力学答案(漆安慎_杜婵英)_详解_1_9章
- 格式:doc
- 大小:8.93 MB
- 文档页数:174
面向21世纪课程教材-普通物理学教程-力学-第二版-漆安慎 杜婵英 思考题习题解析第一章 物理学和力学思 考 题1.1解答,基本量:长度、质量、时间、电流、温度、物质的量、光强度。
基本单位:米(m )、千克(kg )、时间(s )、安培(A )、温度(k )、摩尔(mol )、坎德拉(cd )。
力学中的基本量:长度、质量、时间。
力学中的基本单位:米(m )、千克(kg )、时间(s )。
1.2解答,(1)由量纲1dim -=LT v ,2 dim -=LT a ,h km h km h km s m /6.3/36001036001/10/33=⨯==-- 2223232/36006.3/360010)36001/(10/h km h km h km s m ⨯=⨯==-- 改为以h (小时)和km (公里)作为时间和长度的单位时,,36006.3216.320at t v s ⨯⨯+=(速度、加速度仍为SI 单位下的量值) 验证一下: 1.0h 3600s t ,4.0m /s a ,/0.220====s m v 利用,2120at t v s += 计算得:)(259272002592000072003600421360022m s =+=⨯⨯+⨯=利用,36006.3216.320at t v s ⨯⨯+= 计算得:)(2.25927259202.71436006.321126.32km s =+=⨯⨯⨯⨯+⨯⨯= (2). 仅时间单位改为h 由量纲1 dim -=LT v ,2 dim -=LT a 得h m h m h m s m /3600/360036001//=== 222222/3600/3600)36001/(/h m h m h m s m === 若仅时间单位改为h ,得:,3600213600220at t v s ⨯+=验证一下: 1.0h 3600s t ,4.0m/s a ,/0.220====s m v利用,2120at t v s +=计算得:)(259272002592000072003600421360022m s =+=⨯⨯+⨯=利用,3600213600220at t v s ⨯+=计算得:)(259272002592000072001436002112360022m s =+=⨯⨯⨯+⨯⨯= (3). 若仅0v 单位改为km/h 由量纲1 dim -=LT v ,得:sm h km h km h km s m /6.31/,/6.3)36001/(10/3===-仅0v 单位改为km/h ,因长度和时间的单位不变,将km/h 换成m/s 得:,216.3120at t v s +=验证一下: 1.0h 3600s t ,4.0m/s a ,/0.220====s m v利用,2120at t v s +=计算得:)(259272002592000072003600421360022m s =+=⨯⨯+⨯=利用,216.3120at t v s +=计算得:)(25927200259200007200360042136003600/11026.3123m s =+=⨯⨯+⨯⨯⨯=- 1.3解答,,ksv f ,22=∝sv f][][][][][[?]][][]?[][32242222222222mkgsv f s m kgms sv f s m v m s N f k s m v m s k N f ====----物理意义:体密度。
第一章 物理学和力学1.1国际单位制中的基本单位是那些?解答,基本量:长度、质量、时间、电流、温度、物质的量、光强度。
基本单位:米(m )、千克(kg )、时间(s )、安培(A )、温度(k )、摩尔(mol )、坎德拉(cd )。
力学中的基本量:长度、质量、时间。
力学中的基本单位:米(m )、千克(kg )、时间(s )。
1.2中学所学习的匀变速直线运动公式为,at 21t v s 20+= 各量单位为时间:s (秒),长度:m (米),若改为以h (小时)和km (公里)作为时间和长度的单位,上述公式如何?若仅时间单位改为h ,如何?若仅0v 单位改为km/h ,又如何?解答,(1)由量纲1LTvdim -=,2LT a dim -=,h/km 6.3h/km 360010h 36001/km 10s /m 33=⨯==--2223232h /km 36006.3h /km 360010)h 36001/(km 10s /m ⨯=⨯==--改为以h (小时)和km (公里)作为时间和长度的单位时,,at 36006.321t v 6.3s 20⨯⨯+=(速度、加速度仍为SI单位下的量值)验证一下:1.0h 3600s t ,4.0m/s a ,s /m 0.2v 20====利用,at 21t v s 20+=计算得:)m (2592720025920000720036004236002s 2=+=⨯⨯+⨯=利用,at 36006.321t v 6.3s 20⨯⨯+=计算得 )km (2.25927259202.71436006.321126.3s 2=+=⨯⨯⨯⨯+⨯⨯=(2). 仅时间单位改为h由量纲1LTv dim -=,2LTadim -=得h /m 3600h/m 3600h 36001/m s /m ===222222h /m 3600h /m 3600)h 36001/(m s /m ===若仅时间单位改为h ,得:,at 360021t v 3600s 220⨯+=验证一下:1.0h 3600s t ,4.0m/s a ,s /m 0.2v 20==== 利用,at 21t v s 20+=计算得:)m (2592720025920000720036004236002s 2=+=⨯⨯+⨯=利用,at 360021t v 3600s 220⨯+=计算得: )m (2592720025920000720014360021123600s 22=+=⨯⨯⨯+⨯⨯= (3). 若仅0v 单位改为km/h由量纲1LTv dim -=,得s/m 6.31h /km ,h /km 6.3)h 36001/(km 10s /m 3===-仅0v 单位改为km/h ,因长度和时间的单位不变,将km/h 换成m/s得,at 21t v 6.31s 20+=验证一下:1.0h 3600s t ,4.0m/s a ,s /m 0.2v 20====利用,at 21t v s 20+=计算得:)m (2592720025920000720036004236002s 2=+=⨯⨯+⨯=利用,at 21t v 6.31s 20+=计算得: )m (25927200259200007200360042136003600/11026.31s 23=+=⨯⨯+⨯⨯⨯=-1.3设汽车行驶时所受阻力f 与汽车的横截面积S 成正比,且与速率v 之平方成正比。
力学(第二版)漆安慎习题解答数学预备知识第一章物理学和力学数学常识一、微积分1.求下列函数的导数⑴10432+-=x x y ⑵100cos 8sin 7/1-++=x x x y ⑶)/()(bx a b ax y ++= ⑷21sin x y += ⑸x e y sin = ⑹x e y x 100+=-xx x e e y xe y x x x x x x y bx a b a y x x x x y x y ----=+-==++=++=+-=-+-=-=100100)1('cos '1/1cos 2·)1(·)1cos(')/()('sin 8cos 7)2/(1'46'sin 222/12212/12222⑹⑸⑷⑶⑵解:⑴2.已知某地段地形的海拔高度h 因水平坐标x 而变,h=100-0.0001x 2(1-0.005x 2),度量x 和h 的单位为米。
问何处的高度将取极大值和极小值,在这些地方的高度为多少?解:先求出h(x)对x 的一阶导数和二阶导数:42643643647242102106)102102(102102)1051010(22--------⨯-⨯=⨯-⨯=⨯-⨯=⨯+-=x x x x x x x dxd dx h d dxd dxdh令dh/dx=0,解得在x=0,10,-10处可能有极值。
∵d 2h/dx 2|x=0<0,∴x=0是极大值点,h(0)=100;∵d 2h/dx 2|x=10>0,∴x=10是极小值点,h(10)=99.0005米;显然,x=-10亦是极小值点,h(-10)=h(10).3.求下列不定积分⎰⎰++-dx x dxx x x )2()13(23⑵⑴ ⎰⎰⎰⎰+--++dxb ax dxdx x x dx e x x x x x x)sin()cos (sin )2(22113⑹⑸⑷⑶⎰⎰⎰⎰⎰⎰-+-dxxdxdx xe xdx x dx e xx x b ax dx x ln 222)12(cos )11(cos sin 2⑽⑼⑻⑺ 解:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+==++=+=+-=--=+==++=++=+-=--=++-=++=++-=-==+--=-=-+++=-+=-+++=+=+++-=+-=+-----+---++-++-cx x xd dx c x x dx x xdx ce x d e dx xe c x x xd xdx x c b ax b ax d b ax c ex d e dx e cb ax b ax d b ax dx b axc arctgx x dx dx dx cx x xdx xdx dx x x ce x dx x dx e dx e cx dx x dx dx x cx x x dx xdx dx x dx x x xx x x x aab ax dxxx x aax dxx x x x xxx x dxx xx x x x 221ln 4121212212213312222/112212************/3133312ln 22x 222344133)(ln )(ln ln )12(2sin )2cos 1(cos )11()(sin )(sin sin cos sin )()()2()cos()()sin()sin(sin cos cos sin )cos (sin 2ln 323)2(2)2(3)13(22222222⑽⑼⑻⑺⑹⑸⑷⑶⑵⑴4. 求下列定积分⎰⎰⎰⎰⎰⎰⎰⎰++--++--2/021114/6/2111ln 12/12/111421)sin 3(2cos )()1()122πππ⑻⑺⑹⑸⑷⑶⑵(⑴dxx x dx xdxdx e dx dx e e dx x x xxex xxdx xx︒===-=-=--=--=-=-=----⎰⎰⎰⎰⎰⎰60|arcsin )1(|)1()1()1()1(||)132/12/12/12/111551105514143532421213221212/121223π⑶⑵(解:⑴x e e e d e dx e e x x dx dx xdx x xdx x x x x xπππππππππ412832/02/0212/0210101143214/6/4/6/21214/6/221211112211ln 1)2cos 1(3)sin 3(454/||2sin )2(2cos 2cos 2ln |)ln ()(5.1|)ln 1()ln 1()ln 1(2+=-+=+︒===-===+-=+=+=+=++=⎰⎰⎰⎰⎰⎰⎰⎰⎰++dx x xdx dx x x arctgx dx x x xd xdx e e x e dx e x x d x dx x x x x eee xx πππ⑻⑺⑹⑸⑷示这些定积分。
力学1.求下列函数的导数⑴10432+-=x x y ⑵100cos 8sin 7/1-++=x x x y⑶)/()(bx a b ax y ++= ⑷21sin x y += ⑸xey sin = ⑹x ey x100+=-xx x e e y xe y x x x x x x y bx a b a y x x x x y x y ----=+-==++=++=+-=-+-=-=100100)1('cos '1/1cos 2·)1(·)1cos(')/()('sin 8cos 7)2/(1'46'sin 222/12212/12222⑹⑸⑷⑶⑵解:⑴2.已知某地段地形的海拔高度h 因水平坐标x 而变,h=100-0.0001x 2(1-0.005x 2),度量x 和h 的单位为米。
问何处的高度将取极大值和极小值,在这些地方的高度为多少?解:先求出h(x)对x 的一阶导数和二阶导数:42643643647242102106)102102(102102)1051010(22--------⨯-⨯=⨯-⨯=⨯-⨯=⨯+-=x x x x x x x dxd dx h d dxd dxdh令dh/dx=0,解得在x=0,10,-10处可能有极值。
∵d 2h/dx 2|x=0<0,∴x=0是极大值点,h(0)=100;∵d 2h/dx 2|x=10>0,∴x=10是极小值点,h(10)=99.0005米;显然,x=-10亦是极小值点,h(-10)=h(10).3.求下列不定积分⎰⎰++-dx x dxx x x )2()13(23⑵⑴⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰-+-++--+dxxdxdx xe xdx x dxe dxb ax dx dx x x dx e xx x b ax dx x x x xx x x ln 222113)12(cos )11(cos sin )sin()cos (sin )2(222⑽⑼⑻⑺⑹⑸⑷⑶ 解:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+==++=+=+-=--=+==++=++=+-=--=++-=++=++-=-==+--=-=-+++=-+=-+++=+=+++-=+-=+-----+---++-++-cx x xd dx cx x dx x xdx ce x d e dx xec x x xd xdx x cb ax b ax d b axc ex d e dx e cb ax b ax d b ax dx b axc arctgx x dx dx dx cx x xdx xdx dx x x ce x dx x dx e dx e c x dx x dx dx x cx x x dx xdx dx x dx x x x x x x x aabax dxxx x aax dxx x x x xxx x dxx xx xx x 221ln 4121212212213312222/112212212111111122/3133312ln 22x 222344133)(ln )(ln ln )12(2sin )2cos 1(cos )11()(sin )(sin sin cos sin )()()2()cos()()sin()sin(sin cos cos sin )cos (sin 2ln 323)2(2)2(3)13(22222222⑽⑼⑻⑺⑹⑸⑷⑶⑵⑴4. 求下列定积分πππππππππ412832/02/0212/021011143214/6/4/6/21214/6/221211112211ln 132/12/12/12/111551105514143532421213221212/1212/021114/6/2111ln 12/12/111421)2cos 1(3)sin 3(454/||2sin )2(2cos 2cos 2ln |)ln ()(5.1|)ln 1()ln 1()ln 1(60|arcsin )1(|)1()1()1()1(||)1)sin 3(2cos )()1()1222322+=-+=+︒===-===+-=+=+=+=++=︒===-=-=--=--=-=-=-++--⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰++---++--dx x xdx dx x x arctgx dx x x xd xdx e e x e dx e x x d x dx x e e e d e dx e e x x dx dx xdx x dxx x dx xdx dx e dx dx e e dx x x x xx eeexxxdx x x x xxx xxex xxdx xx πππππππ⑻⑺⑹⑸⑷⑶⑵(解:⑴⑻⑺⑹⑸⑷⑶⑵(⑴示这些定积分。
力学1.求下列函数的导数⑴10432+-=x x y ⑵100cos 8sin 7/1-++=x x x y⑶)/()(bx a b ax y ++= ⑷21sin x y += ⑸xey sin = ⑹x ey x100+=-xx x e e y xe y x x x x x x y bx a b a y x x x x y x y ----=+-==++=++=+-=-+-=-=100100)1('cos '1/1cos 2·)1(·)1cos(')/()('sin 8cos 7)2/(1'46'sin 222/12212/12222⑹⑸⑷⑶⑵解:⑴2.已知某地段地形的海拔高度h 因水平坐标x 而变,h=100-0.0001x 2(1-0.005x 2),度量x 和h 的单位为米。
问何处的高度将取极大值和极小值,在这些地方的高度为多少?解:先求出h(x)对x 的一阶导数和二阶导数:42643643647242102106)102102(102102)1051010(22--------⨯-⨯=⨯-⨯=⨯-⨯=⨯+-=x x x x x x x dxd dx h d dxd dxdh令dh/dx=0,解得在x=0,10,-10处可能有极值。
∵d 2h/dx 2|x=0<0,∴x=0是极大值点,h(0)=100;∵d 2h/dx 2|x=10>0,∴x=10是极小值点,h(10)=99.0005米;显然,x=-10亦是极小值点,h(-10)=h(10).3.求下列不定积分⎰⎰++-dx x dxx x x )2()13(23⑵⑴⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰-+-++--+dxxdxdx xe xdx x dxe dxb ax dx dx x x dx e xx x b ax dx x x x xx x x ln 222113)12(cos )11(cos sin )sin()cos (sin )2(222⑽⑼⑻⑺⑹⑸⑷⑶ 解:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+==++=+=+-=--=+==++=++=+-=--=++-=++=++-=-==+--=-=-+++=-+=-+++=+=+++-=+-=+-----+---++-++-cx x xd dx cx x dx x xdx ce x d e dx xec x x xd xdx x cb ax b ax d b axc ex d e dx e cb ax b ax d b ax dx b axc arctgx x dx dx dx cx x xdx xdx dx x x ce x dx x dx e dx e c x dx x dx dx x cx x x dx xdx dx x dx x x x x x x x aabax dxxx x aax dxx x x x xxx x dxx xx xx x 221ln 4121212212213312222/112212212111111122/3133312ln 22x 222344133)(ln )(ln ln )12(2sin )2cos 1(cos )11()(sin )(sin sin cos sin )()()2()cos()()sin()sin(sin cos cos sin )cos (sin 2ln 323)2(2)2(3)13(22222222⑽⑼⑻⑺⑹⑸⑷⑶⑵⑴4. 求下列定积分πππππππππ412832/02/0212/021011143214/6/4/6/21214/6/221211112211ln 132/12/12/12/111551105514143532421213221212/1212/021114/6/2111ln 12/12/111421)2cos 1(3)sin 3(454/||2sin )2(2cos 2cos 2ln |)ln ()(5.1|)ln 1()ln 1()ln 1(60|arcsin )1(|)1()1()1()1(||)1)sin 3(2cos )()1()1222322+=-+=+︒===-===+-=+=+=+=++=︒===-=-=--=--=-=-=-++--⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰++---++--dx x xdx dx x x arctgx dx x x xd xdx e e x e dx e x x d x dx x e e e d e dx e e x x dx dx xdx x dxx x dx xdx dx e dx dx e e dx x x x xx eeexxxdx x x x xxx xxex xxdx xx πππππππ⑻⑺⑹⑸⑷⑶⑵(解:⑴⑻⑺⑹⑸⑷⑶⑵(⑴示这些定积分。
第九章一、基本知识小结⒈物体在线性回复力F = - kx ,或线性回复力矩τ= - c φ作用下的运动就是简谐振动,其动力学方程为 ,02022=+x dt x d ω(x 表示线位移或角位移);弹簧振子:ω02=k/m ,单摆:ω02=g/l ,扭摆:ω02=C/I.⒉简谐振动的运动学方程为 x = Acos(ω0t+α);圆频率、频率、周期是由振动系统本身决定的,ω0=2π/T=2πv ;振幅A 和初相α由初始条件决定。
⒊在简谐振动中,动能和势能互相转换,总机械能保持不变;对于弹簧振子,22021221Am kA E E p k ω==+。
⒋两个简谐振动的合成⒌阻尼振动的动力学方程为 022022=++x dt dx dtx d ωβ。
其运动学方程分三种情况:⑴在弱阻尼状态(β<ω0),振动的方向变化有周期性,220'),'cos(βωωαωβ-=+=-t Ae x t ,对数减缩 = βT ’.⑵在过阻尼状态(β>ω0),无周期性,振子单调、缓慢地回到平衡位置。
⑶临界阻尼状态(β=ω0),无周期性,振子单调、迅速地回到平衡位置⒍受迫振动动力学方程 t f x dt dx dt x d ωωβcos202022=++; 其稳定解为 )cos(0ϕω+=t A x ,ω是驱动力的频率,A 0和φ也不是由初始条件决定,222220004)(/ωβωω+-=f A 2202ωωβωϕ--=tg当2202βωω-=时,发生位移共振。
二、思考题解答9.1 什么叫做简谐振动?如某物理量x 的变化规律满足cos()x A pt q =+,A ,p ,q ,均为常数,能否说作简谐振动?答:质点在线性回复力作用下围绕平衡位置的运动叫做简谐振动。
如果质点运动的动力学方程式可以归结为 22020d x x dtw +=的形式,其中0w 决定于振动系统本身的性质,则质点做简谐振动9.2 如果单摆的摆角很大,以致不能认为sin θθ=,为什么它的摆动不是简谐振动?答:因为当单摆的摆角很大不能认为sin θθ=时,单摆的动力学方程不能化为简谐振动的动力学,所以它的摆动不是简谐振动。
第二章 质点运动学(习题)2.1.1质点的运动学方程为j ˆ)1t 4(i ˆ)t 32(r ).2(,j ˆ5i ˆ)t 23(r ).1(-+-=++= 求质点轨迹并用图表示。
解,①.,5y ,t 23x =+=轨迹方程为y=5②⎩⎨⎧-=-=1t 4y t 32x 消去时间参量t 得:05x 4y 3=-+2.1.2质点运动学方程为k ˆ2j ˆe i ˆe r t 2t 2++=- ,(1). 求质点的轨迹;(2).求自t=-1至t=1质点的位移。
解,①⎪⎩⎪⎨⎧===-2z e y ex t 2t2消去t 得轨迹:xy=1,z=2②k ˆ2j ˆe i ˆe r 221++=-- ,k ˆ2j ˆe i ˆe r 221++=-+ , j ˆ)e e (i ˆ)e e (r r r 222211---+-+-=-=∆2.1.3质点运动学方程为j t i t r ˆ)32(ˆ42++= ,(1). 求质点的轨迹;(2).求自t=0至t=1质点的位移。
解,①.,3t 2y ,t 4x 2+==消去t 得轨迹方程 2)3y (x -=②j ˆ2i ˆ4r r r ,j ˆ5i ˆ4r ,j ˆ3r 0110+=-=∆+== 2.2.1雷达站于某瞬时测得飞机位置为0117.33,m 4100R =θ=,0.75s 后测得21022R ,R ,3.29,m 4240R =θ=均在铅直平面内。
求飞机瞬时速率的近似值和飞行方向(α角)。
解,)cos(R R 2R R R 21212221θ-θ-+=∆ 代入数值得: )m (385.3494.4cos 42404100242404100R 022≈⨯⨯-+=∆)s /m (8.46575.0385.349t R v ==∆∆≈利用正弦定理可解出089.34-=α2.2.2一小圆柱体沿抛物线轨道运动,抛物线轨道为200/x y 2=(长度mm )。
第一次观察到圆柱体在x=249mm 处,经过时间2ms 后圆柱体移到x=234mm 处。
求圆柱体瞬时速度的近似值。
解,ms /mm 6.192225.3615t )y ()x (t r v 2222=+=∆∆+∆=∆∆≈05.112-≈α2.2.3一人在北京音乐厅内听音乐,离演奏者17m 。
另一人在广州听同一演奏的转播,广州离北京2320km ,收听者离收音机2m ,问谁先听到声音?声速为340m/s,电磁波传播的速度为s /m 100.38⨯。
解,128321t t )s (0136.03402100.3102320t )s (05.034017t ∆<∆=+⨯⨯=∆==∆ 在广州的人先听到声音。
2.2.4如果不允许你去航空公司问讯处,问你乘波音747飞机自北京不着陆飞行到巴黎,你能否估计大约用多少时间?如果能,试估计一下(自己找所需数据)。
解,v s t ∆=∆2.2.5火车进入弯道时减速,最初列车向正北以90km/h 速率行驶,3min 后以70km/h 速率向北偏西030方向行驶。
求列车的平均加速度。
解,2220012002199.49,7659.0sin ,sin 7030sin 05.091.913)s /m (071.0)h /km (91.91305.0378.2935t va jˆ)9030cos 70(i ˆ60cos 70v v v ,j ˆ30cos 70i ˆ60cos 70v ,j ˆ90v =θ=θθ=⨯==+=∆∆=-+-=-=∆+-==2.2.6(1),k ˆt 2j ˆt sin R i ˆt cos R r ++= R 为正常数。
求t=0,π/2时的速度和加速度。
(2),kˆt 6j ˆt 5.4i ˆt 3r 32+-= 求t=0,1时的速度和加速度(写出正交分解式)。
解:(1)jˆt sin R i ˆt cos R dtv d a ,kˆ2j ˆt cos R i ˆt sin R dt r d v ,kˆt 2j ˆt sin R i ˆt cos R r --==++-==++= 当t=0时,a a ,R a ,2v ,R v ,0v,i ˆR a ,k ˆ2j ˆR v z y x z y x ==-====-=+=当t=π/2时,a ,R a ,0a ,2v ,0v ,R v ,j ˆR a ,k ˆ2i ˆR v z y x z y x =-====-=-=+-=(2)jˆ9dt v d a ,kˆt 18j ˆt 9i ˆ3dt r d v ,kˆt 6j ˆt 5.4i ˆt 3r 232-==+-==+-=当t=0时,,j ˆ9a ,i ˆ3v -==当t=1时,,k ˆ36j ˆ9a ,k ˆ18j ˆ9i ˆ3v +-=+-=2.3.1图中a 、b 和c 表示质点沿直线运动三种不同情况下的x-t 图,试说明三种运动的特点(即速度,计时起点时质点的坐标,位于坐标原点的时刻)。
解,a 直线的斜率为速度)s /m (732.1120tg dtdx v 0ax -=== m 20x ,0t 0==)s (547.113/20|t ,60tg |t 20,0x 0x 0x ======b 直线的斜率为速度)s (331.17577.0/10|t ,30tg |t 10)m (10x ,0t )s /m (577.030tg v 0x 00x 00bx -=-==-======c 直线的斜率为速度)s (25|t )m (25x ,0t )s /m (145tg v 0x 00cx =-=====2.3.2质点直线运动的运动学方程为x=acost, a 为正常数。
求质点速度和加速度并讨论运动特点(有无周期性,运动范围,速度变化情况等)。
解,)t cos(a t cos a a ),2t cos(a t sin a v x x π+=-=π+=-=质点受力mx t cos ma ma F -=-==,是线性恢复力,质点做简谐振动,振幅为a ,运动范围在a x a ≤≤-,速度具有周期性。
2.3.3跳伞运动员的速度为,e 1e 1v qtqt--+-β=v 铅直向下,β、q 为正常量。
求其加速度。
讨论当时间足够长时(即t →∞),速度和加速度的变化趋势。
解,2qt qt2qt qt qt qt qt )e 1(qe 2)e 1()e 1(qe )e 1(qe dt dv a -------+β=+-++β==0a ,v ,t →β→∞→2.3.4直线运动的高速列车在电子计算机控制下减速进站。
列车原行驶速度为h /km 180v 0=,其速度变化规律如图所示。
求列车行驶至x=1.5km 时加速度的大小。
解,x52sin v 10x 5cos v x 5sin v 5v dxdv dt dx dx dv dt dv a ,x 5cosv v 20000ππ-=π⋅ππ-=⋅===π= )s /m (747.0)h /km (67.967553sin 18010a 222-=-=ππ-=2.3.5在水平桌面上放置A 、B 两物体,用一不可伸长的绳索按图示的装置把它们连接起来。
C 点与桌面固定。
已知物体A 的加速度g 5.0a A =,求物体B 的加速度。
解,以C 为坐标原点,建立一维坐标系o-x 。
设绳的总长度为,B 的坐标为B x ,A 的坐标为A x ,则得=-B A x 4x 3两端对t 求导g83g 5.043a 43a ,0a 43a ,0dt x d 4dt x d 3A B B A 2B 22A 2=⨯===-=-2.3.6质点沿直线的运动学方程为2t3t 10x+=。
(1)将坐标原点沿ox 轴正方向移动2m ,运动学方程如何?初速度有无变化?(2)将计时起点前移1s ,运动学方程如何?初始坐标和初始速度都发生怎样的变化?加速度变不变? 解,(1)2t 3t 10x +=2x x ,2x x +'=-=',代入上式得:,2t 103t x ,t 3t 102x 22-+='+=+'xx v v ,t 610dtx d dt dx '=+='= 初速度不变。
(2)2t 3t 10x +=1t t ,1t t -'=+='代入上式得:7t 4t 3)1t (3)1t (10x 22-'+'=-'+-'= 初坐标)m (7x ,0t -=='由0变为-7m.4t 6v x +'=,初速度由10m/s 变为4m/s.加速度不变,都是2s /m 6.以下四题用积分2.4.1质点由坐标原点出发时开始计时,沿x 轴运动,其加速度]s /cm [t 2a 2x =,求在下列两种情况下质点的运动学方程、出发后6s 时质点的位置、在此期间所走过的位移及路程: (1)初速度0v 0=;(2)初速度0v的大小为9cm/s,方向与加速度方向相反。
解,(1)⎰+=tx x 0x dta v v ,,t tdt 2v 2tx ==⎰⎰+=tx 0dtv x x ,,t 31dt t x 3t2==⎰当t=6s 时,)cm (72x 6=,)cm (72072x =-=∆,质点运动的路程:)cm (72s =∆ (2)9t tdt 29v 2tx -=+-=⎰,t 9t 31dt )9t (x 3t2-=-=⎰,当t=6s 时,)cm (18x 6=,)cm (18018x =-=∆,,3t ,0v ,9t v x 2x ==-=质点运动的路程如图,t 9t 31x 3-=,18x ,6t ,18x ,3t 63==-==,质点运动的路程:)cm (5418218s =+⨯=∆ 2.4.2质点直线运动瞬时速度的变化规律为.t sin 3v x-=求3t 1=至5t2=时间内的位移。
解,⎰-=-=∆tt 11tdt sin 3x x x ,)m (82.3)3cos 5(cos 3|t cos 3tdt sin 3x x x 535312≈-==⎰-=-=∆2.4.3一质点作直线运动,其瞬时加速度的变化规律为.t cos A a 2xωω-=在t=0时,,A x ,0v x==其中ω、A 均为正常数,求此质点的运动学方程。
解,⎰+=tx x 0x dta v v ,⎰ωω-=ω⋅ωω-=⎰⋅ωω-=t 0t2xt sin A )t (d t cos A dtt cos A v⎰+=txdt v x x ,t cos A |t cos A A dtt sin A A x t 0tω=ω+=⎰⋅ωω-+=2.4.4飞机着陆时为尽快停止采用降落伞制动。