同步发电机模型
- 格式:pdf
- 大小:161.84 KB
- 文档页数:12
第二章同步发电机的数学模型及机端三相短路分析(回顾)第十六讲三相短路分析及短路电流计算1问题1、什么是发电机的超暂态过程、暂态过程?2、超暂态电抗、暂态电抗、同步电抗?大小关系?3、哪些绕组短路瞬间磁链不突变?4、短路电流计算时如何等值?5、为什么要计算0时刻短路电流?6、短路容量?23§1 三相短路电流的变化规律一、短路电流的组成定子abc 绕组短路电流有哪些成分?交流(周期)分量直流(非周期)分量直流分量交流分量dq0绕组电流6短路电流计算机分析结果(i d 、i q 、i 0)i d 交流分量+直流分量i q 直流分量为0i 0=0分析中关心dq0 绕组的直流分量!用标幺派克方程分析三相短路1、只需要考虑d轴方向绕组?2、d绕组直流分量衰减有什么特点?为什么?716t E′22t ′E−t t ′′′′′E E E E E−−29X adX d X f X DX qX QX aq互感为0ad qf fX E X ψ′=各电势的物理含义?磁链不突变353、假设短路前发电机为空载?,即取10=≈U E 假定各发电机内电势相角相同,且均为0,即101=°∠≈E&4、在网络方面,忽略线路对地电容,变压器的励磁回路,在高压网络中忽略电阻。
线路1/2变压器1变压器2F41作业1、比较d轴超暂态电抗、暂态电抗及同步电抗的大小并从物理上解释之。
2、一台汽轮发电机其S r =15MVA,空载额定电压U r =6.3kV,在空载额定电压下发生机端三相突然短路。
已知其参数标幺值如下:s T s T s T X X X a d d d d d162.0,84.0,105.0,86.1,192.0,117.0==′=′′==′=′′设短路瞬间θa (0)=-60°。
(1)试写出三相短路电流的表达式;(2)绘出B相及C相的电流波形;(3)最大冲击电流发生在哪一相?图-3图-442。
永磁同步发电机的结构直驱式永磁发电机在结构上主要有轴向与盘式两种结构,轴向结构又分为内转子、外转子等;盘式结构又分为中间转子、中间定子、多盘式等;另外还有双凸极发电机与开关磁阻发电机。
一、内转子永磁同步发电机1.结构模型图6-9为内转子永磁同步风力发电机组的结构模型。
与普通交流电机一样,永磁同步发电机也由定子和转子两部分组成,定子、转子之间有空气隙,转子由多个永久磁铁构成。
图6-10为内转子永磁同步发电机的结构模型。
图6-9 内转子永磁同步风力发电机组的结构模型图6-10 内转子永磁同步发电机的结构模型2.定子结构永磁同步发电机的定子铁芯通常由0.5mm厚的硅钢片制成以减小铁耗,上面冲有均匀分布的槽,槽内放置三相对称绕组。
定子槽形通常采用与永磁同步电动机相同的半闭口槽,如图6-11所示。
为有效削弱齿谐波电动势和齿槽转矩,通常采用定子斜槽。
定子绕组通常由圆铜线绕制而成,为减少输出电压中的谐波含量,大多采用双层短距和星形接法,小功率电机中也有采用单层绕组的,特殊场合也采用正弦绕组。
3.转子结构由于永磁同步发电机不需要起动绕组,转子结构比异步启动永磁同步电动机简单,有较充足的空间放置永磁体。
转子通常由转子铁芯和永磁体组成。
转子铁芯既可以由硅钢片叠压而成,也可以是整块钢加工而成。
根据永磁体放置位置的不同,将转子磁极结构分为表面式和内置式两种。
表面式转子结构的永磁体固定在转子铁芯表面,结构简单,易于制造。
内置式转子结构的永磁体位于转子铁芯内部,不直接面对空气隙,转子铁芯对永磁体有一定的保护作用,转子磁路的不对称产生磁阻转矩,相对于表面式结构可以产生更强的气隙磁场,有助于提高电机的过载能力和功率密度,但转子内部漏磁较大,需要采取一定的隔磁措施,转子结构和加工工艺复杂,且永磁体用量多。
图6-11 典型永磁同步发电机的结构示意图1—定子铁芯;2—定子槽;3—转子铁芯;4—永磁体;5—轴二、外转子永磁同步发电机1.外转子永磁同步风力发电机组外转子永磁同步风力发电机的发电绕组在内定子上,绕组与普通三相交流发电机类似;转子在定子外侧,由多个永久磁铁与外磁轭构成,外转子与风轮轮毂安装成一体,一同旋转。
6018.1同步电机原理和结构1 •同步发电机原理简述(1)结构模型:同步发电机和其它类型的旋转电机一样, 由固定的定子和可旋转的转子两大部分组成。
最常用的转场式同步电机的定子铁心的内圆均匀分布着定子槽,槽内嵌放着按一定规律排 列的三相对称交流绕组。
这种同步电机的定子又称为电枢,定子铁心和绕组又称为电枢铁 心和电枢绕组。
转子铁心上装有制成一定形状的成对磁极,磁极上绕有励磁绕组,通以直 流电流时,将会在电机的气隙中形成极性相间的分布磁场,称为励磁磁场(也称主磁场、转子磁场)。
除了转场式同步电机外, 还有转枢 式同步发电机,其磁极安装于定子上,而交流 绕组分布于转子表面的槽内,这种同步电机的 转子充当了电枢。
图 8-1-1给出了典型的转场 式同步发电机的结构模型。
图中用 AX 、BY , CZ 共3个在空间错开120°电角度分布的线 圈代表三相对称交流绕组。
(2 )工作原理同步电机电枢绕组是三相对称交流绕组,当 原动拖动转子旋转时,通入三相对称电流后,会产生高速旋转磁场,随轴一起旋转并顺次切割定子各相绕组(相当于绕组的导体反向切割励磁磁场),会在其中感应出大小和方向按周期性变化的交变电势,每相感应电势的有效值为, E o = 4.44fN ① f k w( 8-1-1 )式中f ――电源频率;①f ――每极平均磁通; N ——绕组总导体数;k w ---------------- 绕组系数;E 0是由励磁绕组产生的磁通 ①f 在电枢绕组中感应而得,称为 励磁电势(也称主电势、 空载电势、转子电势)。
由于三相电枢绕组在空间分布的对称性,决定了三相绕组中的感应 电势将在的时间上呈现出对称性,即在时间相位上相互错开 1/3周期。
通过绕组的出线端将三相感应电势引出后可以作为交流电源。
可见,同步发电机可以将原动机提供给转子的 旋转机械能转化为三相对称的交变电能。
感应电势的频率决定于同步电机的转速 n 和极对数p ,即同步电机图8-1-1 同步电机结构模型2供电品质考虑,由众多同步发电机并联构成的交流电网的频率应该是一个不变的值, 这就要求发电机的频率应该和电网的频率一致。
同步电机模型针对不同的假设,会导出不同的数学模型,因此,本文中只讨论基于如下基本假设的同步电机模型。
基本假设:忽略定子绕组暂态,从而令定子电压微分方程中0d q p p ψψ==;定子电压方程中1ω≈;六阶模型:考虑励磁绕组f ,d 轴阻尼绕组D ,q 轴阻尼绕组Q ,q 轴阻尼绕组g 的作用。
适用范围:当需要计及转子超瞬变过程且转子q 轴要考虑g 绕组时可以使用,或者需要精确地分析系统和电机动态过程时使用。
五阶模型:在六阶模型的基础上,忽略q 轴阻尼绕组g 的作用。
适用范围:当对电力系统暂态稳定分析的精度要求较高时可以使用。
四阶模型:在六阶模型的基础上,忽略时间常数较小的阻尼绕组D 和Q 的作用。
适用范围:当需要精确地分析系统和电机动态过程时可以使用,一般用于隐极机。
三阶模型:在六阶模型的基础上,忽略阻尼绕组D ,Q ,g 的作用。
使用范围:当对精度要求不十分高,但仍需要计及励磁系统动态的电力系统动态分析中,较适用于凸极机。
二阶模型:在六阶模型的基础上,忽略阻尼绕组D ,Q ,g 的作用以及励磁绕组f 的暂态过程,并且根据是否计及凸极效应,分为经典二阶模型(计及凸极效应)和'q E 恒定模型(不计及凸极效应)。
使用范围:二阶模型可以在大规模电力系统分析中使用,在精度要求不高的大型电力系统中也可以使用。
总之,为了充分利用设备的容量,输送更多的电力,电力系统稳定分析趋于精确计及励磁系统的动态作用,及采用发电机的三阶及更高阶的实用模型,以确保安全经济运行。
在参数不可靠的情况下,则采用二阶模型较为妥当。
另外在系统很大,而精度要求不高时,也优先使用二阶模型,以节省机时及人力。