第三章 泄漏及扩散925

  • 格式:ppt
  • 大小:4.41 MB
  • 文档页数:68

下载文档原格式

  / 68
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例3-1
• 下午1点,工厂的操作人员注意到输送苯的管道
中的压力降低了。压力被立即回复为690kPa。下 午2:30,管道上发现了一个直径为6.35mm的小孔
并立即进行了修补。
• 请估算流出来的苯的总质量。苯的比重为0.8794。
例3-1
• 解:下午1点观察到的压力降低是管道上出现 小孔的象征。假设小孔在下午 1点到2:30之间, 即90分钟内,一直存在。小孔的面积为
第三章 泄漏与扩散
本章学习目标
• 1.了解化工企业中的常见泄漏源。 • 2.熟悉液体、气体和蒸气泄漏的泄漏速率计 算方法。 • 3.掌握液体闪蒸率及两相泄漏速率的计算方 法。 • 4.掌握液体蒸发(沸腾)速率的计算方法。 • 5.熟悉扩散模式及扩散影响因素。 • 6.熟悉高斯模型及扩散系数的计算方法。 • 7.了解重气云扩散的计算方法。 • 8.了解释放动量和浮力对扩散行为的影响。
容器内流速忽略, 不考虑摩擦损失和 液位变化
考虑到因惯性引起的截面收缩及摩擦引起的速度减小,引入孔流系数C0。 C0=实际流量/理论流量
C0约为1
薄壁小孔C0约0.61 厚壁小孔或孔外伸有一段短 管C0约0.81
通常情况下C0难以求取,为保持足够的安全余量,可取1.
• 流出系数Co为: • ①对于锋利的小孔和雷诺数大于30 000, Co近似取0.61; • ②对于圆滑的喷嘴,流出系数可近似取l; ③对于与容器连接的短管(即长度与直径 之比小于3),流出系数近似取0. 81; • ④当流出系数不知道或不能确定时,取1.0 以使计算结果最大化。
第二节液体泄漏
• 一、通过孔洞泄漏 • 对于某过程单元(表压为pg)上的一个小孔, 当液体通过其流出时,认为液体高度没有发生 变化。若小孔的面积为A,液体的流速为 u 则 液体通过小孔泄漏的质量流量(流速)Qm为:
Qm u A AC 0 2 p g
第一节 液体经小孔泄露的源模式
泄露形式
3-23
(势能变化忽略)
定义孔流系数: 泄漏后密度发生变化 可压缩流体

• 对于许多安全性研究,都需要通过小孔流出蒸气 的最大流量。引起最大流速的压力比为:

pckoked 2 /( 1) ( ) p0 1
3-24
• 塞压pchowk.baidu.comed是导致孔洞或管道流动流量最大 的下游最大压力。当下游压为小于pchoked 时,①在绝大多数情况下,在洞口处流体的 流速是声速;②通过降低下游压力,不能进 一步增加其流速及质量流量。这种类型的流 动称为塞流、临界流或声速流。
• 对于自由扩散泄漏,假设可以忽略潜能的变化, 没有轴功,则质量流量的表达式为:
Qm C0 Ap0 2M p 2 / p ( 1) / ( ) ( ) RgT0 1 p0 p0
• • p0——容器内介质压力(绝压),Pa; • p——环境压力(下游压力),Pa; • γ——气体的绝热指数(热容比)

气体和蒸气的泄漏,可分为滞流和自由 扩散泄漏。 • 对滞流泄漏,气体通过孔流出,摩擦损 失很大,很少一部分来自气体压力的内能会 转化为动能, • 对自由扩散泄漏,大多数压力能转化为 动能,过程通常假设为等熵。滞流泄漏的源 模型,需要有关孔洞物理结构的详细信息, 在这里不予考虑,自由扩散泄漏源模型仅仅 需要孔洞直径。
• 如图3~2所示 为物料的物理 状态是怎样影 响泄漏过程 的。对于存储 于储罐内的气 体或蒸气,裂 缝导致气体或 蒸气泄漏出 来,对于液 体,储罐内液 面以下的裂缝 导致液体泄漏 出来。
• 如果液体存储压力大于其大气环境下沸点所 对应的压力,那么液面以下的裂缝,将导致 泄漏的液体的一部分闪蒸为蒸气,由于液体 的闪蒸,可能会形成小液滴或雾滴,并可能 随风而扩散开来。液面以上的蒸气空间的裂 缝能够导致蒸气流,或气液两相流的泄漏, 这主要取决于物质的物理特性。
• 对于空气泄漏到大气环境(pchoked =101.3 kPa),如 果上游压力比101. 3/0. 528=191.9 kPa大,则通 过孔洞时流动将被遏止,流量达到最大化。在过 程工业中,产生塞流的情况很常见。 • 把式(3-24)代入式(3-23),可确定最大流量: • M 2 ( 1) /( 1) • (Qm )choked C0 Ap0 RgT0 ( 1) (3-25) • 式中M -----泄漏气体或蒸气的相对分子质量; • To ------漏源的温度,k; • Rg——理想气体常数。

小孔(面积为A)在液面以下hL处形成,储 罐中的表压为pg,外界表压为0, • 且储罐中液体流速为0,则瞬时质量流量 Qm。为: pg Qm u A AC0 2( ghL )

忽略阻力项
通过孔流系数C0修正
第三节气体或蒸气泄漏
• • 一、通过孔洞泄漏 对于流动着的液体来说,其动能的变 化经常是可以忽略不计的,物理性质(特别 是密度)是不变的。而对流动着的气体和蒸 气来说,这些假设仅仅在压力变化不大 (p1/p2<2)、流速较低(小于0.3倍声音在气 体中的传播速度)的情况下有效。由于压力 作用使气体或蒸气含有的能量在其从小孔泄 漏或扩散出去时转化为动能,随着气体或蒸 气经孔流出,其密度、压力和温度发生变 化。
3.14 6.3510 5 3 . 17 10 A 4 4 苯的密度为: 0.8794 1000 879.4
2
d

3 2

Qm AC 0 2 Pg
3.17105 0.61 2 879.4 1 6.9 105
674kg / s
二、通过储罐上的孔洞泄漏
第一节 常见的泄漏源
• 泄漏机理可分为大面积泄漏和小孔泄漏。 • 大面积泄漏是指在短时间内有大量的 物料泄漏出来,储罐的超压爆炸就属于大面 积泄漏。 • 小孔泄漏是指物料通过小孔以非常慢 的速率持续泄漏,上游的条件并不因此而立 即受到影响,故通常假设上游压力不变。
• 如图3-1所示 为化工厂中常 见的小孔泄漏 的情况。对于 这些泄漏,物 质从储罐和管 道上的孔洞和 裂纹以及法 兰、阀门和泵 体的裂缝或严 重破坏、断裂 的管道中泄漏 出来。