第2章3_单元刚度方程和单元刚度矩阵
- 格式:ppt
- 大小:332.50 KB
- 文档页数:14
单元刚度矩阵的计算-回复首先,我们需要了解刚度是什么。
刚度是指材料抵抗形变的性质。
在结构中,它表示了结构单元(如梁或柱)受到外部力作用时的形变反应。
刚度可以用它对这些力的反应程度来测量。
计算单元刚度矩阵的第一步是建立结构单元的局部坐标系。
局部坐标系是以结构单元自身为参考的坐标系,用于描述结构单元的几何特征和材料性质。
接下来,需要确定结构单元的几何特征和材料性质。
这包括结构单元的长度、截面形状、材料弹性模量等。
这些参数将用于计算结构单元的刚度。
然后,需要建立结构单元的位移-应变关系。
位移-应变关系是描述结构单元变形特征的方程。
它可以通过应变能原理或力平衡方程得到。
接下来,可以使用有限元分析方法推导出结构单元的刚度矩阵。
有限元分析方法将连续的结构分割为离散的有限单元,然后对每个单元进行力学分析。
在计算单元刚度矩阵时,可以使用单元的位移-应变关系和材料性质来推导出刚度矩阵的公式。
最后,根据结构单元的连通性和边界条件,可以将单元刚度矩阵组装成整个结构的刚度矩阵。
这样可以得到整个结构的刚度参数。
计算单元刚度矩阵的过程中,还需要注意以下几个问题:1.确保结构单元的局部坐标系的选择是合理的,以便正确描述结构单元的几何特征。
2.确保位移-应变关系的推导是准确的,可以选择适当的理论或公式来得到位移-应变关系。
3.在有限元分析方法中,需要选择适当的数值方法和积分方法来计算刚度矩阵。
4.在组装整个结构的刚度矩阵时,需要正确处理结构单元之间的连通性和边界条件。
总之,单元刚度矩阵的计算是一个繁琐而重要的任务。
它需要合理的坐标系选择、准确的位移-应变关系、适当的数值方法和正确的组装过程。
通过计算出单元的刚度矩阵,可以通过有限元分析方法分析结构的静力性能。
1§2-4 单元刚度矩阵第四步:利用平衡方程,建立节点力和节点位移之间的关系,即用单元节点位移表示节点力。
上节己给出了用节点位移表示单元应力和应变。
本节来推导单元节点力和节点位移之间的关系。
一、 节点力和节点位移间的关系节点力是指弹性体离散化之后,外载、约束和其他单元通过节点作用在某一单元上的力。
对于己从整体结构中取出来的单元来说,作用在其上的节点力就是外力。
这些节点力在单元内部会引起相应的应力。
当整体处于平衡状态时,单元在节点力作用下也处于平衡状态。
在平面问题中节点力有二个分量,分别用U 和V 加节点号下标表示该节点水平和垂直节点力分量(有时还再加单元号上标表示该单元上的节点力)。
节点力的方向以节点对单元的力沿坐标正方向为正,反之为负。
对三节点三角形单元来讲,共有六个节点力分量(如图2-11所示)。
用列阵表示为:{}[][]eTTT TTijm iijj m m F F F F U V UV U V ==; {}[] (Ti i i F U V i ,j ,m= (2-24) 1. 虚位移原理为了推导单元的节点力与单元节点位移之间的关系,要用到虚位移原理。
2. 节点力和节点位移间的关系虚位移原理在一处于平衡状态的单元上的数学描述为:单元上节点力(外力)在某一虚位移上所作的虚功应等于单元应力(内力)在相应虚应变上所作的虚功。
设单元节点处的虚位移为{}**********()()()eTTTTTii j m iijjmm u v u v u v δδδδ⎡⎤⎡⎤==⎣⎦⎣⎦;{}*iδ=⎭⎬⎫⎩⎨⎧**i i v u (i,j,m ) (2-25) 采用和真实位移相同的位移模式,则单元内各点的虚位移为[]eTN vuf }]{[}{****δ== (a)相应虚应变为{}[]{}εδ**=B e(b)2 于是虚功方程可写成{}{}⎰⎰=eT e T e ytx F d d }{)}({**σεδ (2-26)将(b)式及(2-18)式代入上式,得[]{}[][]{}({}){}()d d **δδδe T eeTeeF B D B x yt =⎰⎰根据矩阵乘法逆序法则,上式可以写成[][][]{}({}){}({})d d **δδδeTeeTTeeF B D B x yt =⎰⎰由于列阵{}e*δ中的元素是常量,即与单元内点的位置坐标x ,y 无关,上式右边的T e )}({*δ可以提到积分号前面去。
1.1 有限单元法中“离散”的含义是什么?有限单元法是如何将具有无限自由度的连续介质问题转变成有限自由度问题的?位移有限元法的标准化程式是怎样的?(1)离散的含义即将结构离散化,即用假想的线或面将连续体分割成数目有限的单元,并在其上设定有限个节点;用这些单元组成的单元集合体代替原来的连续体,而场函数的节点值将成为问题的基本未知量。
(2)给每个单元选择合适的位移函数或称位移模式来近似地表示单元内位移分布规律,即通过插值以单元节点位移表示单元内任意点的位移。
因节点位移个数是有限的,故无限自由度问题被转变成了有限自由度问题。
(3)有限元法的标准化程式:结构或区域离散,单元分析,整体分析,数值求解。
1.3 单元刚度矩阵和整体刚度矩阵各有哪些性质?各自的物理意义是什么?两者有何区别?单元刚度矩阵的性质:对称性、奇异性(单元刚度矩阵的行列式为零)。
整体刚度矩阵的性质:对称性、奇异性、稀疏性。
单元Kij物理意义Kij 即单元节点位移向量中第j个自由度发生单位位移而其他位移分量为零时,在第j个自由度方向引起的节点力。
整体刚度矩阵K 中每一列元素的物理意义是:要迫使结构的某节点位移自由度发生单位位移,而其他节点位移都保持为零的变形状态,在所有个节点上需要施加的节点荷载。
2.2什么叫应变能?什么叫外力势能?试叙述势能变分原理和最小势能原理,并回答下述问题:势能变分原理代表什么控制方程和边界条件?其中附加了哪些条件?(1)在外力作用下,物体内部将产生应力σ和应变ε,外力所做的功将以变形能的形式储存起来,这种能量称为应变能。
(2)外力势能就是外力功的负值。
(3)势能变分原理可叙述如下:在所有满足边界条件的协调位移中,那些满足静力平衡条件的位移使物体势能泛函取驻值,即势能的变分为零δ∏p=δ Uε+δV=0此即变分方程。
对于线性弹性体,势能取最小值,即δ2∏P=δ2Uε+δ2V≥0此时的势能变分原理就是著名的最小势能原理。
单元刚度矩阵的计算 -回复
单元刚度矩阵的计算是有一定复杂性的,需要根据具体的有限元模型及载荷情况进行计算。
一般来说,单元刚度矩阵的计算可以分为两步:建立单元刚度矩阵的方程式,以及求解方程式得到刚度矩阵。
建立单元刚度矩阵的方程式需要先利用有限元理论对结构进行离散化,将结构分割成若干个单元。
然后,在每个单元内分别建立单元刚度矩阵的方程式,考虑到每个单元都具有规律性,所以可以先建立一个一般的单元刚度矩阵的方程式,然后通过坐标变换等方法转化为特定单元中的方程式。
具体地讲,单元刚度矩阵的计算可以采用有限元理论中的形函数方法,通过利用形函数和单元的积分关系来求解单元刚度矩阵。
在具体实现中,可以考虑使用数值积分方法,如高斯积分等。
通过将形函数和数值积分方法代入单元刚度矩阵方程式,即可得到单元刚度矩阵的表达式。
求解方程式得到刚度矩阵时,可以采用线性方程组求解的方法,如高斯消元法、LU分解法、雅可比迭代法等。
求解得到的刚
度矩阵可以用于后续分析计算中。
总之,单元刚度矩阵的计算需要综合运用有限元理论、数值分析方法和线性方程组求解方法等知识,同时也需根据具体情况做出适当的假设和近似,才能得到合理可靠的结果。