函数f(x),g(x)”生成的.(1)若f(x)=x2+3x和g(x)=3x+4生成一个偶函数h(x),求h(2)的值;(2)若h(x)=2x2+3x﹣1是由f(x)=x2+ax和g(x)=x+b生成,其中a,b∈R且ab≠0,求的取值范围;(3)利用“基函数f(x)=log4(4x+1),g(x)=x﹣1)”生成一个函数h(x),使得h(x)满足:①是偶函数,②有最小值1,求h(x)的解析式.【考点】函数解析式的求解及常用方法;函数的最值及其几何意义.【专题】新定义;待定系数法;函数的性质及应用.【分析】(1)(1)先用待定系数法表示出偶函数h(x),再根据其是偶函数这一性质得到引入参数的方程,求出参数的值,即得函数的解析式,代入自变量求值即可.(2)设h(x)=2x2+3x﹣1=m(x2+ax)+n(x+b),展开后整理,利用待定系数法找到a,b 的关系,由系数相等把a,b用n表示,然后结合n的范围求解的取值范围;(3)设h(x)=m(log4(4x+1))+n(x﹣1),h(x)是偶函数,则h(﹣x)﹣h(x)=0,可得m与n的关系,h(x)有最小值则必有n<0,且有﹣2n=1,求出m和n值,可得解析式.【解答】解:(1)f(x)=x2+3x和g(x)=3x+4生成一个偶函数h(x),则有h(x)=mx2+3(m+n)x+4n,h(﹣x)=mx2﹣3(m+n)x+4n=mx2+3(m+n)x+4n,∴m+n=0,故得h(x)=mx2﹣4m,∴h(2)=0.(2)设h(x)=2x2+3x﹣1=m(x2+ax)+n(x+b)=mx2+(am+n)x+nb.∴m=2,am+n=3,nb=﹣1,则a=,b=.所以:==,∵a,b∈R且ab≠0,∴的取值范围为[﹣,0)∪(0,+∞).(3)设h(x)=m(log4(4x+1))+n(x﹣1),∵h(x)是偶函数,∴h(﹣x)﹣h(x)=0,即m(log4(4﹣x+1))+n(﹣x﹣1)﹣m(log4(4x+1))﹣n(x﹣1)=0,∴(m+2n)x=0,可得:m=﹣2n.则h(x)=﹣2n(log4(4x+1))+n(x﹣1)=﹣2n[log4(4x+1)﹣]=﹣2n[log4(2x+)+],∵h(x)有最小值1,则必有n<0,且有﹣2n=1,∴m=1,n=,故得h(x)=log4(4x+1)(x﹣1).【点评】本题考查了函数恒成立问题,考查了数学转化思想方法,会求利用函数的最值,关键是对题意的理解与合理转化.。
南京师大附中2023—2024学年度第1学期高二年级期中考试数学试卷注意事项:1.本试卷共4页,包括单选题(第1题~第8题)、多选题(第9题~第12题)、填空题(第13题~第16题)、解答题(第17题~第22题)四部分.本试卷满分为150分,考试时间为120分钟.2.答题前,请务必将自己的姓名、班级、学号写在答题纸的密封线内.试题的答案写在答题纸上相应题目的答题区域内.考试结束后,交回答题纸.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若连续抛两次骰子得到的点数分别是m ,n ,则点(),P m n 在直线26x y −=上的概率是()A.13B.14C.112 D.118【答案】C 【解析】【分析】利用古典概型及直线方程计算即可.【详解】由题意可知抛掷两次骰子得出的点数有()()()()()()()()1,1,1,2,1,3,1,4,1,5,1,6,2,1,2,2,()()()()()()()()()()()()()()2,3,2,4,2,5,2,6,3,1,3,2,3,3,3,4,3,5,3,6,4,1,4,2,4,3,4,4,()()()()()()()()()()()()()()4,5,4,6,5,1,5,2,5,3,5,4,5,5,5,6,6,1,6,2,6,3,6,4,6.5,6,6共36种结果,即点(),P m n 有36个.而满足在26x y −=上的有()()()4,2,5,4,6,63种,故其概率为313612=.故选:C2.设m 为实数,已知直线1l :220mx y +−=,2l :()5350x m y +−−=,若12//l l ,则m =( )A.5− B.2C.2或5− D.5或2−【答案】D 【解析】【分析】根据两直线平行的充要条件得到方程,求出m 的值,再代入检验即可.【详解】因为直线1l :220mx y +−=与直线2l :()5350x m y +−−=平行, 所以()325m m −=×,解得2m =−或5m =,当2m =−时直线1l :10x y −+=与直线2l :10x y −−=平行,符合题意; 当5m =时直线1l :5220x y +−=与直线2l :5250x y +−=平行,符合题意. 综上可得:2m =−或5m =. 故选:D3. 若双曲线22221x y a b −=(0a >,0b >)的右焦点(),0F c,则b c =( )A.B.C.D.【答案】A 【解析】【分析】利用点到直线的距离公式及双曲线的性质计算即可.【详解】易知双曲线22221x y a b−=的一条渐近线为b y x a =,故(),0F c到其距离为d b ==,所以b c =. 故选:A4. 在平面直角坐标系xOy 中,已知点()3,0A ,动点(),P x y 满足2PA PO=,则动点P 的轨迹与圆()()22111x y −+−=的位置关系是( )A. 外离B. 外切C. 相交D. 内切【答案】C 【解析】【分析】利用已知条件列出方程,化简可得点P 的轨迹方程为圆,再判断圆心距和半径的关系即可得解.【详解】由2PAPO=,得2PA PO =,()2214x y ++=, 表示圆心为(1,0)−,半径为2R =的圆,圆()()22111x y −+−=的圆心为(1,1)为圆心,半径1r =,,满足2121−<<+,所以两个圆相交. 故选:C.5. 设等差数列{}n a 的前n 项和为n S ,若634S S =,则96S S =( ) A.32B. 4C.94D.116【答案】C 【解析】【分析】由已知条件利用等差数列前n 项和公式推导出12d a =,由此能求出96S S 的值 【详解】设等差数列{}n a 的首项为1a ,公差为d , ∵等差数列{}n a 前n 项和为n S ,634S S =, ∴11656243232a d a d×+=×+,整理得12d a =, ∴1916119899369265615462a d S a d S a d a d ×++===×++.故选:C .6. 已知抛物线C 的顶点是原点O ,焦点F 在x 轴的正半轴上,经过点F 的直线与抛物线C 交于A ,B 两点,若12OA OB ⋅=−,则抛物线C 的方程为( ) A. x 2=8y B. x 2=4y C. y 2=8xD. y 2=4x的【答案】C 【解析】 【分析】设抛物线方程为22,(0)y px p =>,直线方程为2px my =+再联立,利用韦达定理表示12OA OB ⋅=− 进而求得抛物线方程即可.【详解】由题意,设抛物线方程为22,(0)y px p =>,直线方程为2p x my =+,联立222y px p x my ==+消去x 得2220y pmy p −−=,显然方程有两个不等实根.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2pm ,y 1y 2=-p 2,得222221212121223444y y p OA OB x x y y y y p p p ⋅=+=+=−=− , 故23124p −=−得p =4(舍负),即抛物线C 的方程为y 2=8x . 故选:C【点睛】本题主要考查了联立直线与抛物线方程利用韦达定理求解平面向量数量积的问题,属于中等题型.7. 设m 为正实数,椭圆C :22213x y m+=长轴的两个端点是1A ,2A ,若椭圆C 上存在点P 满足12012A PA ∠=°,则m 的取值范围是( ) A. ][()0,19,∞∪+ B. (][)0,13,∪+∞C. ([)4,+∞D. ([)9,+∞【答案】B 【解析】【分析】当P 位于短轴的端点时,12A PA ∠取最大值,要使椭圆上存在点P 满足12012A PA ∠=°,则此时12120A PA ∠≥°,则160A PO ∠≥°,讨论焦点在x 轴和在y 轴上两种情况即可求解.【详解】因为m 为正实数,则若椭圆焦点在x 轴上,即203m <<,即0m <<则当P 位于短轴的端点时,12A PA ∠取最大值,要使椭圆上存在点P 满足12012A PA ∠=°,则此时12120A PA ∠≥°,则160A PO ∠≥°,则1tan tan 60A PO ∠≥ ,解得01m <≤;若椭圆焦点在y 轴上,即23m >,即m >时,则当P 位于短轴的端点时,12A PA ∠取最大值,要使椭圆上存在点M 满足12012A PA ∠=°,则此时12120A PA ∠≥°,则160A PO ∠≥°,则1tan tan 60A PO ∠≥ ,解得3m ≥, 综上,m 的取值范围是(][)0,13,∪+∞ 故选:B.8. 瑞士著名数学家欧拉在1765年提出定理:三角形的外心、重心、垂心位于同一直线上,这条直线被后人称为三角形的“欧拉线”.在平面直角坐标系中作ABC ,满足5AB AC ==且()1,3B −,()4,2C −,若ABC 的“欧拉线”与圆M :()2223x y r −+=(0r >)相切,则下列结论正确的是( )A. 圆M 上点到直线10x y −+=的最小距离为B. 圆M 上点到直线10x y −+=的最大距离为C. 点P 在圆M 上,当PBA ∠最小时,PB =D. 点P 在圆M 上,当PBA ∠最大时,PB =【答案】C 【解析】【分析】先根据定义确定ABC 的“欧拉线”方程,再根据直线与圆相切求出圆M ,由圆与直线的位置关系及平行线的距离一一判定选项即可.【详解】由题意可知BC =所以ABC 是以A 为顶点的等腰三角形,则其欧拉线为BC 的中垂线,易知32114BC k +==−−−,BC 的中点为31,22,故ABC 的“欧拉线”方程为:13122y x y x −=−⇒=−,可设(),1A a a −,由51AB AC a ==⇒=−或4a =, 即()1,2−−A 或()4,3A ,又圆M :()2223x y r −+=,可知圆心()3,0M ,根据圆M 与欧拉线相切可得()3,0M 到1y x =−的距离为d r ==,即圆M :()2232x y −+=,对于A 、B 选项,显然10x y −+=与1y x =−平行,两平行线的距离为d ,故圆M 上的点到10x y −+=的距离最大为2r d +,最小值为d =故A 、B 均错误;对于C 、D 选项,易知当点P 为直线PB 与圆M 的切点时PBA ∠取得最值,此时PB =,故D 错误,C 正确.故选:C二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 已知一组样本数据2,4,4,5,7,8,则这组数据的( ) A. 极差为6 B. 众数为4C. 方差为4D. 中位数为5【答案】ABC 【解析】【分析】根据平均数、方差、众数、中位数的定义计算可得. 【详解】依题意这组数据的众数为4,极差为826−=,中位数为454.52+=,平均数为()124457856+++++=, 所以方差为()()()()()()222222125454555758546−+−+−+−+−+−=. 故选:ABC10. 下列化简正确的是( )A. 1sin75cos754°°=B.1cos 4040sin 802°+°=°C. 1sin10cos 20cos 408°°°= D. tan1052°=−【答案】ACD 【解析】【分析】利用二倍角公式、诱导公式、两角和的正切公式,结合特殊角的三角函数值依次判断即可. 【详解】对于A ,根据二倍角的正弦公式可得111sin75cos752sin75cos75sin150224°°=⋅°°=°=,A 正确;对于B ,1cos 4040sin 30cos 40cos30sin 40sin 70sin 802°+°=°°+°°=°≠°, 所以B 错误;对于C ,8cos10sin10cos 20cos 40sin 801sin10cos 20cos 408cos108sin 808°°°°°°°°===°°,所以C 正确;对于D ,()tan 60tan 45tan105tan 604521tan 60tan 45+°=+°===−−, 所以D 正确; 故选:ACD11. 若抛物线22y px =(0p >)的焦点为F ,其准线与x 轴交于点A .过点F 作直线l 与抛物线交于点,M N ,且MF FN λ=(1λ>),直线AM 与抛物线的另一交点为E (点E 在点M 的左边).下列结论正确的是( ) A. 直线lB. tan MAF ∠C. MAF NAF ∠=∠D. AE AN =【答案】CD 【解析】【分析】设直线l 的方程为2px my =+,()()1122,,,M x y N x y ,根据MF FN λ= (1λ>),可得12,y y 的关系,联立方程,利用韦达定理求出1212,y y y y +,进而可求出12,y y ,从而可求出m ,即可判断A ;求出M 点的坐标即可判断B ;根据0AM AN k k +=是否成立即可判断C ;根据C 选项结合抛物线的对称性即可判断D. 【详解】,0,,022p p F A−, 设直线l 的方程为2px my =+,()()1122,,,M x y N x y , 则1122,,,22p p MF x y FN x y=−−=−,因为MF FN λ=(1λ>),所以121222p p x x y y λλ −=− −= ,所以()121212p x x y y λλλ=+−=− , 联立222p x my y px=+ = 得2220y pmy p −−=,则21212,2y y pm y y p +==−, 所以()12212y y y pm λ+=−=,所以2122,11pm pm y y λλλ==−−−, 所以2122211pm pm y y p λλλ=−⋅=−−−,解得1m =即直线l的斜率为,故A 错误; 由121pm y λλ=−−,得()()()()222222222112241212422211p m p y pm p x ppλλλλλλλλλ−⋅−=====−−,由1m =,得121p y λλ =−⋅=± −即,2p M λ ±,所以MA k ==,故B 错误;1212121222AM AN y y y y k k pp my p my p x x +=+=+++++()()()()()22121212122220my y p y y mp mp my p my p my p my p ++−+==++++, 所以AM AN k k =−,所以直线,AM AN 关于x 轴对称,所以MAF NAF ∠=∠,故C 正确;由题意可得,E N 都在M 的左侧,且直线,AM AN 关于x 轴对称, 根据抛物线的对称性可得AE AN =,故D 正确. 故选:CD.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式; (5)代入韦达定理求解12. 已知曲线C:12yx +是双曲线,下列说法正确的是( ) A. 直线0x =是曲线C 的一条渐近线 B. 曲线CC. (为曲线C 的其中一个焦点D. 当t 为任意实数时,直线l :yx t =+与曲线C 恒有两个交点【答案】ACD 【解析】【分析】A 选项,根据对勾函数的性质判断;B选项根据对勾函数的性质得到y x =是双曲线的另外一条渐近线,然后联立123y x yx ==+得到顶点坐标,即可得到实轴长;C选项,根据渐近线的特点得.到虚轴长,即可得到焦距,然后求焦点坐标即可;D 选项,根据渐近线的性质判断.【详解】根据对勾函数的性质可得0x =是双曲线的一条渐近线,故A 正确; 当x →+∞时,双曲线的方程趋近于y x =,所以y x =是双曲线的另外一条渐近线,倾斜角为30°,所以y =是双曲线的一条对称轴,联立123y x y x ==+得32x y = =或32x y==−,所以点32和32−,故B 错; 如图,设双曲线的一个焦点为F ,过双曲线的一个顶点A 作AB垂直y =交0x =于点B , 30AOB ∠=°,OA =2,焦距为4,即2OF =,所以(F ,故C 正确;因为y x =,0x =为渐近线方程,所以yx t =+与双曲线有两个交点,故D 正确.故选:ACD.【点睛】结论点睛:对勾函数(),0by ax a b x=+>的渐近线方程:0x =;y bx =. 三、填空题:本题共4小题,每小题5分,共20分.13. 过直线4250x y ++=与3290x y −+=的交点,且垂直于直线210x y ++=的直线方程是______. 【答案】11202x y −+= 【解析】【分析】首先求出两直线的交点坐标,设所求直线方程为20x y n −+=,代入交点坐标求出n 的值,即可得解.【详解】由42503290x y x y ++= −+= ,解得232x y =− =,所以直线4250x y ++=与3290x y −+=的交点为32,2−, 设所求直线方程为20x y n −+=,则()32202n ×−−+=,解得112n =, 所以所求直线方程为11202x y −+=. 故答案为:11202x y −+= 14. 已知椭圆2212516x y +=的右焦点为F ,点P 在椭圆上且在x 轴上方.若线段PF 的中点M 在以原点O 为圆心,||OF 为半径的圆上,则直线PF 的斜率是_______________.【答案】−. 【解析】【分析】设椭圆得左焦点为F ′,连接,OM PF ′,根据线段PF 的中点M 在以原点O 为圆心,||OF 为半径的圆上,可得OMOF c ==,从而可求得,PF PF ′,在PFF ′ ,利用余弦定理求得PFF ′∠的余弦值,从而可得出答案.【详解】解:设椭圆得左焦点F ′,连接,OM PF ′,由椭圆2212516x y +=得,5,4,3a b c ===, 则()()3,0,3,0F F ′−,26FF c ′==,210PF PF a ′+==, 因为点M 在以原点O 为圆心,||OF 为半径的圆上, 所以3OM OF c ===,因为,O M 分别为,FF PF ′得中点,所以26PF OF ′==,所以104PF PF ′=−=, 所以1636361cos 2463PFF+−′∠==××,则sin PFF ′∠ 为所以tan PFF =′∠,因为点P 在椭圆上且在x 轴上方,则直线PF 的倾斜角与PFF ′∠互补,所以直线PF 的斜率−.故答案为:−.15. 设ω是正实数,已知函数()sin cos f x x x ωω=−在区间()0,π上恰有两个零点,则ω的取值范围是______. 【答案】59,44【解析】【分析】先用辅助角公式化简函数式,再根据三角函数的性质计算即可.【详解】由()πsin cos 4f x x x x ωωω=−−,由()πππ0,π,π444x x ωω∈⇒−∈−−, 因为函数()sin cos f x x x ωω=−在区间()0,π上恰有两个零点, 则π59ππ2π,444ωω <−≤⇒∈ 故答案为:59,4416. 双曲线具有如下光学性质:从双曲线的一个焦点发出的光线,经双曲线反射后,反射光线的反向延长线经过双曲线的另一个焦点.已知双曲线22:14x C y −=的左焦点为F ,过双曲线C 右支上任意一点作其切线l ,过点F 作直线l 的垂线,垂足为H ,则点H 的轨迹方程为______.【答案】224(x y +=其中x > 【解析】【分析】由双曲线的光学性质,得到AH 为12F AF ∠的平分线,延长FH 交2AF 于点E ,根据中位线的性质,得到222111()()222OH F E AE AF AF AF a ==−=−=,结合圆的定义和双曲线的几何性质,即可求解.【详解】由双曲线22:14x C y −=,可得2a =,其右焦点为2F ,且渐近线方程为12y x =±,设双曲线C 右支上任意一点A ,过点F 作直线l 的垂线,垂足为H , 则过点A 的切线为AH ,根据双曲线的光学性质,可得AH 为12F AF ∠的平分线,延长FH ,设FH 的延长线与2AF 的延长线交于点E ,如图所示, 则AH 垂直平分FE ,即点H 为FE 的中点,又因为O 的中点,所以222111()()2222OH F E AE AF AF AF a ==−=−==, 可得点H 2为半径的圆, 可得点H 的轨迹方程为224x y +=,联立方程组22124y x x y =± +=,可得x =, 因为A 在双曲线的右支上,且AH 为双曲线的切线,则12AH k ≥, 所以点H 的轨迹方程为224(x y +=其中x >. 故答案为:224(x y +=其中x >.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 某中学举办科技文化节活动,报名参加数学史知识竞赛的同学需要通过两轮选拔.第一轮为笔试,若笔试不合格则不能进入下一轮选拔;若笔试合格,则进入第二轮现场面试.最终由面试合格者代表年级组参加全校的决赛,两轮选拔之间相互独立.现有甲、乙、丙三名学生报名参加本次知识竞赛,假设甲、乙、丙三名考生笔试合格的概率分别是23,12,34,面试合格的概率分别是12,23,13. (1)求甲、乙两位考生中有且只有一位学生获得决赛资格的概率; (2)求三人中至少有一人获得决赛资格的概率. 【答案】(1)49. (2)23. 【解析】【分析】(1)设事件A 表示“甲考生获得决赛资格”,设事件B 表示“乙考生获得决赛资格”,根据题意可判断两事件相互独立.先根据两轮选拔之间相互独立求出()P A 、()P B ;再根据互斥事件概率加法公式和相互独立事件概率计算公式即可求出结果.(2)设事件C 表示“丙考生获得决赛资格”,由题意可知事件A 、B 、C 相互独立.借助对立事件的概率计算公式可得结果. 【小问1详解】设事件A 表示“甲考生获得决赛资格”,设事件B 表示“乙考生获得决赛资格”,由题意可知事件A 、B 相互独立.因为两轮选拔之间相互独立 所以()211323P A =×=,()121233P B =×=. 则甲、乙两位考生中有且只有一位学生获得决赛资格的概率为:()()()()()()()111141133339P P AB AB P AB P AB P A P B P A P B =+=+=+=×−+−×=所以甲、乙两位考生中有且只有一位学生获得决赛资格的概率49. 【小问2详解】设事件C 表示“丙考生获得决赛资格”,由题意可知事件A 、B 、C 相互独立. 则()314431P C =×=. 因为事件“三人中至少有一人获得决赛资格”的对立事件是“三人都没有获得决赛资格” 所以三人中至少有一人获得决赛资格的概率为()()()()11121111113343P P ABC P A P B P C =−=−=−−−−= 所以三人中至少有一人获得决赛资格的概率23. 18. 设等差数列{}n a 前n 项和为n S .已知262a a +=,918S =−. (1)求n a ;(2)当n 为何值时,n S 最小?并求此最小值.【答案】(1)133na n =− (2)8,4 【解析】【分析】(1)设等差数列{}n a 的公差为d ,由262a a +=,918S =−求解; (2)由()()()1233,71223312323,82nn n n S n n n n n −≤ =−= −≥ ,分7n ≤,8n ≥,利用二次函数的性质求解. 【小问1详解】解:设等差数列{}n a 的公差为d ,又262a a +=,918S =−, 所以11262,93618a d a d +=+=−, 解得110,3a d ==−,所以()11133n a a n d n =+−=−;的【小问2详解】由(1)得()()()1233,71223312323,82nn n n S n n n n n −≤ =−= −≥ , 当7n ≤时,()2132352923322624n T n n n =−=−−+, 当13,N n n ≤≤∈时,n T 递增,当47,N n n ≤≤∈时,n T 递减,又1710,7T T ==, 所以n T 的最小值为7;当8n ≥时,()2132352932322624n T n n n =−=−−,n T 在[8,)+∞上递增,又84T =, 所以n T 的最小值为4, 综上:n S 的最小值为4.19. 在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c 且满足()sin sin sin sin b B C a A c C −=−. (1)求角A 的值;(2)若a =,且ABC的面积为ABC 的周长. 【答案】(1)π3(2)6+ 【解析】【分析】(1)利用正弦定理进行边角互换,然后利用余弦定理求A ;(2)根据三角形面积公式得到8bc =,根据余弦定理得到2220b c +=,然后求周长即可. 【小问1详解】由正弦定理得()22b bc a c −=−,整理得222b c a bc +−=,所以2221cos 222b c a bc A bc bc +−===, 因为()0,πA ∈,所以π3A =. 【小问2详解】因为ABC的面积为1sin 2bc A=,则8bc =, 由余弦定理得22112cos 22b c A bc+−==,则2220b c +=, 所以()222236b c b c bc +=++=,则6b c +=, 所以ABC的周长为6+.20. 已知抛物线C :22y px =()0p >的焦点为F ,点()2,A a 在抛物线C 上,且3AF =. (1)求抛物线C 的方程,并写出焦点坐标;(2)过焦点F 的直线l 与抛物线C 交于M ,N 两点,若点()1,1B −满足90MBN ∠=°,求直线l 的方程.【答案】(1)24y x =,焦点为()1,0F(2)220x y −−=【解析】【分析】(1)首先表示出抛物线的准线方程,根据抛物线的定义及焦半径公式求出p ,即可求出抛物线方程;(2)设直线l 的方程为1x my =+,()11,M x y 、()22,N x y ,联立直线与抛物线方程,消元、列出韦达定理,由0BM BN ⋅=得到方程,解得即可. 【小问1详解】抛物线C :22y px =()0p >准线方程为2px =−, 因为点()2,A a 在抛物线C 上,且3AF =, 所以232pAF =+=,解得2p =, 所以抛物线方程为24y x =,焦点为()1,0F . 【小问2详解】由(1)可知抛物线的焦点()1,0F ,显然直线l 的斜率不为0,设直线l 的方程为1x my =+,()11,M x y 、()22,N x y , 的由214x my y x =+ =,消去x 整理得2440y my −−=,所以216160m ∆=+>,则124y y m +=,124y y =−, 所以()21212242x x m y y m +=++=+,()()()2121212121111x x my my m y y m y y =++=+++=,又()1,1B −,所以()111,1BM x y =+− 、()221,1BN x y =+− , 因为90MBN ∠=°,所以()()()()211211110BM BN x x y y ⋅=+++−−=,即()()12121212110x x x x y y y y ++++−++=, 即214214410m m +++−−+=,解得12m =, 所以直线l 的方程为112x y =+,即220x y −−=.21. 已知椭圆C :22154x y +=和圆O :229x y +=,点P 是圆O 上的动点,过点P 作椭圆的切线1l ,2l 交圆O 于A ,B .(1)若点P 的坐标为()0,3,证明:直线12l l ⊥; (2)求线段AB 的长. 【答案】(1)证明见解析 (2)6 【解析】【分析】(1)设切线方程为3ytx =+,联立方程,再根据Δ0=结合韦达定理证明121t t =−即可; (2)分过点P 的一条切线斜率不存在和斜率存在两种情况讨论,联立方程,再根据Δ0=结合韦达定理证明12l l ⊥即可得出答案. 【小问1详解】由题意切线的斜率存在,设切线方程为3ytx =+, 联立223154ytx x y =+ +=,消y 得(225430250t x tx +++=, 则()222900100544004000t t t ∆=−+=−=, 所以121t t =−,即121l l k k ⋅=−, 所以12l l ⊥; 【小问2详解】设(),P m n ,则229m n +=,椭圆C :22154x y +=2,当过点P的一条切线斜率不存在时,不妨取这条切线方程为x =此时m =229n +=,解得2n =±,而直线2y =±与椭圆C 相切,所以当过点P 的一条切线斜率不存在时,12l l ⊥,当过点P的切线斜率存在时,则m ≠,设切线方程为()y nk x m −=−, 联立()22154y n k x m x y −=− += ,消y 得()()()22254105200k x k n km x n km ++−+−−=, 则()()()2222100205440k n km k n km ∆=−−+−−= , 化简得()2225240m k mnk n −++−=, 所以()2221222249451555m n m k k m m m−−−−====−−−−, 所以12l l ⊥,综上所述,12l l ⊥,所以线段AB 为圆O 的直径, 所以6AB =.【点睛】方法点睛:求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.22. 已知点()2,1A ,()2,1B −在双曲线C :2212x y −=上,过点()0,3D −作直线l 交双曲线于点E ,F (不与点A ,B 重合).证明:(1)记点(0,2P +,当直线l 平行于x 轴,且与双曲线的右支交点为E 时,P ,A ,E 三点共线; (2)直线AE 与直线BF 的交点在定圆上,并求出该圆的方程.【答案】(1)证明见解析.(2)证明见解析;()2225x y +−=.【解析】【分析】(1)根据题意求出点E 坐标,求出直线AE 、AP 的斜率相等,得证.(2)根据题意可求出BGA ∠为定值,AB 也为定值,所以G 在过,A B 的圆上,根据条件确定圆心和半径即可.【小问1详解】由题意,当直线l 平行于x 轴时,l 方程为=3y −,且与双曲线的右支交点为E ,则()22313)2x E −−=⇒−, AE的斜率AE k == AP的斜率AP AE k k =, 所以P ,A ,E 三点共线.【小问2详解】由题知直线EF 斜率存在,且过()0,3D −,设:3EF y kx =−,()()1122,,,E x y F x y 与双曲线2212x y −=联立得: ()221212200k x kx −+−=,2120−≠k 且280160k ∆=−> 则1212222012,2121k x x x x k k =+=−−, 设直线AE 与直线BF 的交点为G ,斜率分别为12,k k , 则()()()()()211212121221121212121114281622tan 111124412122y y k x x x k k x x BGA y y k k k x x k x x x x x −−−−+−+−+−∠===−−++−+++++⋅+−2122128481681224248412k k x k k k x k −−+−−==−+−+−,tan 2sin BGA BGA ∠=−⇒∠ 在BGA △中,sin BGA ∠,AB 4=, 由正弦定理得BGA △外接圆半径2sin AB R BGA ==∠,所以G 在过,A BH , 因为()2,1A ,()2,1B −,H 在线段AB 的中垂线上, 所以H 在y 轴上,设(0,),1H t t >, 则由()()2222151132AB R t t t =+−⇒=+−⇒=或0=t 舍, 所以定圆方程为()2225x y +−=.。
2023-2024学年江苏省南京师大附中高一(上)期中数学试卷一、单项选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,请把答案直接填写在答题卡相应位置上1.已知集合A ={﹣2,﹣1,0,1,2},B ={x |x =3k +1,k ∈Z },则集合A ∩B =( ) A .{0,2}B .{﹣1,2}C .{﹣2,0,2}D .{1,﹣2}2.函数f(x)=√x 2+2x 的增区间是( ) A .[0,+∞)B .[﹣1,+∞)C .(﹣∞,﹣2]D .(﹣∞,﹣1]3.若命题“∃x ∈R ,使得x 2﹣2x +m =0”是真命题,则实数m 的取值范围是( ) A .(1,+∞)B .[1,+∞)C .(﹣∞,1)D .(﹣∞,1]4.已知幂函数f(x)=x −m2+2m的定义域为R ,且m ∈Z ,则m 的值为( )A .﹣1B .0C .1D .25.已知二次函数y =x 2+bx +c 的图象与x 轴交于(﹣1,0),(2,0)两点,则关于x 的不等式cx 2+x ﹣b >0的解集为( ) A .(−12,1) B .(−∞,−12)∪(1,+∞) C .(−1,12)D .(−∞,−1)∪(12,+∞)6.设n 为正整数,f(n)=1+12+13+⋯+1n,人们对于f (n )的研究已经持续了几百年,迄今为止仍没有得到求和公式,只是得到了它的近似公式:当n 很大时,f (n )≈lnn +γ,其中γ称为欧拉﹣马歇罗尼常数,γ≈0.5772,至今还不确定γ是有理数还是无理数.由于上式在n 很大时才成立,故当n 较小时计算出的结果与实际值之间存在一定的误差,已知ln 2≈0.6931,用上式估算出的ln 4与实际的ln 4的误差绝对值近似为( ) A .0.03B .0.12C .0.17D .0.217.函数f(x)=1+x 21−x 2的图象大致为( )A .B .C .D .8.已知互不相同的实数x ,y ,z ,满足3x=4y=6z,则2z x 3−z2y 的值为()A .12B .1C .2D .3二、多项选择题:(本大题共4小题,每小题5分,共20分。
南京师大附中2022—2023学年度高三第一学期10月检测数 2022.10一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合M ={x |x ≤-1或x ≥1},N ={x |-3<x <1},则M ∩N =( )A .{x |-3<x ≤-1}B .{x |-3<x <-1}C .RD .{x |-3≤x ≤1} 2.若(z -1)i =i -2,则z =( )A .2-2iB .2+2iC .2iD .-2i3.顶角为36°的等腰三角形被称为最美三角形,已知其顶角的余弦值为5+14,则最美三角形底角的余弦值为( )A .5-14 B .5-12 C .5+14 D .5+124.在△ABC 中,→AB ·→AC =9,AB =3,点E 满足→AE =2→EC ,则→AB ·→BE =( )A .-6B .-3C .3D .65.如图,在长方形ABCD 中,AB =3,BC =1,点E 为线段DC 上一动点.现将△ADE 沿AE 折起,使点D 在平面ABC 内的射影K 在直线AE 上.当点E 从D 运动到C 时,则点K 所形成轨迹的长度为( )A .233B .32C .π2D .π36.已知椭圆长轴AB 的长为4,N 为椭圆点,满足|NA |=1,∠NAB =60°,则椭圆的离心率学为( )A .55 B .255 C .277 D .3777.第十三届冬残奥会于2022年3月4日至3月13日在北京举行.现从4名男生,2名女生中选3人分别担任冬季两项、单板滑雪、轮椅冰壶志愿者,且至多有1名女生被选中,则不同的选择方案有( )A .72种B .84种C .96种D .124种 8.若a =sin1+tan1,b =2,c =ln4+12,则a ,b ,c 的大小关系为( )A .c <b <aB .c <a <bC .a <b <cD .b <c <a 二、选择题:本题共4小题,每小题5分,共20分。
一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|230}A x x x ,2{|log 2}B x x ,则A B 南京师大附中2022-2023学年度第1学期期初高三年级阶段考试数学试卷∩A.(1,4) B.(1,3) C.(0,3) D.(0,4)2.已知复数z 的共轭复数2i3iz ,则复数z 在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.已知函数 222,0,0x x x f x x a x的值域为 1, ,则a 的最小值为()A.1B.2C.3D.44.函数 cos 0,2f x x的部分图象如图所示,则 f x 图象的一个对称中心是()A.,03B.,03C.5,06D.5,065.已知过椭圆 222210x y a b a b的左焦点 1,0F 的直线与椭圆交于不同的两点A ,B ,与y 轴交于点C ,点C ,F 是线段AB 的三等分点,则该椭圆的标准方程是()A.22165x y B.22154x y C.22132x y D.22143x y 6.如图,已知正四棱锥P ABCD 的底面边长和高的比值为t ,若点E 是棱PD 的中点,则异面直线PB 与CE 所成角的正切值为()A.B.C.D.7.已知函数 ln e f x x x , 2131a g x x ,若直线2y xb 与曲线 y f x , y g x 都相切,则实数a 的值为()A.54 B.1716C.178D.17e 88.已知双曲线 : 222210,0x y a b a b的右焦点为F ,直线y kx 与 交于A ,B 两点(点A 在第一象限),线段AF 的中点为P ,O 为坐标原点.若OA OF,2OP ,则 的两条渐近线的斜率之积为()A.4B.3C.3D.4 二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,不止一项是符合题目要求的.每题全选对者得5分,部分选对者得2分,其他情况不得分.9.教育统计学中,为了解某考生的成绩在全体考生成绩中的位置,通常将考生的原始分数转化为标准分数.定义标准分数11,2,,i i z x x i n sL ,其中i x 为原始分数,x 为原始分数的平均数,s 为原始分数的标准差.已知某校的一次数学考试,全体考生的平均成绩115x ,标准差10.8s ,转化为标准分数后,记平均成绩为m ,标准差为 ,则()A.115mB.0mC.10.8D.110.已知动点M 到点(2,1)N k k 的M 的运动轨迹为 ,则()A.直线12xy把 分成面积相等的两部分B.直线230x y 与 没有公共点C.对任意的k R ,直线2xy被 截得的弦长都相等D.存在k R ,使得 与x 轴和y 轴均相切11.已知等比数列 n a 满足10a ,公比1q ,且1220211220221,1a a a a a a ,则()A.20221a B.当2021n 时,12n a a a 最小C.当1011n 时,12n a a a 最小D.存在1011n ,使得12n n n a a a 12.已知函数 e xf x x ,则()A.曲线 y f x 在点 0,0处的切线方程为y xB.曲线 y f x 的极小值为e C .当2213e 2ea时, 1f x a x 仅有一个整数解D.当223e 2e 2a 时, 1f x a x 仅有一个整数解三、填空题:本大题个共4小题5个空,每题5分,共计20分.请把答案填写在答题卡相应位置上.13.若π0,2,sin 1 ,则cos 2 ______.14.某学校团委周末安排甲、乙、丙三名志愿者到市图书馆和科技馆服务,每个人只能去一个地方,每个地方都必须有人去,则图书馆恰好只有丙去的概率为______.15.若对任意的 1,4x ,都有234x x a x x ,则实数a 的取值范围为___________.16.有一张面积为的矩形纸片ABCD ,其中O 为AB 的中点,1O 为CD 的中点,将矩形ABCD 绕1OO 旋转得到圆柱1OO ,如图所示,若点M 为BC 的中点,直线AM 与底面圆O 所成角的正切值为24,EF 为圆柱的一条母线(与AD ,BC 不重合),则当三棱锥A EFM 的体积取最大值时,三棱锥A EFM 外接球的表面积为___________.四、解答题:本题共6个小题,共70分.请在答案卡指定区域内作答,解答应写出文字说明,证明过程或演算步骤.17.在ABC .中,角A ,B ,C 的对边分别为a ,b ,c ,已知2cos cos b c Ca A,3a .(1)求角A ;(2)若点D 在边AC 上,且1233BD BA BC,求BCD △面积的最大值.18.已知数列 n a 的前n 项和22n n nS .(1)求 n a 的通项公式;(2)若数列 n b 满足对任意的正整数n ,2312123(1)n nb b b b n a a a a 恒成立,求证:4n b .19.随着生活节奏的加快、生活质量的提升,越来越多的居民倾向于生活用品的方便智能.如图是根据2016—2020年全国居民每百户家用汽车拥有量y (单位:辆)与全国居民人均可支配收入x (单位:万元)绘制的散点图.(1)由图可知,可以用线性回归模型拟合y 与x 的关系,求y 关于x 的线性回归方程;(过程和结果保留两位小数)(2)已知2020年全国居民人均可支配收入为32189元,若从2020年开始,以后每年全国居民人均可支配收入均以6%的速度增长,预计哪一年全国居民每百户家用汽车拥有量可以达到50辆.参考数据:xy521ii xx51iii xxy y 2.8232.560.465.27510.06 1.34 , 610.06 1.42 , 710.06 1.50 .参考公式:回归方程 y abx 中斜率和截距的最小二乘估计公式分别为121nii i nii xx y yb xx,a y bx $$.20.如图1,在平行四边形ABCD中,,1,2AB AC AB BC ,将ACD沿AC 折起,使得点D 到点P 的位置,如图2,设经过直线PB 且与直线AC 平行的平面为 ,平面 ∩平面为PAC m ,平面 ∩平面为ABC n .(1)证明://m n ;(2)若PBA PBC 的正弦值.21.已知椭圆 2222:10x y C a b a b 的离心率为22,且点21,2P在C 上.(1)求椭圆C 的标准方程;(2)设1F ,2F 为椭圆C 的左,右焦点,过右焦点2F 的直线l 交椭圆C 于A ,B 两点,若1ABF 内切圆的半径为4,求直线l 的方程.22.已知函数 sin cos f x x x x .(1)证明:当 0,x 时, 0f x ;(2)记函数 g x f x x ,判断 g x 在区间 2,2 上零点的个数.南京师大附中2022-2023学年度第1学期高三年级阶段考试数学试卷一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|230}A x x x ,2{|log 2}B x x ,则A B ∩A.(1,4) B.(1,3) C.(0,3)D.(0,4)【答案】C 【解析】【详解】试题分析:解一元二次不等式2230x x ,得13x ,∴(1,3)A ,而(0,4)B ,∴(0,3)A B .考点:1.解一元二次不等式;2.集合的交集.2.已知复数z 的共轭复数2i3iz ,则复数z 在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D 【解析】【分析】由复数的运算法则计算后根据共轭复数概念得z ,再由几何意义得对应点坐标,从而得结论.【详解】 2i 3i 2i 55i 11i 3i 3i 3i 1022z,故11i 22z ,在复平面内对应的点为11,22,位于第四象限.故选:D.3.已知函数 222,0,0x x x f x x a x的值域为 1, ,则a 的最小值为()A.1 B.2C.3D.4【答案】A 【解析】【分析】利用函数的单调性分别求出0x 和0x 时,所对应函数解析式的范围,根据函数 f x 的值域即可求出a 的取值范围.【详解】由已知得当0x 时, 222211f x x x x ,值域为1, ;当0x 时, f x x a ,值域为 ,a ;∵函数 f x 的值域为1, ,∴1a ,则a 的最小值为1.故选:A.4.函数 cos 0,2f x x的部分图象如图所示,则 f x 图象的一个对称中心是()A.,03B.,03C.5,06D.5,06【答案】D 【解析】【分析】先根据函数图象得到函数 f x 图象的一个对称中心与 f x 的最小正周期,进而利用函数的性质即可求解.【详解】解:由题图可知 f x 图象的一个对称中心是,06, f x 的最小正周期4263T,故 f x 图象的对称中心为,06k,Z k ,结合选项可知,当1k 时, f x 图象的一个对称中心是5,06.故选:D.5.已知过椭圆 222210x y a b a b的左焦点 1,0F 的直线与椭圆交于不同的两点A ,B ,与y 轴交于点C ,点C ,F 是线段AB 的三等分点,则该椭圆的标准方程是()A.22165x y B.22154x y C.22132x y D.22143x y 【答案】B 【解析】【分析】不妨设A 在第一象限,由椭圆的左焦点 1,0F ,点C ,F 是线段AB 的三等分点,易得21,b A a,22,2b B a代入椭圆方程可得222414b a a ,又2221c a b ,两式相结合即可求解【详解】不妨设A 在第一象限,由椭圆的左焦点 1,0F ,点C ,F 是线段AB 的三等分点,则C 为1AF 的中点,1F 为BC 中点,所以1A x ,所以22211A y a b ,则2A b y a即21,b A a ,所以220,2b C a ,22,2b B a,将点坐标代入椭圆方程得4222441b a a b ,即222414b a a,又221a b ,所以25a ,24b ,所以椭圆的标准方程是22154x y .故选:B6.如图,已知正四棱锥P ABCD 的底面边长和高的比值为t ,若点E 是棱PD 的中点,则异面直线PB 与CE 所成角的正切值为()A.B.C.D.【答案】C 【解析】【分析】如图,连接,BD AC 交于点O ,连接,OE OP ,根据正四棱锥的几何特征可得O 为,BD AC 的中点,OP 平面ABCD ,则可得OE BP ∥,则异面直线PB 与CE 所成的角为OEC 或其补角,设AB a =,OP h ,结合已知在Rt OEC 中,分别求出,OE OC 即可得解.【详解】先根据正四棱锥的结构特征找到异面直线PB 与CE 所成的角,然后通过解三角形即可得解.如图,连接,BD AC 交于点O ,连接,OE OP ,则O 为,BD AC 的中点,且OP 平面ABCD ,因为E 是棱PD 的中点,所以OE BP ∥,所以异面直线PB 与CE 所成的角为OEC 或其补角,因为AC 平面ABCD ,所以OP AC ,又,AC BD BD OP O ,所以AC 面PBD ,又OE 面PBD ,所以OC OE ,设AB a =,OP h ,则由题意得a t h,2OB OC a,12OE BP 所以在Rt OEC中,222tan a aOC h OEC OE ,即异面直线PB 与CE,故选:C.7.已知函数 ln e f x x x , 2131a g x x ,若直线2y xb 与曲线 y f x , y g x 都相切,则实数a 的值为()A.54 B.1716C.178D.17e 8【答案】B 【解析】【分析】设直线2y x b 与曲线 y f x , y g x 相切的切点分别为 11,x y ,22,x y ,先针对ln e f x x x ,根据导数的几何意义求出切线方程,再针对 2131a g x x还是利用导数的几何意义列方程组求出实数a 的值.【详解】设直线2y x b 与曲线 y f x , y g x 相切的切点分别为 11,x y ,22,x y ,因为 11f x x,所以 11112f x x ,解得11x ,又 ln e 112f ,所以直线2y x b 与曲线 y f x 相切的切点坐标为 1,2,所以22b ,解得0b ,所以2y x .又22111a g x x x,所以 2222222121213211a g x x a x x x,解得2541716x a.故选:B .8.已知双曲线 : 222210,0x y a b a b的右焦点为F ,直线y kx 与 交于A ,B 两点(点A 在第一象限),线段AF 的中点为P ,O 为坐标原点.若OA OF,2OP ,则 的两条渐近线的斜率之积为()A.4B.3C.3D.4 【答案】B 【解析】2c a,进而2224a b a,即可求解【详解】如图,设双曲线 的左焦点为1F ,连接1AF ,根据双曲线 与直线y kx 的对称性,知OA OB .因为OA OF,2OP ,线段AF 的中点为P ,所以12AF OP ,且OP AF ,所以2AF PF c .根据双曲线的定义,知12AF AF a ,2c a ,所以2224c a ,所以2224a b a ,所以223b a,所以双曲线的两条渐近线的斜率之积为223b a,故选:B.二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,不止一项是符合题目要求的.每题全选对者得5分,部分选对者得2分,其他情况不得分.9.教育统计学中,为了解某考生的成绩在全体考生成绩中的位置,通常将考生的原始分数转化为标准分数.定义标准分数11,2,,i i z x x i n sL ,其中i x 为原始分数,x 为原始分数的平均数,s 为原始分数的标准差.已知某校的一次数学考试,全体考生的平均成绩115x ,标准差10.8s ,转化为标准分数后,记平均成绩为m ,标准差为 ,则()A.115mB.0m C.10.8D.1【答案】BD 【解析】【分析】根据平均数和方差公式,结合11,2,,i i z x x i n sL 即可计算m 和 .【详解】根据平均数与方差公式,得1111111110n n n i i i i i i m z x x x x x x n n s s n s,22211s s,即0m ,1 .故选:BD .10.已知动点M 到点(2,1)N k kM 的运动轨迹为 ,则()A.直线12xy把 分成面积相等的两部分B.直线230x y 与 没有公共点C.对任意的k R ,直线2xy被 截得的弦长都相等D.存在k R ,使得 与x 轴和y 轴均相切【答案】ABC 【解析】【分析】根据题意知曲线 为圆,由直线过圆心可判断A ,由圆心到直线的距离判断B ,由圆心到2x y 的距离为定值判断C ,根据圆心到坐标轴的距离判断D.【详解】依题意得, 是以(2,1)N k k 为半径的动圆,则 的方程为22(2)(1)3x k y k .易知直线12xy 经过 的圆心(2,1)N k k ,所以直线12xy把 分成面积相等的两部分,故A 正确;(2,1)N k k 到直线230x y 的距离1d230x y 与 没有公共点,故B 正确;圆心(2,1)N k k 到直线2xy的距离2d所以直线2x y 被圆 截得的弦长为2555 ,是定值,故C 正确;若存在一个圆 与x 轴和y 轴均相切,则|2||1|k k ,显然无解,故D 错误.故选:ABC11.已知等比数列 n a 满足10a ,公比1q ,且1220211220221,1a a a a a a ,则()A.20221a B.当2021n 时,12n a a a 最小C.当1011n 时,12n a a a 最小D.存在1011n ,使得12n n n a a a 【答案】AC【解析】【分析】由等比数列的性质、单调性及不等式的性质可对每一个选项进行判断【详解】对A ,∵10a ,1q ,∴0n a ,又1220211a a a ,1220221a a a ,∴202212202111a a a a,故A 正确;对B 和C ,由等比数列的性质可得21202122020101010121011a a a a a a a ,故202112202110111a a a a 即101101a ,∵22202232021101110131012a a a a a a a ,∴202123420221012a a a a a ,因为123420222342022111a a a a a a a a a a a,所以2021101211a a ,∵1220211a a a ,10a ,1q ,∴101a ,111a ,∴10121a ,故当1011n 时,12n a a a 最小,所以B 错误,C 正确;对D ,因为101a ,1q ,所以 n a 是单调递增数列,所以当1011n 时,10111n a a ,故112n n n n a a a a ,故D 错误,故选:AC12.已知函数 e xf x x ,则()A.曲线 y f x 在点 0,0处的切线方程为y xB.曲线 y f x 的极小值为eC.当2213e 2ea时, 1f x a x 仅有一个整数解D.当223e 2e 2a 时, 1f x a x 仅有一个整数解【答案】AC 【解析】【分析】对于A,利用导数的几何意义及直线的点斜式方程即可求解;对于B ,利用函数极值的定义及导数法求函数极值的步骤即可求解;对于C ,D ,根据B 选项结论,画出函数()f x 图象,利用函数 1f x a x 仅有一个整数解,只需要()f x 的图象在 1y a x 的图象的下方的横坐标为整数且只有一个即可求解.【详解】对于A ,1x x x f x x x x e e e ,所以曲线 y f x 在点 0,0处的斜率为00011k f e ,所以曲线 y f x 在点 0,0处的切线方程为 010y x 即y x ,故A 正确;对于B,1x x x f x x x x e e e ,令()0f x ¢=,则 10xx e ,解得=1x ,当1x 时,()0f x ¢>,当1x 时,()0f x ¢<,所以 f x 在 1, 上单调递增,在 ,1 上单调递减.当=1x 时, f x 取得极小值为 1111fe e,故B 不正确;对于C ,D,由B 选项知, f x 在 1, 上单调递增,在 ,1 上单调递减.当=1x 时, f x 取得极小值为 1111f ee,如图所示由题意可知,2121,,2,,e e A B直线 1y a x 恒过()1,0P ,所以11e 112ePAk,22202e 123e PB k ,要使 1f x a x 仅有一个整数解,只要是 e xf x x 的图象在 1y a x 的图象的下方的横坐标为整数且只有一个,当PB PA k a k ,即2213e 2e a 时, 1f x a x 仅有一个整数解,故C 正确,当22e a 时,当1x 时, 1f x a x ,当2x 时, 22e221f ,当3x 时, 1f x a x , 1f x a x 无整数解,D 不正确.故选:AC.【点睛】解决此题的关键,对于A ,利用导数的几何意义即可,对于B ,利用导数法求函数极值的步骤即可,对于C ,D,画出函数图象,要使 1f x a x 仅有一个整数解,只要是 e xf x x 的图象在 1y a x 的图象的下方的横坐标为整数且只有一个,即PB PA k a k 即可.三、填空题:本大题个共4小题5个空,每题5分,共计20分.请把答案填写在答题卡相应位置上.13.若π0,2,sin 1 ,则cos 2 ______.【答案】79【解析】【分析】由题,结合三角恒等变换,求出sin 或tan 的值,即可由2cos 212sin 或221tan cos 21tan求值【详解】解法一sin 11sin ,两边平方得222cos 12sin sin ,23sin 2sin 10 ,解得1sin 3或sin 1 (π0,2,舍去),故2cos 21279sin 解法二sin 1两边同时平方,得222cos sin sin 1,即2cos sin,又π0,2,则cos 0,所以sin tan cos 4,则22111tan 78cos 211tan 918.故答案为:7914.某学校团委周末安排甲、乙、丙三名志愿者到市图书馆和科技馆服务,每个人只能去一个地方,每个地方都必须有人去,则图书馆恰好只有丙去的概率为______.【答案】16【解析】【分析】利用古典概型的概率计算公式求解即可【详解】先将3人分成两组,再安排到市图书馆和科技馆,共有2232C A 6 种不同的情况,图书馆恰好只有丙去只有1种情况,故所求概率16P .故答案为:1615.若对任意的 1,4x ,都有234x x a x x ,则实数a 的取值范围为___________.【答案】 ,16, 【解析】【分析】对任意的 1,4x ,都有234x x a x x 等价于对任意的 1,4x ,都有43x a x x,由题意可知,函数 14y x a x 的图象在函数 4314y x x x的图象的上方,结合图象列式即可求解【详解】对任意的 1,4x ,都有234x x a x x 等价于对任意的 1,4x ,都有43x a x x,作出函数 4314y x x x的大致图象,如图中实线所示,由题意可知,函数 14y x a x 的图象在函数 4314y x x x的图象的上方,①若14a ,显然不符合题意;②若4a ,当直线y a x 经过点 4,2时,6a ,所以要使 14y x a x 的图象在4314y x x x的图象的上方,需6a ;③若1a ,当直线y x a 经过点 1,2时,1a ,所以要使 14y x a x 的图象在4314y x x x的图象的上方,需1a .综上,实数a 的取值范围为 ,16, .故答案为:,16, 16.有一张面积为的矩形纸片ABCD ,其中O 为AB 的中点,1O 为CD 的中点,将矩形ABCD 绕1OO旋转得到圆柱1OO ,如图所示,若点M 为BC 的中点,直线AM 与底面圆O 所成角的正切值为4,EF 为圆柱的一条母线(与AD ,BC 不重合),则当三棱锥A EFM 的体积取最大值时,三棱锥A EFM 外接球的表面积为___________.【答案】412【解析】【分析】先根据矩形ABCD 的面积为AM 与底面圆O 所成角的正切值为4,求出圆柱的底面半径与高,连接BE ,再由基本不等式求出三棱锥A EFM 的体积取最大值时AE ,BE 的长,最后设三棱锥A EFM 外接球的球心到平面AEF 的距离为x ,列出关于x 的方程,求出x ,进而求出外接球半径,即可求得外接球的表面积【详解】设圆柱的高为h ,底面半径为r ,则2rh ,即rh .因为直线AM 与底面圆O 所成角的正切值为4,所以2224hr,即hr .由rh h r,得2h r 连接BE ,由题意得AE BE ,AE EF ,又BE EF E ∩,所以 AE 平面MEF ,而AE 平面AEF ,所以平面AEF 平面MEF .过点M 作MN EF 于点N ,则MN 平面AEF .设AE a ,BE b ,则2216a b ,于是三棱锥A EFM的体积2211323323A EFM a b V a b ab ,当且仅当a b 时取等号,设此时三棱锥A EFM 外接球的球心到平面AEF 的距离为x ,外接球半径为R ,则2242x x ,解得324x,于是229414488R x,所以当三棱锥A EFM 的体积取最大值时,三棱锥A EFM 外接球的表面积24142S R .故答案为:412.四、解答题:本题共6个小题,共70分.请在答案卡指定区域内作答,解答应写出文字说明,证明过程或演算步骤.17.在ABC .中,角A ,B ,C 的对边分别为a ,b ,c ,已知2cos cos b c Ca A,3a .(1)求角A ;(2)若点D 在边AC 上,且1233BD BA BC,求BCD △面积的最大值.【答案】(1)3(2)4【解析】【分析】(1)利用正弦定理将2cos cos b c Ca A,化为2sin cos sin B A B ,由此即可求出结果;(2)由题意可知13CD CA ,进而可得1312BCD ABC S S △△,再根据余弦定理和基本不等式可得bc 的最大值,进而求出结果.【小问1详解】解:因为2cos cos b c Ca A,所以 2cos cos b c A a C ,所以 2sin cos sin cos cos sin sin sin B A A C A C A C B ,因为sin 0B ,所以1cos 2A ,因为 0,πA ,所以π3A .【小问2详解】解:因为1233BD BA BC ,所以13CD CA;所以113sin 3612BCD ABC S S bc A bc△△,因为2222cos a b c bc A ,所以229b c bc bc ,当且仅当b c 时,等号成立,所以333124BCD S△,所以BCD △面积的最大值为334.18.已知数列 n a 的前n 项和22n n nS .(1)求 n a 的通项公式;(2)若数列 n b 满足对任意的正整数n ,2312123(1)n nb b b b n a a a a 恒成立,求证:4n b .【答案】(1)n a n (2)证明见解析【解析】【分析】(1)利用11,2,,1n n n S S n a S n,进而求得答案;(2)根据题意先求出nnb a ,然后根据(1)求出n b ,进而通过基本不等式证明问题.【小问1详解】因为22n n nS ,所以当2n 时,221(1)122n n n n n n n a S S n .当1n 时,2111112a S ,满足n a n .所以 n a 的通项公式为n a n .【小问2详解】因为2312123(1)n nb b b b n a a a a ,所以当2n 时,231121231n n b b b b n a a a a ,所以22(1)(2)n n b n n a n,又1n 时,21124b a ,满足22(1)n n b n a n,所以对任意正整数n ,22(1)n n b n a n ,由(1)得,n a n ,所以22(1)21n n n n b n n1224n n ,当且仅当1n 时等号成立.19.随着生活节奏的加快、生活质量的提升,越来越多的居民倾向于生活用品的方便智能.如图是根据2016—2020年全国居民每百户家用汽车拥有量y (单位:辆)与全国居民人均可支配收入x (单位:万元)绘制的散点图.(1)由图可知,可以用线性回归模型拟合y 与x 的关系,求y 关于x 的线性回归方程;(过程和结果保留两位小数)(2)已知2020年全国居民人均可支配收入为32189元,若从2020年开始,以后每年全国居民人均可支配收入均以6%的速度增长,预计哪一年全国居民每百户家用汽车拥有量可以达到50辆.参考数据:xy521ii xx51iii xxy y 2.8232.560.465.27510.06 1.34 , 610.06 1.42 , 710.06 1.50 .参考公式:回归方程 y abx 中斜率和截距的最小二乘估计公式分别为121nii i nii xx y yb xx,a y bx $$.【答案】(1)11.460.24y x $;(2)预计2026年全国居民每百户家用汽车拥有量可以达到50辆.【解析】【分析】(1)根据参考数据和公式算出b, a ,进而得到y 关于x 的线性回归方程;(2)先根据线性回归方程计算出当 50y 时x 的值,将其与通过已知数据计算所得的值相比较即可得解.【小问1详解】解:515215.2711.460.46iii ii x x y y b x x$,32.5611.46 2.820.24a y bx $$,所以y 关于x 的线性回归方程为11.460.24y x $.【小问2详解】解:由5011.460.24x ,得 4.34x .因为2020年全国居民人均可支配收入为3.2189万元,且 53.218910.06 3.2189 1.344.31 4.34 , 63.218910.06 3.2189 1.424.57 4.34 ,所以预计2026年全国居民每百户家用汽车拥有量可以达到50辆.20.如图1,在平行四边形ABCD 中,,1,2AB AC AB BC ,将ACD 沿AC 折起,使得点D 到点P 的位置,如图2,设经过直线PB 且与直线AC 平行的平面为 ,平面 ∩平面为PAC m ,平面 ∩平面为ABC n .(1)证明://m n ;(2)若PBA PBC 的正弦值.【答案】(1)证明见解析(2)5【解析】【分析】(1)根据已知条件及线面平行的性质定理,结合空间平行线的传递性即可求解;(2)根据已知条件建立空间直角坐标系,求出相关点的坐标,求出平面PAB 和平面PBC 的法向量,利用向量的夹角公式及同角三角函数的平方关系即可求解.【小问1详解】因为//AC 平面为 ,AC 平面PAC ,平面 ∩平面为PAC m ,所以//AC m ,因为//AC 平面为 ,AC 平面ABC ,平面 ∩平面为ABC n ,所以//AC n ,所以//m n 【小问2详解】由题意可知,以A 为坐标原点,建立空间直线坐标系A xyz ,如图所示则0,0,0,1,0,0,,A B C 设 ,,P a b c ,0c ,则由21PA PC PB ,即 2222222224116a b c a b c a b c,解得1232a b c或1232a b c (舍),所以122P.所以13131,0,0,,,0,,2222AB AP PC BC.设平面PAB 的法向量为 ,,n x y z,则00n AB n AP ,即01022x x z,令1y ,则0,2x z ,所以 0,1,2n.设平面PBC 的法向量为 111,,m x y z,则00n PC n BC,即111110220x z x,令11y,则111x z ,所以m.设二面角A PB C 的大小为 ,则1cos cos ,5n mn m n m,所以sin 5 .故所求二面角A PB C 的正弦值为5.21.已知椭圆 2222:10x y C a b a b 的离心率为22,且点1,2P在C 上.(1)求椭圆C 的标准方程;(2)设1F ,2F 为椭圆C 的左,右焦点,过右焦点2F 的直线l 交椭圆C 于A ,B 两点,若1ABF 内切圆的半径为34,求直线l 的方程.【答案】(1)2212x y(2)10x 或10x .【解析】【分析】(1)根据离心率可得,,a b c 的关系,再将P 的坐标代入方程后可求,a b ,从而可得椭圆的方程.(2)设直线l 的方程为1x ty , 1222,,,A x y B x y ,结合1ABF 内切圆的半径为34可得122y y,联立直线方程和椭圆方程,消元后结合韦达定理可得关于t 的方程,求出其解后可得直线方程.【小问1详解】因为椭圆的离心率为2,故可设2,,0a k c b k ,故椭圆方程为2222142x y k k ,代入1,2P 得2211144k k ,故212k ,故椭圆方程为:2212x y .【小问2详解】1ABF 的周长为4a ,故11242ABF S △.设 1222,,,A x y B x y ,由题设可得直线l 与x 轴不重合,故可设直线1x ty ,则1121216222ABF S y y y y△,由22122x ty x y 可得 22122ty y ,整理得到222210t y ty ,此时2880t ,故122221622y y t ,解得t ,故直线l 的方程为:10x 或10x .22.已知函数 sin cos f x x x x .(1)证明:当 0,x 时, 0f x ;(2)记函数 g x f x x ,判断 g x 在区间 2,2 上零点的个数.【答案】(1)证明见解析(2)5个零点【解析】【分析】(1)求导后可知 f x 在 0, 上单调递增,由 00f x f 可得结论;(2)由 0g 可知x 是 g x 的一个零点;分别在0,2x、,2x和 ,2x 的情况下,结合零点存在定理判断导函数的正负,从而得到 g x 的单调性,确定区间内零点个数,得到 g x 在 0,2 上的零点个数;根据奇函数性质可得最终结果.【小问1详解】由题意得: sin f x x x ;当 0,x 时,sin 0x , 0f x ,()f x \在 0, 上单调递增,00f x f .【小问2详解】sin cos g x x x x x , sin 1g x x x ,sin cos 0g ∵,x 是 g x 的一个零点;①当0,2x时,设 sin h x x x ,则 cos 10h x x , h x 在0,2上单调递减,()()00h x h \<=,又cos 0x x , 0g x ,即 g x 在0,2上无零点;②当,2x时, sin cos g x x x x , 2cos sin 0g x x x x , g x 在,2ππ 上单调递减,又102g, 0g ,0,2x,使得 00g x ,当0,2x x时, 0g x ;当 0,x x 时, 0g x ; g x 在0,2x上单调递增,在 0,x 上单调递减; 01022g x g∵, 10g ,g x 在,2ππ上存在唯一零点1x ,当1,2x x时, 0g x ;当 1,x x 时, 0g x ; g x 在1,2x上单调递增,在 1, x 上单调递减, 10g x g ∵,1022g, g x 在,2ππ 有唯一零点;③当 ,2x 时,sin 0x , 0g x , g x 在 ,2 上单调递减,0g x g , g x 在 ,2 上无零点;综上所述: g x 在 0,2 上有两个零点;sin cos g x x x x x g x ∵, g x 为奇函数,图象关于原点对称,g x 在 2,0 上有两个零点;又 00g , g x 在 2,2 上共有5个零点.【点睛】思路点睛;本题考查利用导数研究函数零点个数的问题,解题基本思路是能够根据导函数的形式,对所给区间进行分段,通过说明导函数在每段区间内的符号,得到原函数在区间内的单调性,结合零点存在定理确定零点个数.。
南京师大附中2017-2018学年度第一学期高一年级期中试卷数学试卷一.填空题:本大题共14分,每小题3分,共42分.1.已知集合{}2,A m =,{}2,2B m =.若A B =,则实数m =__________.2.若幂函数()a f x x =的图像过点()2,4,则实数a =__________.3.函数y =__________.4.若集合{}1,2,3A =,则集合A 的子集个数为__________.5.若函数()2f x x ax =-是偶函数,则a =__________.6.已知lg 2a =,lg3b =,则3log 6=__________(用含a ,b 的代数式表示).7.已知函数()f x 是定义在R 上的奇函数,若0x >时,()1f x x =+,则()2f -=__________.8.已知函数()221f x x x =+-,函数()y g x =为一次函数,若()()2243g f x xx =++,则()g x =__________.9.若函数()4,15,1x x f x x x ⎧<=⎨-≥⎩,则方程()2f x =所有的实数根的和为__________.10.设3log 7a =, 1.12b =, 1.10.8c =,则a ,b ,c 三者的大小关系是__________.(用“<”连接) 11.已知函数()2log 3f x x x =-的零点为0x ,若()0,1x n n ∈+,n Z ∈,则n =__________. 12.已知函数()1f x x =+在区间[),a +∞是增函数,则实数a 的取值范围是__________.13.已知函数()y f x =是定义在区间[]3,3-上的偶函数,它在区间[]0,3上的图像是如图所示的一条线段,则不等式()()f x f x x +->的解集为__________.(第13题)(第14题)14.如图,过原点O 的直线AB 与函数9log y x =的图像交于A ,B 两点,过A ,B 分别作x 轴的垂线,与函数3log y x =的图像分别交于D ,C 两点.若BD 平行于x 轴,则四边形ABCD 的面积为__________.二.解答题:本大题共6小题,共计58分 15.(本小题满分8分)已知全集U R =,集合{}3A x x =<,{}2log 1B x x =≥. (1)求AB ;(2)求()()U U C A C B .16.(本小题满分8分) 求值:(1)102381272-⎛⎫⎛⎫+-- ⎪ ⎪⎝⎭⎝⎭; (2)2log34log 2log 92⨯+17.(本小题满分10分)已知函数()()()121x xf x a a a =-+-,其中0a >且1a ≠,又()15f =.(1)求实数a 的值;(2)若[]1,3x ∈-,求函数()f x 的值域. 18.(本小题满分10分)某市自来水公司每两个月(记为一个收费周期)对用户收一次水费,收费标准如下:当每户用水量不超过30吨时,按每吨3元收取;当该用户用水量超过30吨时,超出部分按每吨4元收取.(1)记某用户在一个收费周期的用水量为x 吨,所缴水费为y 元,写出y 关于x 的函数解析式; (2)在某一个收费周期内,若甲、乙两用户所缴水费的和为260元,且甲、乙两用户用水量之比为3:2,试求出甲、乙两用户在该收费周期内各自的用水量和水费.19.(本小题满分10分)已知函数()()log 1xa f x a =-(0a >,1a ≠)(1)当12a =时,求函数()f x 的定义域; (2)当1a >时,求关于x 的不等式()()1f x f <的解集;(3)当2a =时,若不等式()()2log 12xf x m -+>对任意实数[]1,3x ∈恒成立,求实数m 的取值范围.20.(本小题满分12分) 已知函数()1f x x x =-,x R ∈ (1)求不等式()6f x <的解集;(2)记()f x 在[]0,a 上最大值为()g a ,若()2g a <,求正实数a 的取值范围.南京师大附中2017-2018学年度第一学期 高一年级期中试卷数学试卷参考答案1.已知集合{}2,A m =,{}2,2B m =.若A B =,则实数m =__________. 【答案】0【解析】由集合相等的性质,有2m m =,0m =2.若幂函数()a f x x =的图像过点()2,4,则实数a =__________. 【答案】2【解析】将点坐标代入()a f x x =,∵224=,∴2a =3.函数y =__________. 【答案】1,2⎡⎫+∞⎪⎢⎣⎭【解析】210x -≥,12x ≥4.若集合{}1,2,3A =,则集合A 的子集个数为__________. 【答案】8【解析】记n 是集合中元素的个数,集合A 的子集个数为3228n==个 5.若函数()2f x x ax =-是偶函数,则a =__________.【答案】0【解析】因为函数()2f x x ax =-是偶函数,所以x 的一次项系数为0,即0a =6.已知lg 2a =,lg3b =,则3log 6=__________(用含a ,b 的代数式表示). 【答案】a bb+ 【解析】由换底公式,3lg 6lg 2lg3log 6lg3lg3a bb++=== 7.已知函数()f x 是定义在R 上的奇函数,若0x >时,()1f x x =+,则()2f -=__________. 【答案】-3【解析】()()()22213f f -=-=-+=-8.已知函数()221f x x x =+-,函数()y g x =为一次函数,若()()2243g f x xx =++,则()g x =__________.【答案】25x +【解析】由题意,函数()y g x =为一次函数,由待定系数法,设()g x kx b=+(0k ≠),()()()221g f x k x x b =+-+,由对应系数相等,得2k =,5b =.9.若函数()4,15,1x x f x x x ⎧<=⎨-≥⎩,则方程()2f x =所有的实数根的和为__________.【答案】72【解析】(1)42x=,12x = (2)52x -=,3x =10.设3log 7a =, 1.12b =, 1.10.8c =,则a ,b ,c 三者的大小关系是__________.(用“<”连接) 【答案】c a b <<【解析】∵31log 72<<, 1.122>, 1.100.81<<,∴c a b <<11.已知函数()2log 3f x x x =-的零点为0x ,若()0,1x n n ∈+,n Z ∈,则n =__________. 【答案】2【解析】由零点定理,()222log 231f =-=-,()233log 33f =-,()()230f f < 12.已知函数()1f x x =+在区间[),a +∞是增函数,则实数a 的取值范围是__________. 【答案】[)1,-+∞【解析】由绝对值函数的图像可得,区间左端点应该在-1的右边13.已知函数()y f x =是定义在区间[]3,3-上的偶函数,它在区间[]0,3上的图像是如图所示的一条线段,则不等式()()f x f x x +->的解集为__________.(第13题)(第14题)【答案】123,7⎡⎫-⎪⎢⎣⎭【解析】由题意,函数()f x 过点()0,2,()3,0,∴223y x =-+,又因为()f x 是偶函数,关于y 轴对称,所以()()f x f x =-,即()2f x x >,又作出函数在[]3,3-上的图像,当[)3,0x ∈-的时候,()2y f x =的图像恒在y x =的上方,当[]0,3x ∈的时候,令()2f x x =,127x =,即当123,7x ⎡⎫∈-⎪⎢⎣⎭的时候,满足()2f x x >,即()()f x f x x +->14.如图,过原点O 的直线AB 与函数9log y x =的图像交于A ,B 两点,过A ,B 分别作x 轴的垂线,与函数3log y x =的图像分别交于D ,C 两点.若BD 平行于x 轴,则四边形ABCD 的面积为__________.【答案】33log 22【解析】因为点D 和点B 的纵坐标相等,设点D 的横坐标为a ,点B 的横坐标为b ,则有39log log a b =,∵239log log a a =,∴2b a =,又()9,l o g A a a ,()229,log B a a 在一条过原点的直线上,∴2299log 2log a a a a==,∴22a a =,∴2a =()92,log 2A ,()94,log 4B ,()34,log 4C ,()32,log 2D ,所以()()39931342log 4log 2log 8log 222ABCD S =--== 15.(本小题满分8分)已知全集U R =,集合{}3A x x =<,{}2log 1B x x =≥. (1)求AB ;(2)求()()U U C A C B .【答案】:(1){}23A B x x =≤<(2)()(){}32U U C A C B x x x =≥<或【解析】:本题考查集合的运算。