漆安慎力学习题解答[完整版]
- 格式:doc
- 大小:533.50 KB
- 文档页数:13
力学1.求下列函数的导数⑴10432+-=x x y ⑵100cos 8sin 7/1-++=x x x y⑶)/()(bx a b ax y ++= ⑷21sin x y +=⑸x ey sin = ⑹x e y x100+=-2.已知某地段地形的海拔高度h 因水平坐标x 而变,h=100-0.0001x 2(1-0.005x 2),度量x 和h 的单位为米。
问何处的高度将取极大值和极小值,在这些地方的高度为多少? 解:先求出h(x)对x 的一阶导数和二阶导数:令dh/dx=0,解得在x=0,10,-10处可能有极值。
∵d 2h/dx 2|x=0<0,∴x=0是极大值点,h(0)=100;∵d 2h/dx 2|x=10>0,∴x=10是极小值点,h(10)=99.0005米;显然,x=-10亦是极小值点,h(-10)=h(10).3.求下列不定积分 解:4. 求下列定积分解:1|cos si n 202/0=-=⎰ππx xdx6.计算由y=3x 和y=x 2所围成的平面图形的面积。
解:如图所示,令3x=x 2,得两 条曲线交点的x 坐标:x=0,3. 面积7.求曲线y=x 2+2,y=2x,x=0和x=2诸线所包围的面积。
解:面积A8.一物体沿直线运动的速度为v=v 0+at,v 0和a 为常量,求物体在t 1至t 2时间内的位移。
解:位移S ⎰+=21)(0t t dtat v1.2.3.4.5.6.7.略 8.二矢量如图所示A=4,B=5,α=25o ,β=36.87o ,直接根据矢量标积定义和正交分解法求B A⋅。
解:直接用矢量标积定义: 用正交分解法:∵A x =4cos α=3.6 A y =4sin α=1.7, B x =5cos(90o +β)= - 5sin β= -3,B y =5sin(90o +β)=5cos β=4 ∴447.1)3(6.3-=⨯+-⨯=+=⋅y y x x B A B A B A9.的夹角。
第一章 物理学和力学1.1国际单位制中的基本单位是那些?解答,基本量:长度、质量、时间、电流、温度、物质的量、光强度。
基本单位:米(m )、千克(kg )、时间(s )、安培(A )、温度(k )、摩尔(mol )、坎德拉(cd )。
力学中的基本量:长度、质量、时间。
力学中的基本单位:米(m )、千克(kg )、时间(s )。
1.2中学所学习的匀变速直线运动公式为,at 21t v s 20+= 各量单位为时间:s (秒),长度:m (米),若改为以h (小时)和km (公里)作为时间和长度的单位,上述公式如何?若仅时间单位改为h ,如何?若仅0v 单位改为km/h ,又如何?解答,(1)由量纲1LTvdim -=,2LT a dim -=,h/km 6.3h/km 360010h 36001/km 10s /m 33=⨯==--2223232h /km 36006.3h /km 360010)h 36001/(km 10s /m ⨯=⨯==--改为以h (小时)和km (公里)作为时间和长度的单位时,,at 36006.321t v 6.3s 20⨯⨯+=(速度、加速度仍为SI单位下的量值)验证一下:1.0h 3600s t ,4.0m/s a ,s /m 0.2v 20====利用,at 21t v s 20+=计算得:)m (2592720025920000720036004236002s 2=+=⨯⨯+⨯=利用,at 36006.321t v 6.3s 20⨯⨯+=计算得 )km (2.25927259202.71436006.321126.3s 2=+=⨯⨯⨯⨯+⨯⨯=(2). 仅时间单位改为h由量纲1LTv dim -=,2LTadim -=得h /m 3600h/m 3600h 36001/m s /m ===222222h /m 3600h /m 3600)h 36001/(m s /m ===若仅时间单位改为h ,得:,at 360021t v 3600s 220⨯+=验证一下:1.0h 3600s t ,4.0m/s a ,s /m 0.2v 20==== 利用,at 21t v s 20+=计算得:)m (2592720025920000720036004236002s 2=+=⨯⨯+⨯=利用,at 360021t v 3600s 220⨯+=计算得: )m (2592720025920000720014360021123600s 22=+=⨯⨯⨯+⨯⨯= (3). 若仅0v 单位改为km/h由量纲1LTv dim -=,得s/m 6.31h /km ,h /km 6.3)h 36001/(km 10s /m 3===-仅0v 单位改为km/h ,因长度和时间的单位不变,将km/h 换成m/s得,at 21t v 6.31s 20+=验证一下:1.0h 3600s t ,4.0m/s a ,s /m 0.2v 20====利用,at 21t v s 20+=计算得:)m (2592720025920000720036004236002s 2=+=⨯⨯+⨯=利用,at 21t v 6.31s 20+=计算得: )m (25927200259200007200360042136003600/11026.31s 23=+=⨯⨯+⨯⨯⨯=-1.3设汽车行驶时所受阻力f 与汽车的横截面积S 成正比,且与速率v 之平方成正比。
第二章 质点运动学(习题)2.1.1质点的运动学方程为j ˆ)1t 4(i ˆ)t 32(r ).2(,j ˆ5i ˆ)t 23(r ).1(-+-=++= 求质点轨迹并用图表示。
解,①.,5y ,t 23x =+=轨迹方程为y=5②⎩⎨⎧-=-=1t 4y t 32x 消去时间参量t 得:05x 4y 3=-+2.1.2质点运动学方程为k ˆ2j ˆe i ˆe r t 2t 2++=- ,(1). 求质点的轨迹;(2).求自t=-1至t=1质点的位移。
解,①⎪⎩⎪⎨⎧===-2z e y ex t 2t2消去t 得轨迹:xy=1,z=2②k ˆ2j ˆe i ˆe r 221++=-- ,k ˆ2j ˆe i ˆe r 221++=-+ ,j ˆ)e e (i ˆ)e e (r r r 222211---+-+-=-=∆2.1.3质点运动学方程为j t i t r ˆ)32(ˆ42++= ,(1). 求质点的轨迹;(2).求自t=0至t=1质点的位移。
解,①.,3t 2y ,t 4x 2+==消去t 得轨迹方程 2)3y (x -=②j ˆ2i ˆ4r r r ,j ˆ5i ˆ4r ,j ˆ3r 0110+=-=∆+== 2.2.1雷达站于某瞬时测得飞机位置为0117.33,m 4100R =θ=,0.75s 后测得21022R ,R ,3.29,m 4240R =θ=均在铅直平面内。
求飞机瞬时速率的近似值和飞行方向(α角)。
解,)cos(R R 2R R R 21212221θ-θ-+=∆ 代入数值得: )m (385.3494.4cos 42404100242404100R 022≈⨯⨯-+=∆)s /m (8.46575.0385.349t R v ==∆∆≈利用正弦定理可解出089.34-=α2.2.2一小圆柱体沿抛物线轨道运动,抛物线轨道为200/x y 2=(长度mm )。
第一次观察到圆柱体在x=249mm 处,经过时间2ms 后圆柱体移到x=234mm 处。
力学(第二版)漆安慎习题解答第九章振动第九章一、基本知识小结⒈物体在线性回复力F = - kx ,或线性回复力矩τ= - cφ作用下的运动就是简谐振动,其动力学方程为 ,02022=+x dtx d ω(x 表示线位移或角位移);弹簧振子:ω02=k/m ,单摆:ω02=g/l ,扭摆:ω02=C/I.⒉简谐振动的运动学方程为 x = Acos(ω0t+α);圆频率、频率、周期是由振动系统本身决定的,ω0=2π/T=2πv ;振幅A 和初相α由初始条件决定。
⒊在简谐振动中,动能和势能互相转换,总机械能保持不变;对于弹簧振子,22021221A m kA E E p k ω==+。
⒌阻尼振动的动力学方程为 022022=++x dt dx dt x d ωβ。
其运动学方程分三种情况:⑴在弱阻尼状态(β<ω0),振动的方向变化有周期性,220'),'cos(βωωαωβ-=+=-t Ae x t ,对数减缩 = βT’.⑵在过阻尼状态(β>ω0),无周期性,振子单调、缓慢地回到平衡位置。
⑶临界阻尼状态(β=ω0),无周期性,振子单调、迅速地回到平衡位置⒍受迫振动动力学方程 t f x dt dx dt x d ωωβcos202022=++; 其稳定解为 )cos(0ϕω+=t A x ,ω是驱动力的频率,A 0和φ也不是由初始条件决定,222220004)(/ωβωω+-=f A 2202ωωβωϕ--=tg 当2202βωω-=时,发生位移共振。
二、思考题解答9.1 什么叫做简谐振动?如某物理量x 的变化规律满足cos()x A pt q =+,A ,p ,q ,均为常数,能否说作简谐振动?答:质点在线性回复力作用下围绕平衡位置的运动叫做简谐振动。
如果质点运动的动力学方程式可以归结为 22020d x xdt的形式,其中0决定于振动系统本身的性质,则质点做简谐振动9.2 如果单摆的摆角很大,以致不能认为sin θθ=,为什么它的摆动不是简谐振动? 答:因为当单摆的摆角很大不能认为sin θθ=时,单摆的动力学方程不能化为简谐振动的动力学,所以它的摆动不是简谐振动。
力学1.求下列函数的导数⑴10432+-=x x y ⑵100cos 8sin 7/1-++=x x x y⑶)/()(bx a b ax y ++= ⑷21sin x y += ⑸xey sin = ⑹x ey x100+=-xx x e e y xe y x x x x x x y bx a b a y x x x x y x y ----=+-==++=++=+-=-+-=-=100100)1('cos '1/1cos 2·)1(·)1cos(')/()('sin 8cos 7)2/(1'46'sin 222/12212/12222⑹⑸⑷⑶⑵解:⑴2.已知某地段地形的海拔高度h 因水平坐标x 而变,h=100-0.0001x 2(1-0.005x 2),度量x 和h 的单位为米。
问何处的高度将取极大值和极小值,在这些地方的高度为多少?解:先求出h(x)对x 的一阶导数和二阶导数:42643643647242102106)102102(102102)1051010(22--------⨯-⨯=⨯-⨯=⨯-⨯=⨯+-=x x x x x x x dxd dx h d dxd dxdh令dh/dx=0,解得在x=0,10,-10处可能有极值。
∵d 2h/dx 2|x=0<0,∴x=0是极大值点,h(0)=100;∵d 2h/dx 2|x=10>0,∴x=10是极小值点,h(10)=99.0005米;显然,x=-10亦是极小值点,h(-10)=h(10).3.求下列不定积分⎰⎰++-dx x dxx x x )2()13(23⑵⑴⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰-+-++--+dxxdxdx xe xdx x dxe dxb ax dx dx x x dx e xx x b ax dx x x x xx x x ln 222113)12(cos )11(cos sin )sin()cos (sin )2(222⑽⑼⑻⑺⑹⑸⑷⑶ 解:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+==++=+=+-=--=+==++=++=+-=--=++-=++=++-=-==+--=-=-+++=-+=-+++=+=+++-=+-=+-----+---++-++-cx x xd dx cx x dx x xdx ce x d e dx xec x x xd xdx x cb ax b ax d b axc ex d e dx e cb ax b ax d b ax dx b axc arctgx x dx dx dx cx x xdx xdx dx x x ce x dx x dx e dx e c x dx x dx dx x cx x x dx xdx dx x dx x x x x x x x aabax dxxx x aax dxx x x x xxx x dxx xx xx x 221ln 4121212212213312222/112212212111111122/3133312ln 22x 222344133)(ln )(ln ln )12(2sin )2cos 1(cos )11()(sin )(sin sin cos sin )()()2()cos()()sin()sin(sin cos cos sin )cos (sin 2ln 323)2(2)2(3)13(22222222⑽⑼⑻⑺⑹⑸⑷⑶⑵⑴4. 求下列定积分πππππππππ412832/02/0212/021011143214/6/4/6/21214/6/221211112211ln 132/12/12/12/111551105514143532421213221212/1212/021114/6/2111ln 12/12/111421)2cos 1(3)sin 3(454/||2sin )2(2cos 2cos 2ln |)ln ()(5.1|)ln 1()ln 1()ln 1(60|arcsin )1(|)1()1()1()1(||)1)sin 3(2cos )()1()1222322+=-+=+︒===-===+-=+=+=+=++=︒===-=-=--=--=-=-=-++--⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰++---++--dx x xdx dx x x arctgx dx x x xd xdx e e x e dx e x x d x dx x e e e d e dx e e x x dx dx xdx x dxx x dx xdx dx e dx dx e e dx x x x xx eeexxxdx x x x xxx xxex xxdx xx πππππππ⑻⑺⑹⑸⑷⑶⑵(解:⑴⑻⑺⑹⑸⑷⑶⑵(⑴示这些定积分。
第二章 质点运动学(习题)2.1.1质点的运动学方程为j ˆ)1t 4(i ˆ)t 32(r ).2(,j ˆ5i ˆ)t 23(r ).1(-+-=++= 求质点轨迹并用图表示。
解,①.,5y ,t 23x =+=轨迹方程为y=5②⎩⎨⎧-=-=1t 4y t 32x 消去时间参量t 得:05x 4y 3=-+2.1.2质点运动学方程为k ˆ2j ˆe i ˆe r t 2t 2++=- ,(1). 求质点的轨迹;(2).求自t=-1至t=1质点的位移。
解,①⎪⎩⎪⎨⎧===-2z e y ex t 2t2消去t 得轨迹:xy=1,z=2②k ˆ2j ˆe i ˆe r 221++=-- ,k ˆ2j ˆe i ˆe r 221++=-+ ,2.1.3质点运动学方程为j t i t r ˆ)32(ˆ42++= ,(1). 求质点的轨迹;(2).求自t=0至t=1质点的位移。
解,①.,3t 2y ,t 4x 2+==消去t 得轨迹方程 ②j ˆ2i ˆ4r r r ,j ˆ5i ˆ4r ,j ˆ3r 0110+=-=∆+== 2.2.1雷达站于某瞬时测得飞机位置为0117.33,m 4100R =θ=,0.75s 后测得21022R ,R ,3.29,m 4240R =θ=均在铅直平面内。
求飞机瞬时速率的近似值和飞行方向(α角)。
解,)cos(R R 2R R R 21212221θ-θ-+=∆ 代入数值得:利用正弦定理可解出089.34-=α2.2.2一小圆柱体沿抛物线轨道运动,抛物线轨道为200/x y 2=(长度mm )。
第一次观察到圆柱体在x=249mm 处,经过时间2ms 后圆柱体移到x=234mm 处。
求圆柱体瞬时速度的近似值。
解,2.2.3一人在北京音乐厅内听音乐,离演奏者17m 。
另一人在广州听同一演奏的转播,广州离北京2320km ,收听者离收音机2m ,问谁先听到声音?声速为340m/s,电磁波传播的速度为s /m 100.38⨯。
第三章基本知识小结⒈牛顿运动定律适用于惯性系、质点,牛顿第二定律是核心。
矢量式:22dtr d m dt v d m a m F=== 分量式:(弧坐标)(直角坐标)ρτττ2,,,vm ma F dt dv mma F ma F ma F ma F n n z z y y x x =======⒉动量定理适用于惯性系、质点、质点系。
导数形式:dt pd F =微分形式:p d dt F=积分形式:p dt F I∆==⎰)((注意分量式的运用)⒊动量守恒定律适用于惯性系、质点、质点系。
若作用于质点或质点系的外力的矢量和始终为零,则质点或质点系的动量保持不变。
即∑==恒矢量。
则,若外p F0 (注意分量式的运用)⒋在非惯性系中,考虑相应的惯性力,也可应用以上规律解题。
在直线加速参考系中:0*a m f -=在转动参考系中:ωω⨯=='2,*2*mv f r m f k c ⒌质心和质心运动定理 ⑴∑∑∑===i i c ii c i i c a m a m v m v m r m r m⑵∑=c a m F(注意分量式的运用)3.4.1 质量为2kg 的质点的运动学方程为j t t i t r ˆ)133(ˆ)16(22+++-= (单位:米,秒), 求证质点受恒力而运动,并求力的方向大小。
解:∵j i dt r d a ˆ6ˆ12/22+== , j ia m F ˆ12ˆ24+== 为一与时间无关的恒矢量,∴质点受恒力而运动。
F=(242+122)1/2=125N ,力与x 轴之间夹角为:'34265.0/︒===arctg F arctgF x y α3.4.2 质量为m 的质点在o-xy 平面内运动,质点的运动学方程为:j t b it a r ˆsin ˆcos ωω+= ,a,b,ω为正常数,证明作用于质点的合力总指向原点。
证明:∵r j t b it a dt r d a2222)ˆsin ˆcos (/ωωωω-=+-== r m a m F2ω-==, ∴作用于质点的合力总指向原点。
第五章基本知识小结⒈力矩力对点的力矩 F r o⨯=τ力对轴的力矩 ⊥⊥⨯=F r k zˆτ⒉角动量质点对点的角动量 p r L o ⨯= 质点对轴的角动量 ⊥⊥⨯=p r k L zˆ⒊角动量定理适用于惯性系、质点、质点系⑴质点或质点系对某点的角动量对时间的变化率等于作用于质点或质点系的外力对该点的力矩之和∑=dt L d 0 外τ⑵质点或质点系对某轴的角动量对时间的变化率等于作用于质点或质点系的外力对该轴的力矩之和∑=dt dL zz τ⒋角动量守恒定律适用于惯性系、质点、质点系⑴若作用于质点或质点系的外力对某点的力矩之和始终为零,则质点或质点系对该点的角动量保持不变⑵若作用于质点或质点系的外力对某轴的力矩之和始终为零,则质点或质点系对该轴的角动量保持不变⒌对质心参考系可直接应用角动量定理及其守恒定律,而不必考虑惯性力矩。
5.1.1 我国发射的第一颗人造地球卫星近地点高度d 近=439km,远地点高度d 远=2384km,地球半径R 地=6370km,求卫星在近地点和远地点的速度之比。
解:卫星在绕地球转动过程中,只受地球引力(有心力)的作用,力心即为地心,引力对地心的力矩为零,所以卫星对地心的角动量守恒m 月v 近(d 近+R 地)=m 月v 远(d 远+R 地) v 近/v 远=(d 远+R 地)/(d 近+R 地)=(2384+6370)/(439+6370)≈1.295.1.2 一个质量为m 的质点沿着j t b it a r ˆsin ˆcos ωω+=的空间曲线运动,其中a 、b 及ω皆为常数。
求此质点所受的对原点的力矩。
解:)ˆsin ˆcos (ˆsin ˆcos /ˆcos ˆsin /222222=⨯-=⨯=-==-=+-=--==+-==r r m F r r m a m F r j t b i t a jt b i t a dt v d a j t b i t a dt r d v ωτωωωωωωωωωωωωω5.1.3 一个具有单位质量的质点在力场j t i t t F ˆ)612(ˆ)43(2-+-=中运动,其中t 是时间。
第三章基本知识小结⒈牛顿运动定律适用于惯性系、质点,牛顿第二定律是核心。
矢量式:22dtr d m dt v d m a m F=== 分量式:(弧坐标)(直角坐标)ρτττ2,,,vm ma F dt dv mma F ma F ma F ma F n n z z y y x x =======⒉动量定理适用于惯性系、质点、质点系。
导数形式:dt pd F =微分形式:p d dt F=积分形式:p dt F I∆==⎰)((注意分量式的运用)⒊动量守恒定律适用于惯性系、质点、质点系。
若作用于质点或质点系的外力的矢量和始终为零,则质点或质点系的动量保持不变。
即∑==恒矢量。
则,若外p F0 (注意分量式的运用)⒋在非惯性系中,考虑相应的惯性力,也可应用以上规律解题。
在直线加速参考系中:0*a m f -=在转动参考系中:ωω⨯=='2,*2*mv f r m f k c ⒌质心和质心运动定理 ⑴∑∑∑===i i c ii c i i c a m a m v m v m r m r m⑵∑=c a m F(注意分量式的运用)3.4.1 质量为2kg 的质点的运动学方程为j t t i t r ˆ)133(ˆ)16(22+++-= (单位:米,秒), 求证质点受恒力而运动,并求力的方向大小。
解:∵j i dt r d a ˆ6ˆ12/22+== , j ia m F ˆ12ˆ24+== 为一与时间无关的恒矢量,∴质点受恒力而运动。
F=(242+122)1/2=125N ,力与x 轴之间夹角为:'34265.0/︒===arctg F arctgF x y α3.4.2 质量为m 的质点在o-xy 平面内运动,质点的运动学方程为:j t b it a r ˆsin ˆcos ωω+= ,a,b,ω为正常数,证明作用于质点的合力总指向原点。
证明:∵r j t b it a dt r d a2222)ˆsin ˆcos (/ωωωω-=+-== r m a m F2ω-==, ∴作用于质点的合力总指向原点。
3.4.3 在脱粒机中往往装有振动鱼鳞筛,一方面由筛孔漏出谷粒,一方面逐出秸杆,筛面微微倾斜,是为了从较低的一边将秸杆逐出,因角度很小,可近似看作水平,筛面与谷粒发生相对运动才可能将谷粒筛出,若谷粒与筛面静摩擦系数为0.4,问筛沿水平方向的加速度至少多大才能使谷物和筛面发生相对运动?解:以地为参考系,设谷物的质量为m ,所受到的最大静摩擦力为 mg f oμ=,谷物能获得的最大加速度为2/92.38.94.0/s m g m f a o =⨯===μ ∴筛面水平方向的加速度至少等于3.92米/秒2,才能使谷物与筛面发生相对运动。
3.4.3 题图 3.4.4题图3.4.4 桌面上叠放着两块木板,质量各为m 1 ,m 2,如图所示,m 2和桌面间的摩擦系数为μ2,m 1和m 2间的摩擦系数为μ1,问沿水平方向用多大的力才能把下面的木板抽出来。
解:以地为参考系,隔离m 1、m 2,其受力与运动情况如图所示,其中,N 1'=N 1,f 1'=f 1=μ1N 1,f 2=μ2N 2,选图示坐标系o-xy ,对m 1,m 2分别应用牛顿二定律,有0212222211111111=--=--=-=g m N N a m N N F g m N a m N μμμ 解方程组,得 ()2221211211/m g m g m g m F a ga μμμμ---==要把木板从下面抽出来,必须满足12a a >,即gm g m g m g m F 12221211μμμμ>---m 1gf 1N 1 a 1 a 2 x y()()g m m F 2121++>∴μμ3.4.5 质量为m 2的斜面可在光滑的水平面上滑动,斜面倾角为α,质量为m 1的运动员与斜面之间亦无摩擦,求运动员相对于斜面的加速度及其对斜面的压力。
解:以相对地面向右作加速直线运动的斜面为参考系(非惯性系,设斜面相对地的加速度为a 2),取m 1为研究对象,其受力及运动情况如左图所示,其中N 1为斜面对人的支撑力,f *为惯性力,a'即人对斜面的加速度,方向显然沿斜面向下,选如图所示的坐标系o'-x'y',应用牛顿第二定律建立方程:⎩⎨⎧=+=+-)2('cos sin )1(0sin cos 12112111a m a m g m a m g m N αααα再以地为参考系,取m 2为研究对象,其受力及运动情况如右图所示,选图示坐标o-xy,应用牛顿第二定律建立方程:⎩⎨⎧=--=)4(0cos )3(sin 122221 ααN g m N a m N (1)、(2)、(3)、(4)联立,即可求得:g m m m m a gm m m m N αααα21221212211sin sin )('sin cos ++=+=3.4.6在图示的装置中两物体的质量各为m 1,m 2,物体之间及物体与桌面间的摩擦系数都为μ,求在力F 的作用下两物体的加速度及绳内张力,不计滑轮和绳的质量及轴承摩擦,绳不可伸长。
解:以地为参考系,隔离m 1,m 2,受力及运动情况如图示,其中:f 1=μN 1=μm 1g ,f 2=μN 2=μ(N 1+m 2g)=μ(m 1+m 2)g. 在水平方向对两个质点应用牛二定律:②①a m T g m m g m F a m g m T 221111)(=-+--=-μμμ①+②可求得:g m m gm F a μμ-+-=2112将a 代入①中,可求得:2111)2(m m g m F m T +-=μ3.4.7在图示的装置中,物体A,B,C 的质量各为m 1,m 2,m 3,且两两不相等. 若物体A,B 与桌面间的摩擦系数为μ,求三个物体的加速度及绳内的张力,不计绳和滑轮质量,不计轴承摩擦,绳不可伸长。
解:以地为参考系,隔离A,B,C ,受力及运动情况如图示,其中:f 1=μN 1=μm 1g ,f 2=μN 2=μm 2g ,T'=2T ,由于A 的位移加B 的位移除2等于C 的位移,所以(a 1+a 2)/2=a 3.对A,B,C 分别在其加速度方向上应用牛顿第二定律:f 1 N 1 m 1g T aF N 2m 2g Ta N 1 f 1f 2T f 1 N 1 m 1ga 1 T f 2N 2m 2ga 2T' m 3g a 3 a 21 2f*=m 1a 2③②①2/)(22133222111a a m T g m a m g m T a m g m T +=-=-=-μμ①,②,③联立,可求得:gm m m m m m m m a g m m m m m m m a gm m m m m m m a ⎥⎦⎤⎢⎣⎡-++++=⎥⎦⎤⎢⎣⎡-+++=⎥⎦⎤⎢⎣⎡-+++=μμμμμμ21321321321321312213213214)()1()(4)()1(24)()1(23.4.8天平左端挂一定滑轮,一轻绳跨过定滑轮,绳的两端分别系上质量为m 1,m 2的物体(m 1≠m 2),天平右端的托盘上放有砝码. 问天平托盘和砝码共重若干,天平才能保持平衡?不计滑轮和绳的质量及轴承摩擦,绳不伸长。
解:隔离m 1,m 2及定滑轮,受力及运动情况如图示,应用牛顿第二定律:'2''2211T T a m T g m a m g m T ==-=-②① 由①②可求得:212121212,2'm m g m m T m m g m m T +=+=所以,天平右端的总重量应该等于T ,天平才能保持平衡。
3.4.11棒球质量为0.14kg ,用棒击棒球的力随时间的变化如图所示,设棒球被击前后速度增量大小为70m/s ,求力的最大值,打击时,不计重力。
解:由F —t 图可知: max03.008.0max05.008.005.005.00F F t F F t t t -=≤≤=≤≤时,当时,当[斜截式方程y=kx+b ,两点式方程 (y-y 1)/(x-x 1)=(y 2-y 1)/(x 2-x 1)]由动量定理:⎰⎰⎰-+==∆08.005.003.005.0005.008.00)08.0(max max dtt tdt Fdt v m F F可求得F max = 245N3.4.12 沿铅直向上发射玩具火箭的推力随时间变化如图所示,火箭质量为2kg ,t=0时处于静止,求火箭发射后的最大速率和最大高度(注意,推力大于重力时才启动)。
解:根据推力F-t 图像,可知F=4.9t(t ≤20),令F=mg ,即4.9t=2×9.8,t=4s因此,火箭发射可分为三个阶段:t=0—4s为第一阶段,由于推力小于重力,火箭静止,v=0,y=0;t=4—20s 为第二阶段,火箭作变加速直线运动,设t=20s 时,y = y 1,v = v max ;t ≥20s 为第三阶段,火箭只受重力作用,作竖直上抛运动,设达最大高度时的坐标 y=y 2.第二阶段的动力学方程为:F- mg = m dv/dt()()my dttdt dt t dy dtt t vdt dy sm v v t t t v t dt tdt dv dttdt gdt dt m F dv ytt v 16729.448.94/9.4)9.448.94/9.4(/314)20(209.448.94/9.4208.92/9.48.92/9.4/1204204204202max 24401=⨯+-=∴⨯+-====≤⨯+-=≤-=-=-=⎰⎰⎰⎰⎰⎰⎰ 第三阶段运动学方程T'm 1ga T'm 2g a F)2()20(9.4)20(314),1()20(8.931421---=---=t t y y t v令v=0,由(1)求得达最大高度y 2时所用时间(t-20)=32,代入(2)中,得y 2-y 1=5030 y 2=y max =5030+1672=6702(m)3.4.13抛物线形弯管的表面光滑,沿铅直轴以匀角速率转动,抛物线方程为y=a x 2,a 为正常数,小环套于弯管上。
⑴弯管角速度多大,小环可在管上任一位置相对弯管静止?⑵若为圆形光滑弯管,情况如何?解:以固定底座为参考系,设弯管的角速度为ω,小环受力及运动情况如图示:α为小环处切线与x 轴夹角,压力N 与切线垂直,加速度大小a=ω2x ,方向垂直指向y 轴。
在图示坐标下应用牛顿二定律的分量式:②①mg N N x m N N ==-︒==-︒ααωααcos )90sin(sin )90cos(2①/②得:tg α=ω2x/g ③;由数学知识:tg α=dy/dx=2a x ; 所以,ag ag g x ax 2,2,/222===ωωω若弯管为半径为R 的圆形,圆方程为:x 2+ (R-y)2= R 2,即222221/2221/2221/212(),(),()/()(2)/()R y R x R y R x y R R x tg dy dx R x x x x R y α--=--=-=--==--⋅-==-代入③中,得:2/()/,x R y x g ωω-==3.4.14北京设有供实验用的高速列车环形铁路,回转半径为9km ,将要建设的京沪列车时速250km/h ,若在环路上作此项列车实验且欲使铁轨不受侧压力,外轨应比内轨高多少?设轨距1.435m.解:以地为参考系,把车厢视为质点,受力及运动情况如图示:车厢速度v=250km/h=69.4m/s ,加速度a =v 2/R ;设轨矩为l ,外轨比内轨高h, 有l h l h l /sin ,/cos 22=-=αα选图示坐标o-xy ,对车箱应用牛顿第二定律:②①,R mv l Nh N mg l h l N N //sin /cos 222===-=αα①/②得:222//v gR h h l =-,两边平方并整理,可求得h :cmm R g v l v h 8.70782.090008.94.69/435.14.69/22422242==⨯+⨯=+=3.4.15汽车质量为1.2×10kN ,在半径为100m 的水平圆形弯道上行驶,公路内外侧倾斜15°,沿公路取自然坐标,汽车运动学方程为s=0.5t 3+20t (m),自t=5s 开始匀速运动,问公路面作用于汽车与前进方向垂直的摩擦力是由公路内侧指向外侧还是由外侧直向内侧?解:以地为参考系,把汽车视为质点,受力及运动情况如图示:v=ds/dt=1.5t 2+20,v| t=5 =1.5×52+20=57.5m/s ,a n =v 2/R=57.52/100=33 设摩擦力f 方向指向外侧,取图示坐标o-xy ,应用牛顿第二定律:②①ααααααααcos sin cos sin sin cos sin cos f ma N ma f N f mg N mg f N n n +==--==+②/①得:)sin /()cos (αααf mg f ma tg n -+=xααααααααtg a gtg m f f ma tg f mgtg n n sin cos )(,cos sin +-=+=-0,043.3033158.9<∴<-=-︒=-f tg a gtg n α ,说明摩擦力方向与我们事先假设方向相反,指向内侧。