第五章:毒物泄漏及扩散模型-第四次
- 格式:pptx
- 大小:2.36 MB
- 文档页数:106
液氨储罐泄漏事故后果模拟一只液氨储罐发生物理爆炸,其有毒气体扩散半径计算情况如下:液氨储罐内液氨的质量W=49.41kg氨气的分子量M=17.03。
液氨的比热C=4.6(kJ/kg ·℃)液氨的沸点t 0=-33.5℃,液氨的汽化热q=1166.68(kJ/kg)介质温度常温取t= 25℃,吸入5~10min 致死的浓度为C 1=0.5%,吸入0.5~1h 致中毒的浓度C 2=0.073%。
全部液氨所放出的热量为:Q = W ·C(t -t 0)=49.41×4.6×[25-(-33.5)]=13296.23kJ其蒸发量为:W ´= Q/q =13296.23/1166.68=11.4kg在沸点下蒸发蒸气的体积:Vg= 22.4 W ´(273+t 0)/273M=22.4×11.4×1000×(273+(-33.5)/(273×17.03)=16834.73m 3储罐破裂后,氨气扩散半径为:A .5~10min 氨气致死的浓度扩散半径为:π3421Vg/C R 13⨯=0944.2Vg/C 13==117.15m若液氨储罐内液氨全部泄漏,静风状态下氨气扩散半径117.15m 范围内的人员吸入5~10min 会中毒致死。
B .吸入0.5~1h 氨气致中毒的的浓度扩散半径为:π3421Vg/C R 23⨯=0944.2Vg/C 23==222.47m 氨气扩散半径117.15m ~222.47m 范围内的人员吸入0.5~1h 会中毒致重病。
通过液氨泄漏中毒事故后果模拟评价得知:一个液氨储罐若发生物理爆炸,液氨迅速挥发成氨气,在无风的情况下氨气扩散半径117.15m 范围内的人员吸入5~10min ,可导致人员死亡;在扩散半径117.15m ~222.47m 范围内的人员吸入0.5~1h ,可导致人员中毒致重病。
液氨储罐事故性泄漏扩散过程模拟分析术液氨是化工企业常用的原料,用途广泛,而每年因为液氨的泄漏造成的事故也十分频繁,由于其毒性很大,吸入毒性指数(Index of Potential Inhalation Toxicity,Prr)<300,危险等级2,属于高度危险物质,一旦泄漏极可能造成严重的事故后果。
决定液氨泄漏状况的因素多而复杂,与其理化性质、闪蒸系数、泄漏源的压力和几何形状、泄漏地的地貌情况和气象条件、储存运输的操作程序等都有密切关系。
因此,综合考虑各种因素,建立液氨泄漏和扩散膜性,运用数学方法进行模拟,分析其泄漏和扩散的规律,对于救灾、重大危险源编制应急事故预案以及对新建项目进行危险性预评价都具有一定程度的指导意义。
1 数学模型通常情况下,液氨在常温下加压压缩,液化储存,一旦泄漏到空气中会在常压下迅速膨胀,大量气化,并扩散到大的空间范围。
1.1泄漏模型对于灾难性破坏引起的液氨泄漏,可保守地认为容器内所有的贮存物质瞬间全部泄漏,全部泄漏时一般有爆炸发生,对其发生爆炸后的状况再运用数值模拟进行预测意义不大。
因此,文中所研究的是液氨储罐连续性泄漏的数值模拟。
通过对建国50年以来我国化工系统所发生的重(特)大、典型事故性泄漏的统计分析表明[1],阀门或法兰处的密封失效及阀门或管道断裂是造成事故性泄漏的主要原因,因而可以确定液氨储罐下方的液氨出口接管、储罐上方的气氨出口接管以及安全阀为主要泄漏源。
1.1.1液氨泄漏模型[2]·液氨通过其出口接管泄漏可等效为液体通过受压储罐上的孔洞泄漏。
虽然氨在常温常压下为气体,但是由于泄漏发生在液相空间,流动阻力较大,故系统内压下降缓慢,不会发生因大量液氨闪蒸而造成的蒸气爆炸。
另外,由于泄漏路径较短,来不及形成汽化核心而使部分液氨在池漏管道中汽化而形成闪蒸两相流。
因此,其泄漏速率可采用式(1)计算[3]:Qm=PACo[2 (P0/p+ghr)]1/2 (1)式中:Qm为质量泄漏速率,kg/s;Co为泄漏系数;A为裂口面积,㎡;PO 为储罐内压,Pa;hr是泄漏处与液面之间的距离,m。
第六章泄漏源及扩散模式很多事故是由于物料的泄漏引起的。
因泄漏而导致事故的危害,很大程度上取决于有毒有害,易燃易爆物料的泄漏速度和泄漏量。
物料的物理状态在其泄漏至空气中后是否发生改变,对其危害范围也有非常明显的影响,泄漏物质的扩散不仅由其物态、性质所决定,又为当时气象条件、当地的地表情况所影响。
6.1常见泄漏源泄漏源分为两类:一是小孔泄漏:通常为物料经较小的孔洞,长时间持续泄漏。
如反应器、管道、阀门等出现小孔或密封失效;二是大面积泄漏:在短时间内,经较大的孔洞泄漏大量物料。
如管线断裂、爆破片爆裂等。
为了能够预测和估算发生泄漏时的泄漏速度、泄漏量、泄漏时间等,建立如下泄漏源模型,描述物质的泄漏过程:1.流体流动过程中液体经小孔泄漏的源模式;2.储罐中液体经小孔泄漏的源模式;3.液体经管道泄漏的源模式;4.气体或蒸汽经小孔泄漏的源模式;5.闪蒸液体的泄漏源模式;6.易挥发液体蒸发的源模式。
针对不同的工艺条件和泄漏源情况,应选用相应的泄漏源模式进行泄漏速度、泄漏量、泄漏时间的求取。
6.2 流体流动过程中液体经小孔泄漏的源模式系统与外界无热交换,流体流动的不同能量形式遵守如下的机械能守恒方程:(6—1)式中:P——压力,Pa;ρ——流体密度,kg/m3;α——动能校正因子,无因次;α≈1U ——流体平均速度,m/s;g ——重力加速度,g = 9.81 m/s2;z ——高度,m;F ——阻力损失,J/kg;W s ——轴功率,J;m ——质量,kg。
对于不可压缩流体,密度ρ恒为常数,有:(6—2)泄漏过程暂不考虑轴功率,W s =0,则有:(6—3)液体在稳定的压力作用下,经薄壁小孔泄漏,如图6.1所示。
容器内的压力为p1,小孔直径为d,面积为A,容器外为大气压力。
此种情况,容器内液体流速可以忽略,不考虑摩擦损失和液位变化,可得到:式中,Q为单位时间内流体流过任一截面的质量,称为质量流量,其单位为kg/s。
泄漏和扩散模拟一、训练目的1.通过训练,了解PHAST软件的基本功能,学会使用PHAST软件解决石油化工装置泄漏、扩散等问题,掌握使用PHAST软件建立相关模型,模拟分析气体获液体泄漏扩散后浓度的变化。
2.掌握气体扩散的模拟分析方法。
二、训练内容要求气体或液体泄漏扩散过程模拟三、训练仪器本训练所用软件为PHAST6.7四、训练方法和步骤:1 学习使用软件,了解软件的界面及输入和输出数据2 选择Vessel/pipe source 模型3 输入相关参数(甲烷储罐数据)4 对结果进行分析五、气体泄漏扩散浓度的计算1.泄漏量的计算气体从容器的裂缝或者小孔泄漏时,其泄漏速度与空气的流动速度有关。
因此,首先要判断泄漏时气体流动属于亚音速还是音速流动,前者称为次临界流,后者称为临界流。
满足下列条件时,气体流动属于亚音速流动:而当满足下列条件时,气体流动属于音速流动:上面两式中,P0---环境压力,PaP---管道内介质压力,Paγ---比热比,γ=CP /CV,定压比热与定容比热之比(1)气体呈亚音速流动时,泄露速率Q(2)气体呈音速流动时,泄露速率Q上面两式中 Cd-气体泄露速率,泄露裂口为圆形时取1.00 Y-气体膨胀因子,对音速流动,Y=1-气体密度,kg/m³R-气体常数,R=8.314472J/(K*mol)T-气体温度,K2.射流扩散及气团扩散模型气体泄露时从裂口射出形成气体射流,一般情况下,泄露气体的压力将高于周围环境的大气压力,温度低于环境温度,在进行射流计算式,应该以等价射流孔径来计算,等价射流的孔径按下式计算:其中,—裂口直径,m—泄露气体的密度,kg/m³—周围环境条件下气体密度,kg/m³射流气体泄露出来之后,在大气环境和地形地貌的影响下,在泄露上方形成气团,气团在大气中进一步扩散,影响范围广。
气团在大气中的扩散情况与气团自身性质有关,甲烷相对密度约为0.55,比空气的密度低,甲烷将向上扩散。
第五章重大危险源辨识与监控第一节重大危险源及辨识标准一、熟悉重大危险源;重大危险源是指长期地或者临时地生产、搬运、使用或者储存危险物品,且危险物品的数量等于或者超过临界量的单元(包括场所和设施二、掌握重大危险源的辨识标准和方法;关于重大危险源的辨识标准及方法,参考国外同类标准,结合我国工业生产的特点和火灾、爆炸、毒物泄漏重大事故的发生规律,以及1997年由原劳动部组织实施的重大危险源普查试点工作中对重大危险源辨识进行试点的情况,原国家经贸委安全科学技术研究中心(现中国安全生产科学研究院)和中国石油化工股份有限公司青岛安全工程研究院起草提出了国家标准《重大危险源辨识》(GBl8218—2000),此标准自2001年4月1日实施。
三、了解重大危险源申报登记范围。
第二节重大危险源的评价与监控一、熟悉重大危险源的评价方法;(一)评价单元的划分重大危险源评价以危险单元作为评价对象。
一般把装置的一个独立部分称为单元,并以此来划分单元。
在一个共同厂房内的装置可以划分为一个单元;在一个共同堤坝内的全部储罐也可划分为一个单元。
(二)评价模型的层次结构根据安全工程学的一般原理,危险性定义为事故频率与事故后果严重程度的乘积,即危险性评价一方面取决于事故的易发性,另一方面取决于事故一旦发生后后果的严重性。
(三)数学模型现实危险性评价数学模型如下:B23——安全管理抵消因子。
(四)危险物质事故易发性B111的评价具有燃烧爆炸性质的危险物质可分为7大类:(1)爆炸性物质。
(2)气体燃烧性物质。
(3)液体燃烧性物质。
(4)固体燃烧性物质。
(5)自燃物质。
(6)遇水易燃物质。
(7)氧化性物质。
每类物质根据其总体危险感度给出权重分;每种物质根据其与反应感度有关的理化参数值给出状态分;每一大类物质下面分若干小类,共计19个子类。
对每一大类或子类,分别给出状态分的评价标准。
权重分与状态分的乘积即为该类物质危险感度的评价值,亦即危险物质事故易发性的评分值。
合肥学院教案课程名称:环境风险分析与评估课程编码:120021604总学时(周学时):32(4)开课时间:2013年4月22日适用年级:2012级专业:环境工程硕士班使用教材:环境风险评价实用技术、方法和案例授课教师:张金流教学目的:通过本课程的学习,使学生掌握环境风险评价的一般流程,方法,为学生进入工程实践学习打下坚实的理论基础。
教学方法:本课程教学采取课堂PPT与板书相结合的教学方式,以授课老师传授为主,同时发挥学生的学习主动性,使学生在课堂上积极参与到课堂教学中。
教学要求:见各章节考核方式:课堂考核与期末考试相结合目录第一章概论 (2)第二章可靠性工程 (6)第三章源项分析 (10)第四章有毒有害害物质在大气中的弥散 (19)第五章有毒有害物质在湖泊的稀释扩散 (29)第六章污染物在食物链中的动态转移 (33)第七章环境污染健康风险评价 (39)第八章环境风险评价标准 (49)第一章概论教学要求:1 掌握风险及环境风险评价概念及其计算方法;2 了解环境风险评价研究进展及研究重点;3 掌握环境风险评价主要内容及程序;4 了解ERA与EIA、ESA区别。
教学重点:环境风险评价主要内容及程序教学方法:课堂授课学时数:21 环境风险评价基本概念及其计算方法风险①生命与财产损失或损伤的可能性;②用事故的可能性或损失的幅度来表达的经济损失与人员伤害的度量;③不确定危害的度量;④灾难发生的几率;⑤某种危害发生的可能性或几率,以及发生这种风险所造成后果的影响程度。
计算方法风险(R)是事故发生概率(P)与事故造成的环境(或健康)后果(C)的乘积,即:风险评价是指对某一过程或情况涉及的潜在危害引起的风险在量或质上进行评价的过程。
环境风险评价环境风险评价则是对由自发的自然原因或人为活动引发的,通过环境介质传播的、能对人类社会及环境产生破坏、损害等严重不良后果事件的危害(R)程度的评价;环境风险评价(ERA)是对那些造成生成生态系统、动物或人类威胁的技术所引起的风险进行的考察。
第一章课后习题解答1、关于安全的定义很多,请思考什么是安全?答:安全是指免遭不可接受危险的伤害。
它是一种使伤害或损害的风险限制处于可以接受的水平的状态。
2、系统、安全系统、安全系统工程的定义是什么?请辨析三者间的区别和联系。
答:系统是由相互作用、相互依赖的若干组成部分结合而成的具有特定功能的有机整体。
安全系统是以人为中心,由安全工程、卫生工程技术、安全管理、人机工程等几部分组成,以消除伤害、疾病、损失,实现安全生产为目的的有机整体,它是生产系统的一个重要组成部分。
安全系统工程是指应用系统工程的基本原理和方法,辨识、分析、评价、排除和控制系统中的各种危险,对工艺过程、设备、生产周期和资金等因素进行分析评价和综合处理,使系统可能发生的事故得到控制,并使系统安全性达到最佳状态的一门综合性技术科学。
区别与联系:系统涵盖的范畴比安全系统广,安全系统是系统的一部分,它又由多个子系统组成。
而安全系统工程是进行安全系统分析的技术手段,它通过应用系统工程的原理和方法对安全系统进行分析和控制,使得系统安全性达到最佳状态。
3、安全系统工程是以安全科学和系统科学为基础理论的综合性学科,请问你认为安全系统工程的应遵循的基本观点有哪些。
答:全局的观点、总体最优化的观点、实践性的观点、综合性的观点、定性和定量相结合的观点4、安全系统工程的基本方法是什么?答:从系统整体出发的研究方法、本质安全方法、人—机匹配法、安全经济方法、系统安全管理方法5、请简述安全系统工程的主要研究内容。
答:系统安全分析:充分认识系统的危险性系统安全评价:理解系统中的潜在危险和薄弱环节,最终确定系统的安全状况。
安全决策与控制:根据评价结果,对照已经确定的安全目标,对系统进行调整,对薄弱环节和危险因素增加有效的安全措施,最后使系统的安全性达到安全目标所需求的水平。
第二章课后习题解答1、安全检查表的优点有哪些?其适用范围如何?答:(1)优点:①系统化、科学化,为事故树的绘制和分析,做好准备②容易得出正确的评估结果③充分认识各种影响事故发生的因素的危险程度(或重要程度)④按照原因事件的重要/顺序排列,有问有答,通俗易懂⑤易于分清责任。