运算方法与运算器
- 格式:ppt
- 大小:1.65 MB
- 文档页数:21
教学内容安排•第一章绪论•第二章数码系统•第三章运算方法和运算器•第四章存储系统•第五章指令系统•第六章中央处理器•第七章输入输出设备•第八章输入输出系统第三章运算方法和运算器• 3.1组成计算机硬件电路的基本逻辑部件• 3.2机器数的加减运算及其实现• 3.3定点乘法及其实现• 3.4定点除法及其实现(了解)• 3.5浮点数的算术运算(了解)• 3.6运算器的组教学重点和难点•基本逻辑运算和逻辑电路•机器数的加减运算•定点原码一位乘第三章运算方法和运算器 3.1组成计算机硬件电路的基本逻辑部件逻辑电路的基本概念•表示电路中输入信号与输出信号之间的关系的运算,为逻辑运算•赋以逻辑属性值“0”或“1”的变量,为逻辑变量。
•描述逻辑变量关系的函数(F=f(A,B)),为逻辑函数•实现逻辑函数功能的电路,为逻辑电路•逻辑电路可以做成计算机系统中常用的部件,为逻辑部件。
•逻辑部件分为:组合逻辑部件和时序逻辑电路•描述逻辑函数的值与它的逻辑变量之间关系的表格,称作真值表。
第三章运算方法和运算器 3.1组成计算机硬件电路的基本逻辑部件逻辑代数中基本逻辑运算•逻辑与(逻辑乘)•逻辑或(逻辑加)•逻辑非(逻辑求反)•逻辑异或•逻辑同或第三章运算方法和运算器 3.1组成计算机硬件电路的基本逻辑部件1.“与”逻辑------实现的电路叫与门只有决定事物结果的全部条件同时具备时,结果才会发生(有一个条件不具备,结果也不会发生)。
闭合1闭合1逻辑表达式第三章运算方法和运算器 3.1组成计算机硬件电路的基本逻辑部件2.“或”逻辑------实现的电路叫或门决定事物结果的诸条件中只要有任何一个满足时,结果就发生,这种因果关系叫做逻辑“或”,换句话说,只有所给条件均不具备,结果才不会发生。
第三章运算方法和运算器 3.1组成计算机硬件电路的基本逻辑部件3.“非”(反)逻辑-----实现的电路叫非门(或反相器)如果条件具备了,结果便不会发生;而条件不具备时结果一定发生。
计算机原理第3章运算方法和运算器综合练习一、选择题知识点:定点补码的加法,减法,不带符号数的运算,溢出 P261、[X]补+[Y]补=[X+Y]补(mod 2n)2、[X-Y]补=[X+(-Y)]补= [X]补+[-Y]补(mod 2n)3、[-Y]补=[[Y]补]变补(注:连同符号位一起变反加1的过程叫变补或求补。
)4、判断溢出条件: C S+1和C S相异时溢出当C S+1C S=00或 C S+1C S=11时不产生溢出。
当C S+1C S=01或C S+1C S=10时则产生溢出。
1、计算机中实现减法运算使用的方法是()A.从被减数中减去减数 B.从减数中减去被减数再求反C.转换为补码的加法运算 D.依减数的形式再选择一种适当的方法2、定点数作补码加减运算时,其符号位是( )A.与数位分开进行运算B.与数位一起参与运算C.符号位单独作加减运算D.两数符号位作异或运算3、补码加减法运算是()A .操作数用补码表示,两数的尾数相加减,符号位单独处理,减法用加法代替B .操作数用补码表示,符号位与尾数一起参加运算,结果的符号与加减所得相同C .操作数用补码表示,连同符号位直接相加减,减某数用加负某数的补码代表,结果的符号在运算中形成D .操作数用补码表示,由数符决定两尾数的操作,符号位单独处理4、执行二进制算术运算11001001+00100111,其运算结果是()。
A) 11101111 B) 11110000 C) 00000001 D) 101000105、已知X的补码为11101011,Y的补码为01001010,则X+Y的补码为()。
A、10100001B、11011111C、00110101D、溢出6、已知X的补码为11101011,Y的补码为01001010,则X-Y的补码为()。
A、10100001B、11011111C、10100000D、溢出7、下面关于溢出的描述正确的是()A 溢出就是进位B 溢出是指运算结果的最高位向更高位进位或借位C 溢出与补码运算中的模丢失是一个概念D 溢出主要用于判断带符号的运算结果是否超过数的表示范围8、定点运算器运算时产生溢出的原因是()。
第三章运算方法和运算器3.1补码的移位运算1、左移运算:各位依次左移,末位补0对于算术左移,若没有改变符号位,左移相当于乘以2。
2、右移运算:算术右移:符号位不变,各位(包括符号位)依次右移。
(相当于除以2)逻辑右移:最高位补0,其余各位依次右移例1:已知X=0.1011 ,Y=-0.0101 求 [0.5X]补;[0.25X]补;[-X]补;2[-X]补;[0.5Y]补;[0.25Y]补; [-Y]补;2[-Y]补[X]补=0.1011 [Y]补=1.1011[0.5X]补=0.01011 [0.5Y]补=1.11011[0.25X]补=0.001011 [0.25Y]补=1.111011[-X]补=1.0101 [-Y]补=0.01012[-X]补=0.1010 (溢出) 2[-Y]补=0.10103.2定点加减法运算及其实现3.2.1 补码加减法运算方法由于计算机中的进行定点数的加减运算大都是采用补码。
(1)公式:[X+Y]补=[X]补+[Y]补[X-Y]补=[X]补+[-Y]补(证明过程见教材P38)例1 X=0.001010 Y=-0.100011 求[X-Y]补,[X+Y]补解:[X]补=0.001010 [-Y]补=0.100011则 [X-Y]补=[X]补+[-Y]补=0.001010 + 0.100011=0.101101 [X]补=0.001010 [Y]补=1.011101则 [X+Y]补=[X]补+[Y]补=0.001010 + 1.011101=1.100111例2:已知X=+0.25,Y=-0.625,求X+Y; X-Y写出计算的过程.例3:已知X=25,Y=-9,求X+Y; X-Y写出计算的过程.例4:已知X=-25,Y=-9,求X+Y; X-Y写出计算的过程.解: (8位二进制表示)例2: X=0.0100000 Y=-0.1010000[X]补=0.0100000 [Y]补=1.0110000则 [X+Y]补=[X]补+[Y]补=0.0100000 + 1.0110000=1.1010000[X+Y]原=-0.0110000=(-0.375)D[X]补=0.0100000 ,[-Y]补=0.1010000则 [X-Y]补 = [X]补+[-Y]补 = 0.0100000+0.1010000=0.1110000[X+Y]原 = 0.1110000 =(0.875)D例3: X=+0011001 Y=-0001001[X]补=00011001,[Y]补=11110111则 [X+Y]补 = [X]补+[Y]补= 00011001 + 11110111= 00010000[X+Y]原 =+0010000=(+16)D[X]补= 00011001 ,[-Y]补= 00001001则 [X-Y]补 = [X]补+[-Y]补= 00011001 + 00001001= 00100010[X+Y]原 = +0100010 =(34)D例4: X=-0011001 Y=-0001001[X]补=11100111,[Y]补=11110111则 [X+Y]补 = [X]补+[Y]补= 11100111 + 11110111[X+Y]原 =-00100010=(-34)D[X]补= 11100111 ,[-Y]补= 00001001则 [X-Y]补 = [X]补+[-Y]补= 11100111 + 00001001= 11110000[X+Y]原 = -0010000 =(-16)D3.2.2 定点加减法运算中的溢出问题溢出:运算结果大于机器所能表示的最大正数或者小于机器所能表示的最小负数.溢出只是针对带符号数的运算.比如:[X]补=0.1010,[Y]补=0.1001,那么[X]补+[Y]补=1.0011(溢出)溢出是一种错误,计算机中运算时必须能够发现这个现象,并加以处理判断溢出的方法:1、采用变形补码法[X+Y] 变补=[X] 变补+[Y] 变补[X-Y] 变补=[X] 变补+[-Y] 变补例1 X=0.1011 Y=0.0011 求[X+Y]补解: [X]变补 = 00.1011, [Y]变补 = 00.0011[X+Y]变补 = 00.1011 + 00.0011 = 00.1110所以 [X+Y]补 = 0.1110例2 X=0.1011 Y=0.1001 求[X+Y]补解: [X]变补 = 00.1011 [Y]变补 = 00.1001[X+Y]变补 = 00.1011 + 00.1001 = 01.0100运算结果的两符号位是01,不相同,发生溢出,因第一符号位是0,代表正数,所以称这种溢出为“正溢出”。
计算机组成原理复习重点及要求第二章运算方法和运算器1.定点数的表示方法:掌握定点数的概念;掌握定点数的机器码表示(主要是原码、补码和移码)。
2.定点数的运算方法:掌握补码加减运算方法、溢出概念及检测方法。
3.定点运算器:掌握全加器的功能;掌握行波进位加减法器的结构及工作原理;理解多功能ALU的结构原理;掌握定点运算器的基本结构及其特点(包括单总线结构、双总线结构和三总线结构)。
4.浮点数的表示方法:掌握浮点数的概念;掌握浮点数表示的一般格式;掌握浮点数规格化表示的方法及其意义。
5.浮点数的运算方法:掌握浮点数的加减运算方法及步骤。
第三章存储系统1.理解多级存储器体系结构的意义及各级存储器的主要作用。
2.SRAM存储器:理解存储器芯片的逻辑结构(包括存储阵列、双译码方式、读写控制等);掌握SRAM存储器芯片的外部引脚特征(包括地址、数据、控制引脚);掌握SRAM存储器容量扩充方法(包括位扩展、字扩展、字位同时扩展,以及与CPU 的连接等)。
3.DRAM存储器:掌握DRAM存储器的存储原理;理解DRAM存储器的刷新问题及刷新方法;掌握DRAM存储器芯片的外部引脚特征。
4.ROM存储器:掌握ROM存储器的种类;掌握EPROM的擦、写特点。
5.Cache存储器:掌握cache存储器的作用及工作原理,理解程序局部性原理的意义;掌握cache-主存系统性能指标的计算方法(包括命中率、平均访问时间及效率);掌握各种主存与cache的地址映射方式及其特点,理解各种映射方式下的主存与cache的地址格式及其各字段的含义;理解替换策略对cache存储器的意义。
6.虚拟存储器:掌握虚拟存储器的作用及相关概念;掌握各式虚拟存储器的工作原理及特点(包括页式、段式和段页式虚拟存储器);掌握各式虚拟存储器的地址变换过程,掌握各自的虚地址格式及其各字段的含义。
第四章指令系统1.指令系统的基本概念:掌握机器指令、指令系统、系列机、CISC、RISC等概念。
第⼆章运算⽅法与运算器(浮点数的加减法,IEEE754标准3264浮点规格化数)这⼀章,主要介绍了好多种计算⽅法。
下⾯,写⼀点⾃⼰对于有些计算(⼿写计算过程)的见解。
1.原码、反码、补码 原码:相信⼤家都会写,符号位在前⼆进制数值在后,凑够位数即可。
反码:原码符号位不变,其他位全部取反。
补码:反码末位加⼀ / 原码符号位不变,从右往左数第⼀个1及其右边的各位不变,其余位全部取反2.IEEE754的转换 IEEE754标准32/64浮点规格化数形式:X = (-1)S * 1.M * 2E-127(其中,S-阶符,M-尾数,E-阶码) 32位的规格化浮点数:SEM00000...(即⼆进制SEM后⾯补0,写够32位) 以27/64为例: ①化形式:27/64 = + (1.1011)2 * 2-2 ②找SEM:S=0,M=1011,E=(125)10=(01111101)2 ③写结果:00111110 11011000 00000000 00000000 = (3ED800)163.变形补码计算加减法 变形补码没什么稀奇,不过是符号位变成两位⽽已(00为正,11为负),它的价值在于可以作溢出判断(结果00//11表⽰未溢出,01-上溢(所谓上溢符号位还是0),11-下溢(下溢符号位还是1)),就正常求补码(符号位double),放在⼀起加和,做溢出判断,最后别忘了把补码再转换回原码作为最终结果。
x+y: 以x=11011, y=00011为例: ①求补:[11011]补=0011011, [00011]补=0000011 ②加和:011011 + 000011 = 0011110;符号位00,未溢出,故x+y=11110 x-y:(这⾥把减法化为加法,即 x-y = x+(-y),另外[-y]补 = [y]补 从右往左数第⼀个1及其右边的各位不变,其余位全部取反,这次连带符号位也要取反) 以x=11011, y=-11111为例: ①求补:[11011]补=0011011, [-11111]补=1100001,[-y]补=0011111 ②加和:[x]补+[-y]补 = 0011011 + 0011111 = 0111010;符号位01,正溢(上溢);故x-y=+1110104.浮点数加减法(我⽤的是补码计算) 这⾥⾯涉及的东西⽐较多,每⼀步都需要仔细,错⼀步结果就错了。