最新《力学》漆安慎(第二版)答案08章
- 格式:doc
- 大小:172.00 KB
- 文档页数:7
2.1.1质点运动学方程为:j i t r ˆ5ˆ)23(++=ϖ⑴j t i t r ˆ)14(ˆ)32(-+-=ρ⑵,求质点轨迹并用图表示.解:⑴,5,23=+=y t x 轨迹方程为5=y 的直线.⑵14,32-=-=t y t x ,消去参数t 得轨迹方程0534=-+y x2.1.2 质点运动学方程为k j e ie r t t ˆ2ˆˆ22++=-ϖ.⑴求质点轨迹;⑵求自t= -1到t=1质点的位移。
解:⑴由运动学方程可知:1,2,,22====-xy z e y ex t t,所以,质点是在z=2平面内的第一像限的一条双曲线上运动。
⑵j e e i e e r r r ˆ)(ˆ)()1()1(2222---+-=--=∆ϖϖϖ j i ˆ2537.7ˆ2537.7+-=。
所以,位移大小:︒==∆∆=︒==∆∆=︒=-=∆∆==+-=∆+∆=∆900arccos ||arccos z 45)22arccos(||arccos y 135)22arccos(||arccos x ,22537.72537.7)2537.7()()(||2222r zr y r x y x r ϖϖϖϖγβα轴夹角与轴夹角与轴夹角与2.1.3质点运动学方程为j t it r ˆ)32(ˆ42++=ϖ. ⑴求质点轨迹;⑵求质点自t=0至t=1的位移. 解:⑴32,42+==t y t x ,消去参数t 得:2)3(-=y x⑵j i j j ir r r ˆ2ˆ4ˆ3ˆ5ˆ4)0()1(+=-+=-=∆ρρρ2.2.1雷达站于某瞬时测得飞机位置为︒==7.33,410011θm R 0.75s 后测得︒==3.29,424022θm R ,R 1,R 2均在铅直面内,求飞机瞬时速率的近似值和飞行方向(α角)解:tRt R R v v ∆∆=∆-=≈ϖϖϖϖϖ12,在图示的矢量三角形中,应用余弦定理,可求得:xx5/1mR R R R R 58.3494.4cos 42004100242404100)cos(22221212221=︒⨯⨯-+=--+=∆θθ s m t R v v /8.46575.0/58.349/≈=∆∆=≈据正弦定理:)180sin(/)sin(/1221αθθθ--︒=-∆R R︒=∴︒≈--︒≈︒=∆-=--︒89.34,41.111180,931.058.349/4.4sin 4240/)sin()180sin(12121ααθθθαθR R2.2.2 一圆柱体沿抛物线轨道运动,抛物线轨道为y=x 2/200(长度:毫米)。
力学(第二版)漆安慎习题解答第八章弹性体的应力和应变第八章一、基本知识小结1•弹性体力学研究力与形变的规律;弹性体的基本形变有拉伸压缩形变和剪切形变,弯曲形变是由程度不同的拉伸压缩形变组成,扭转形变是由程度不同的剪切形变组成。
2•应力就是单位面积上作用的内力;如果内力与面元垂直就叫正应力,用c表示; 如果内力方向在面元内,就叫切应力,用T表示。
3•应变就是相对形变;在拉压形变中的应变就是线应变,如果10表示原长,A l表示绝对伸长或绝对压缩,则线应变c =A l/l o;在剪切形变中的应变就是切应变,用切变角书表示。
4.力与形变的基本规律是胡克定律,即应力与应变成正比。
在拉压形变中表示为c = Y c Y是由材料性质决定的杨氏模量,在剪切形变中表示为T = N书,N 是由材料性质决定的切变模量。
5.发生形变的弹性体具有形变势能:拉压形变的形变势能密度E p0弓Y 2,剪切形变的形变势能密度E p01N 26•梁弯曲的曲率与力偶矩的关系12Ybh37•杆的扭转角与力偶矩的关系NR421、思考题解答8.1作用于物体内某无穷小面元上的应力是面元两侧的相互作用力,其单位为N.这句话对不对?答:不对,应力为作用于该无穷小面元两侧单位面积上的相互作用内力,其单位为或。
其面元法向分量称正应力,切向分量称切应力。
8.2(8.1.1)式关于应力的定义当弹性体作加速运动时是否仍然适用?答:适用,(8.1.1)式中的是面元两侧的相互作用内力,它与作用于物体上的外力和物体的运动状态有关。
8.3牛顿第二定律指出:物体所受合力不为零,则必有加速度。
是否合力不为零,必产生变形,你能否举出一个合力不为零但无形变的例子?答:不一定,物体是否发生形变应看物体内应力是否为零,应力为零,则不形变。
自由落体运动,物体受重力作用,但物体内部应力为零,则不发生形变。
8. 4胡克定律是否可叙述为:当物体受到外力而发生拉伸(压缩)形变时,外力与物体的伸长(压缩)成正比,对于一定的材料,比例系数是常数,称作该材料的杨氏模量?答:不对。
第二章基本知识小结⒈基本概念 22)(dt r d dt v d a dt rd v t r r====)()()(t a t v t r⇔⇔(向右箭头表示求导运算,向左箭头表示积分运算,积分运算需初始条件:000,,v v r r t t===)⒉直角坐标系 ,,ˆˆˆ222z y x r k z j y ix r ++=++= r与x,y,z轴夹角的余弦分别为 r z r y r x /,/,/.v v v v v k v j v i v v zy x z y x ,,ˆˆˆ222++=++=与x,y,z 轴夹角的余弦分别为 v v v v v v z y x /,/,/.a a a a a k a j a i a a zy x z y x ,,ˆˆˆ222++=++=与x,y,z 轴夹角的余弦分别为 ./,/,/a a a a a a z y x222222,,,,dtz d dt dv a dt y d dt dv a dt x d dt dv a dtdzv dt dy v dt dx v z z yy x x z y x =========),,(),,(),,(z y x z y x a a a v v v z y x ⇔⇔⒊自然坐标系 ||,,ˆ);(ττττv v dtds v v v s r r ====ρτττττ22222,,,ˆˆv a dts d dt dv a a a a n a a a n n n ===+=+= )()()(t a t v t s ττ⇔⇔⒋极坐标系 22,ˆˆ,ˆθθθv v v v r v v r r r r r +=+==dtd r v dt dr v r θθ==, ⒌相对运动 对于两个相对平动的参考系',0't t r r r =+=(时空变换)0'v v v+= (速度变换) 0'a a a+= (加速度变换)若两个参考系相对做匀速直线运动,则为伽利略变换,在图示情况下,则有: zz y y x x z z y y x x a a a a a a v v v v V v v tt z z y y Vt x x =====-====-=',','',','',',','y y'Vo x o' x' z z'2.1.1质点运动学方程为:j i t r ˆ5ˆ)23(++=⑴ j t i t r ˆ)14(ˆ)32(-+-= ⑵,求质点轨迹并用图表示.解:⑴,5,23=+=y t x 轨迹方程为5=y 的直线.⑵14,32-=-=t y t x ,消去参数t 得轨迹方程0534=-+y x2.1.2 质点运动学方程为kj e i e r t t ˆ2ˆˆ22++=-.⑴求质点轨迹;⑵求自t= -1到t=1质点的位移。
第八章一、基本知识小结⒈弹性体力学研究力与形变的规律;弹性体的基本形变有拉伸压缩形变和剪切形变,弯曲形变是由程度不同的拉伸压缩形变组成,扭转形变是由程度不同的剪切形变组成。
⒉应力就是单位面积上作用的内力;如果内力与面元垂直就叫正应力,用σ表示;如果内力方向在面元内,就叫切应力,用τ表示。
⒊应变就是相对形变;在拉压形变中的应变就是线应变,如果l 0表示原长,Δl 表示绝对伸长或绝对压缩,则线应变ε= Δl /l 0;在剪切形变中的应变就是切应变,用切变角ψ表示。
⒋力与形变的基本规律是胡克定律,即应力与应变成正比。
在拉压形变中表示为 σ= Y ε,Y 是由材料性质决定的杨氏模量,在剪切形变中表示为 τ= N ψ,N 是由材料性质决定的切变模量。
⒌发生形变的弹性体具有形变势能: 拉压形变的形变势能密度 2210εY E p =, 剪切形变的形变势能密度 2210ψN E p =。
⒍梁弯曲的曲率与力偶矩的关系 312Ybh k τ=⒎杆的扭转角与力偶矩的关系 lNR C C 2,4πϕτ==二、思考题解答8.1作用于物体内某无穷小面元上的应力是面元两侧的相互作用力,其单位为N.这句话对不对?答:不对,应力为作用于该无穷小面元两侧单位面积上的相互作用内力,其单位为 或 。
其面元法向分量称正应力,切向分量 称切应力。
8.2(8.1.1)式关于应力的定义当弹性体作加速运动时是否仍然适用?答:适用,(8.1.1)式中的 是面元两侧的相互作用内力,它与作用于物体上的外力和物体的运动状态有关。
8.3牛顿第二定律指出:物体所受合力不为零,则必有加速度。
是否合力不为零,必产生变形,你能否举出一个合力不为零但无形变的例子?答:不一定,物体是否发生形变应看物体内应力是否为零,应力为零,则不形变。
自由落体运动,物体受重力作用,但物体内部应力为零,则不发生形变。
8.4胡克定律是否可叙述为:当物体受到外力而发生拉伸(压缩)形变时,外力与物体的伸长(压缩)成正比,对于一定的材料,比例系数是常数,称作该材料的杨氏模量?答:不对。
第二章基本知识小结⒈基本概念 22)(dt r d dt v d a dt rd v t r r====(向右箭头表示求导运算,向左箭头表示积分运算,积分运算需初始条件:000,,v v r r t t===)⒉直角坐标系 ,,ˆˆˆ222z y x r kz j y i x r ++=++= r 与x,y,z 轴夹角的余弦分别为 r z r y r x /,/,/.v v v v v k v j v i v v zy x z y x ,,ˆˆˆ222++=++=与x,y,z 轴夹角的余弦分别为 v v v v v v z y x /,/,/.a a a a a k a j a i a a zy x z y x ,,ˆˆˆ222++=++=与x,y,z 轴夹角的余弦分别为 ./,/,/a a a a a a z y x⒊自然坐标系||,,ˆ);(ττττv v dt ds v v v s r r ====⒋极坐标系 22,ˆˆ,ˆθθθv v v v r v v r r r r r +=+== ⒌相对运动 对于两个相对平动的参考系',0't t r r r =+=(时空变换)0'v v v+= (速度变换) 0'a a a+= (加速度变换)若两个参考系相对做匀速直线运动,则为伽利略变换,在图示情况下,则有:2.1.1质点运动学方程为:j i t r ˆ5ˆ)23(++=⑴ jt i t r ˆ)14(ˆ)32(-+-= ⑵,求质点轨迹并用图表示. 解:⑴,5,23=+=y t x 轨迹方程为5=y 的直线.⑵14,32-=-=t y t x ,消去参数t 得轨迹方程0534=-+y xy y'V o x o'x'z z' xx2.1.2 质点运动学方程为k j e i e rt t ˆ2ˆˆ22++=- .⑴求质点轨迹;⑵求自t= -1到t=1质点的位移。
2023年力学第二版(漆安慎著)课后答案下载2023年力学第二版(漆安慎著)课后答案下载力学(mechanics) 研究物质机械运动规律的科学。
自然界物质有多种层次,从宇观的宇宙体系,宏观的天体和常规物体,细观的颗拉、纤维、晶体,到微观的分子、原子、基本粒子。
通常理解的力学以研究天然的或人工的宏观对象为主。
但由于学科的互相渗透,有时也涉及宇观或细观甚至微观各层次中的对象以及有关的规律。
机械运动亦即力学运动,是物质在时间、空间中的位置变化,包括移动、转动、流动、变形、振动、波动、扩散等,而平衡或静止则是其中的一种特殊情况。
机械运动是物质运动最基本的形式。
物质运动的其他形式还有热运动、电磁运动、原子及其内部的运动和化学运动等。
机械运动常与其他运动形式共同存在。
只是研究力学问题时突出地考虑机械运动这种形式罢了;如果其他运动形式对机械运动有较大影响,或者需要考虑它们之间的相互作用,便会在力学同其他学科之间形成交叉学科或边缘学科。
力是物质间的一种相互作用,机械运动状态的变化是由这种相互作用引起的。
静止和运动状态不变,都意味着各作用力在某种意义上的平衡。
力学,可以说是力和(机械)运动的`科学。
力学是一门独立的基础学科,是有关力、运动和介质(固体、液体、气体和等离子体),宏、细、微观力学性质的学科,研究以机械运动为主,及其同物理、化学、生物运动耦合的现象。
力学是一门基础学科,同时又是一门技术学科。
它研究能量和力以及它们与固体、液体及气体的平衡、变形或运动的关系。
力学可区分为静力学、运动学和动力学三部分,静力学研究力的平衡或物体的静止问题;运动学只考虑物体怎样运动,不讨论它与所受力的关系;动力学讨论物体运动和所受力的关系。
现代的力学实验设备,诸如大型的风洞、水洞,它们的建立和使用本身就是一个综合性的科学技术项目,需要多工种、多学科的协作。
力学第二版(漆安慎著):简介点击此处下载力学第二版(漆安慎著)课后答案力学第二版(漆安慎著):研究方法力学研究方法遵循认识论的基本法则:实践——理论——实践。
目录第01章物理学、力学、数学…………………01第02章质点运动学……………………………05第03章动量定理及其守恒定律………………15第04章动能和势能……………………………28第05章角动量及其规律………………………38第06章万有引力定律…………………………42第07章刚体力学………………………………45第08章弹性体的应力和应变…………………56第09章振动……………………………………60第10章波动……………………………………68第11章流体力学………………………………75祝风编写1.求下列函数的导数⑴⑵10432+−=x x y 100cos 8sin 7/1−++=x x x y ⑶⑷)/()(bx a b ax y ++=21sin xy +=⑸⑹xe y sin =xe y x 100+=−xxx ee y xe y x x x xx x y bx a b a y x x x x y x y −−−−=+−==++=++=+−=−+−=−=100100)1('cos '1/1cos 2·)1(·)1cos(')/()('sin 8cos 7)2/(1'46'sin 222/12212/12222⑹⑸⑷⑶⑵解:⑴2.已知某地段地形的海拔高度h 因水平坐标x 而变,h=100-0.0001x 2(1-0.005x 2),度量x 和h 的单位为米。
问何处的高度将取极大值和极小值,在这些地方的高度为多少?解:先求出h(x)对x 的一阶导数和二阶导数:42643643647242102106)102102(102102)1051010(22−−−−−−−−×−×=×−×=×−×=×+−=x x x x x x x dxd dxh d dxddxdh 令dh/dx=0,解得在x=0,10,-10处可能有极值。
第二章 质点运动学(习题)2.1.1质点的运动学方程为j ˆ)1t 4(i ˆ)t 32(r ).2(,j ˆ5i ˆ)t 23(r ).1(-+-=++= 求质点轨迹并用图表示。
解,①.,5y ,t 23x =+=轨迹方程为y=5②⎩⎨⎧-=-=1t 4y t 32x 消去时间参量t 得:05x 4y 3=-+2.1.2质点运动学方程为k ˆ2j ˆe i ˆe r t 2t 2++=- ,(1). 求质点的轨迹;(2).求自t=-1至t=1质点的位移。
解,①⎪⎩⎪⎨⎧===-2z e y ex t 2t2消去t 得轨迹:xy=1,z=2②k ˆ2j ˆe i ˆe r 221++=-- ,k ˆ2j ˆe i ˆe r 221++=-+ ,2.1.3质点运动学方程为j t i t r ˆ)32(ˆ42++= ,(1). 求质点的轨迹;(2).求自t=0至t=1质点的位移。
解,①.,3t 2y ,t 4x 2+==消去t 得轨迹方程 ②j ˆ2i ˆ4r r r ,j ˆ5i ˆ4r ,j ˆ3r 0110+=-=∆+== 2.2.1雷达站于某瞬时测得飞机位置为0117.33,m 4100R =θ=,0.75s 后测得21022R ,R ,3.29,m 4240R =θ=均在铅直平面内。
求飞机瞬时速率的近似值和飞行方向(α角)。
解,)cos(R R 2R R R 21212221θ-θ-+=∆ 代入数值得:利用正弦定理可解出089.34-=α2.2.2一小圆柱体沿抛物线轨道运动,抛物线轨道为200/x y 2=(长度mm )。
第一次观察到圆柱体在x=249mm 处,经过时间2ms 后圆柱体移到x=234mm 处。
求圆柱体瞬时速度的近似值。
解,2.2.3一人在北京音乐厅内听音乐,离演奏者17m 。
另一人在广州听同一演奏的转播,广州离北京2320km ,收听者离收音机2m ,问谁先听到声音?声速为340m/s,电磁波传播的速度为s /m 100.38⨯。
面向21世纪课程教材-普通物理学教程-力学-第二版-漆安慎 杜婵英 思考题习题解析第一章 物理学和力学思 考 题1.1解答,基本量:长度、质量、时间、电流、温度、物质的量、光强度。
基本单位:米(m )、千克(kg )、时间(s )、安培(A )、温度(k )、摩尔(mol )、坎德拉(cd )。
力学中的基本量:长度、质量、时间。
力学中的基本单位:米(m )、千克(kg )、时间(s )。
1.2解答,(1)由量纲1dim -=LT v ,2 dim -=LT a ,h km h km h km s m /6.3/36001036001/10/33=⨯==-- 2223232/36006.3/360010)36001/(10/h km h km h km s m ⨯=⨯==-- 改为以h (小时)和km (公里)作为时间和长度的单位时,,36006.3216.320at t v s ⨯⨯+=(速度、加速度仍为SI 单位下的量值) 验证一下: 1.0h 3600s t ,4.0m /s a ,/0.220====s m v 利用,2120at t v s += 计算得:)(259272002592000072003600421360022m s =+=⨯⨯+⨯=利用,36006.3216.320at t v s ⨯⨯+= 计算得:)(2.25927259202.71436006.321126.32km s =+=⨯⨯⨯⨯+⨯⨯= (2). 仅时间单位改为h 由量纲1 dim -=LT v ,2 dim -=LT a 得h m h m h m s m /3600/360036001//=== 222222/3600/3600)36001/(/h m h m h m s m === 若仅时间单位改为h ,得:,3600213600220at t v s ⨯+=验证一下: 1.0h 3600s t ,4.0m/s a ,/0.220====s m v利用,2120at t v s +=计算得:)(259272002592000072003600421360022m s =+=⨯⨯+⨯=利用,3600213600220at t v s ⨯+=计算得:)(259272002592000072001436002112360022m s =+=⨯⨯⨯+⨯⨯= (3). 若仅0v 单位改为km/h 由量纲1 dim -=LT v ,得:sm h km h km h km s m /6.31/,/6.3)36001/(10/3===-仅0v 单位改为km/h ,因长度和时间的单位不变,将km/h 换成m/s 得:,216.3120at t v s +=验证一下: 1.0h 3600s t ,4.0m/s a ,/0.220====s m v利用,2120at t v s +=计算得:)(259272002592000072003600421360022m s =+=⨯⨯+⨯=利用,216.3120at t v s +=计算得:)(25927200259200007200360042136003600/11026.3123m s =+=⨯⨯+⨯⨯⨯=- 1.3解答,,ksv f ,22=∝sv f][][][][][[?]][][]?[][32242222222222mkgsv f s m kgms sv f s m v m s N f k s m v m s k N f ====----物理意义:体密度。
漆安慎《普通物理学教程:力学》第二版各单元课后习题思维方法分析《质点运动学》单元中的习题分析序号题型思维方法题目数对应习题题号1 已知运动学方程,求轨迹方程或位移比较法、等效法3 [2.1.1][2.1.2] [2.1.3] 2 已知初末位置和时间,求瞬时速度或瞬时速率的近似值比较法2 [2.2.1][2.2.2] 3 已知初末速度和时间,求平均加速度比较法1 [2.2.5] 4 已知质点直线运动的位移时间图像t x -图,求质点的速度图像法1 [2.3.1] 5 已知运动学方程,求速度和加速度比较法、微元法、极限法2 [2.2.6][2.3.2] 6 已知速度)(t v 或)(x v ,求加速度比较法、微元法、极限法2 [2.3.3][2.3.4] 7 已知两质点的位置关系,求两质点的加速度关系比较法、微元法、极限法1 [2.3.5] 8 坐标原点或计时起点的改变对运动学方程的影响比较法、等效法1 [2.3.6] 9 已知速度,求运动学方程或位移叠加法2 [2.4.2][2.5.3] 10 由加速度,求速度、运动学方程、位移叠加法、比较法4 [2.4.1][2.4.3][2.4.4] [2.5.1] 11 分运动与合运动问题:已知某一分运动,求另一分运动或合运动分析法、叠加法、演绎法2 [2.5.4][2.5.5] 12 相遇问题:已知两质点的加速度、初速度及开始时刻的位置关系,求何时或何地相遇叠加法、比较法3 [2.4.5][2.4.7] [2.5.2] 13 已知自然坐标系下的运动学方程(或切向速度),求切向速度(或切向加速度或合加速度)类比法、微元法、极限法、3 [2.6.1][2.6.2] [2.6.3] 叠加法14 相对运动问题等效法、叠加法6 [2.4.8][2.8.1][2.8.2] [2.8.3] [2.8.4][2.8.5] 《动量×牛顿运动定律×动量守恒定律》单元中的习题分析序号 题型思维方法 题目数 对应习题题号 1 已知运动学方程,求质点的受力情况(大小和方向)微元法、比较法、极限法 2 [3.4.1][3.4.2] 2 惯性系中牛顿运动定律的运用:已知运动情况(位置、速度或加速度间的关系),求力(或加速度)或相关物理量建模法、隔离法、演绎法、微元法、极限法、图示法 13 [3.4.3][3.4.4][3.4.5] [3.4.6] [3.4.7][3.4.8] [3.4.11][3.4.14] [3.4.15][3.4.16] [3.4.20][3.4.21] [3.4.22] 3 惯性系中牛顿运动定律的运用:已知受力情况(包括连续的变力)及初始条件(初速度或初位置(可根据坐标系的选择而定)),求运动情况(位置、位移、速度或角速度等)建模法、隔离法、微元法、演绎法、叠加法、极限法、图示法 5 [3.4.9][3.4.10] [3.4.12][3.4.13] [3.4.18] 4 非惯性系(直线加速系)中牛顿运动定律的运用:已知运动情况,求力或加速度建模法、隔离法、演绎法、等效法、叠加法、图示法 3 [3.4.5][3.5.1] [3.5.2] 5 非惯性系(直线加速系)中牛顿运动定律的运用:已知受力情况(包括惯性力)及初始条件,求运动情况(相对于非惯性系)建模法、隔离法、演绎法、等效法、叠加法、图示法 1 [3.5.3] 6 非惯性系(转动参考系)中牛顿运动定律的运用:已知受力情况(包括离心惯性力或科里奥利力)及初始条件,求运动情况建模法、隔离法、演绎法、等效法、叠加法、图示法 3 [3.5.4][3.5.5] [3.5.6] 7 已知受力情况(包括变力)(t F)及时间,求冲微元法、极限1 [3.6.1] 量 法、建模法、演绎法、叠加法8 已知质点的运动学方程)(t r r=,求质点动量 微元法、比较法、极限法、演绎法1 [3.6.2] 9 质点动量定理的应用等效法、演绎法3 [3.6.3][3.6.4] [3.6.5] 10 质点系动量定理的应用:已知各质点动量(或速度)变化及时间,求质点系所受合外力 建模法、演绎法、叠加法、等效法 2 [3.7.1][3.7.4] 11 质点系动量定理的应用:已知合外力(合加速度)及某些质点的速度(或加速度、位移)情况,求另外质点的速度(或加速度、位移)情况 建模法、演绎法、叠加法、等效法 4 [3.7.2][3.7.3][3.7.5] [3.7.6] 12 质心运动定理的应用:已知各质点动量(或速度)变化及时间,求质点系所受合外力 建模法、演绎法1 [3.7.1] 13 质心运动定理的应用:已知合外力(合加速度)及某些质点的速度(或加速度、位移)情况,求另外质点的速度(或加速度、位移)情况建模法、演绎法3 [3.7.2][3.7.3] [3.7.6] 14 在质心参考系中,求质点系质心的动量建模法、演绎法1 [3.7.7] 15 质点系动量守恒定律的应用建模法、演绎法、图示法3 [3.8.1][3.8.2] [3.8.3] 《动能和势能》单元中的习题分析序号 题型思维方法 习题数对应习题题号1 功的定义的应用:已知力或力的变化规律,求力(变力)的功微元法、极限法、建模法、演绎法、叠加3 [4.2.2][4.2.3] [4.2.4] 法2 质点动能定理与功的定义的应用:已知过程初末位置及过程中各个(变)力的(变化)情况及初速度(或末速度),求质点的末速度(或初速度)微元法、极限法、建模法、叠加法、演绎法3 [4.3.1][4.3.2] [4.3.4] 3 质点动能定理与功的定义的应用:已知过程的初末速度及过程中各个(变)力的(变化)情况及初位置,求质点的末位置微元法、极限法、建模法、叠加法、演绎法1 [4.3.3] 4 质点系动能定理的应用建模法、隔离法、演绎法、叠加法1 [4.3.7] 5 已知保守力做功,求对应势能的变化微元法、极限法、建模法、演绎法1 [4.4.1] 6 质点系机械能守恒定律的应用:由质点系机械能守恒,已知势能变化,求动能变化(或动能) 建模法、隔离法、演绎法3 [4.5.1][4.5.2] [4.5.3] 7 动量守恒定律、机械能守恒定律(或动能定理)与恢复系数在对心碰撞问题中的应用建模法、隔离法、分析法、演绎法、综合法9 [4.6.2][4.6.3][4.6.4] [4.6.5] [4.6.6][4.6.7] [4.6.8][4.6.9] [4.6.10] 8 动量守恒定律、机械能守恒定律(或动能定理)与恢复系数在非对心碰撞问题中的应用建模法、隔离法、分析法、演绎法、综合法2 [4.7.1][4.7.2] 《角动量×关于对称性》单元中的习题分析序号题型思维方法习题数对应习题题号1 质点对参考点的角动量守恒定律的应用:已知受力情况(主要是质点合力方向通过参考点)及建模法、演绎4 [5.1.1][5.1.7][5.1.9] 质点分别经过两点时相对于质点的位置矢量的大小及与速度的夹角,由质点经过其中一点的速度(速率)求经过另一点时的速度(速率)法、图示法[5.2.3] 2 已知质点的运动学方程,求质点所受的对某点(如原点)的力矩微元法、极限法、演绎法1 [5.1.2] 3 已知质点的受力情况(或给出)(tF)及初始条件(初位置、初速度),求某时刻质点所受的对某点(如原点)的力矩建模法、微元法、极限法、叠加法、演绎法2 [5.1.3][5.2.1] 4 已知质点对某点的运动情况(或给运动学方程),求质点对某点的角动量(或证明角动量守恒) 微元法、极限法、演绎法4 [5.1.4][5.1.5][5.1.8] [5.2.1] 5 已知质点的受力情况)(t F 及初始条件,求某时刻质点对某点的角动量微元法、极限法、叠加法、演绎法1 [5.1.6] 6 质点对轴的角动量守恒定律的应用建模法、演绎法、图示法1 [5.1.10] 7 质点系对参考点的角动量守恒定律的应用建模法、演绎法、分析法、综合法1 [5.2.2] 《万有引力定律》单元中的习题分析序号题型思维方法习题数对应习题题号1 万有引力定律和牛顿第二定律的应用建模法、演绎法4 [6.2.1][6.2.2][6.2.4] [6.2.5] 2 万有引力定律在连续物体内部的应用假设法、建模法、微元法、演绎法1 [6.2.3] 3 万有引力定律在两物体(或之一)不能看成质点微元法、极限法、演绎法、2 [6.2.6][6.2.7] 情况下的应用叠加法4 万有引力定律、牛顿第二定律与机械能守恒定律的应用建模法、演绎法、综合法2 [6.3.1][6.3.2] 《刚体力学》单元中的习题分析序号题型思维方法习题数对应习题题号1 已知刚体转动的运动学方程(角位移、角坐标))(tq,求角速度(或线速度)或角加速度(或线加速度)微元法、比较法、极限法2 [7.1.3][7.1.4] 2 已知刚体的定轴转动情况(转速或角速度)及整体平动情况,求刚体上某点相对于基本参考系(如地面)的线速度比较法、叠加法2 [7.1.6][7.1.7] 3 已知刚体的质量分布(密度分布),求刚体的质心位置微元法、极限法、建模法、演绎法、叠加法、对称法2 [7.2.1][7.2.2] 4 质心运动定理在刚体运动中的应用演绎法、图示法1 [7.2.3] 5 利用转动惯量定义或平行轴定理求刚体对轴的转动惯量微元法、极限法、演绎法、叠加法、对称法4 [7.3.1][7.3.2][7.3.3] [7.3.4] 6 刚体定轴转动定理与牛顿第二定律(或质心运动定理)在刚体运动中的应用建模法、隔离法、综合法、图示法5 [7.3.5][7.3.6][7.3.7] [7.3.8] [7.3.9] 7 质点系角动量守恒定律与机械能守恒定律在刚体运动中的应用建模法、演绎法、综合法4 [7.4.1][7.4.2][7.4.3] [7.5.1] 8 质心运动定理、转动定理、机械能守恒定律在建模法、隔离法、假设法、6 [7.5.2][7.5.3][7.5.4] 刚体平面运动中的应用演绎法、综合法[7.5.5] [7.5.6][7.5.7] 9 力的平衡方程、力矩平衡方程在刚体平衡问题中的应用建模法、演绎法、综合法3 [7.6.1][7.6.2] [7.6.3] 《弹性体的应力和应变》单元中的习题分析序号题型思维方法习题数对应习题题号1 已知弹性体轴向所受外力及横截面积,求弹性体两截面间的应力隔离法、整体法、演绎法、假设法1 [8.1.1] 2 已知弹性体内的应力最大值,求弹性体所能承受的最大外力建模法、隔离法、演绎法2 [8.1.2][8.1.3] 3 线应变的胡克定律及牛顿运动定律的应用建模法、隔离法、假设法、演绎法、综合法3 [8.1.4][8.1.5] [8.1.6] 4 剪切形变的胡克定律的应用演绎法2 [8.2.1][8.3.1] 5 由压缩拉伸弹性势能密度公式求弯曲形变势能微元法、极限法、建模法、演绎法、叠加法1 [8.3.3] 《振动》单元中的习题分析序号题型思维方法习题数对应习题题号1 通过建立系统动力学方程,由动力学特征判断假设法、演绎1 [9.2.1] 系统是否做简谐运动法2 通过建立简谐运动的动力学方程求系统(如弹簧振子)的固有频率(周期)建模法、隔离法、演绎法5 [9.2.1][9.2.2][9.2.3] [9.2.5] [9.3.1] 3 非惯性系中,通过建立简谐运动的动力学方程求系统(如单摆)的固有周期(频率)建模法、隔离法、等效法、演绎法、极限法1 [9.2.4] 4 已知系统做简谐运动及其初始条件,求运动学方程或相关物理量演绎法、微元法、比较法、极限法、综合法2 [9.2.6][9.2.7] 5 计时起点改变对简谐振动运动学方程的影响比较法、等效法1 [9.2.8] 6 求对称物体绕某点做微小摆动的周期建模法、演绎法、对称法2 [9.2.10][9.2.11] 7 已知物体与振动系统(如单摆或弹簧振子)发生碰撞,求碰撞后振动系统的运动学方程建模法、隔离法、分析法、演绎法、极限法、综合法4 [9.2.12][9.2.13] [9.2.14][9.2.15] 8 已知振动系统的参数(或运动学方程),求系统的总能量(或动能)建模法、演绎法2 [9.3.1][9.3.2] 《波动和声》单元中的习题分析序号题型思维方法习题数对应习题题号1 由已知条件,求波方程比较法、演绎法4 [10.2.2][10.2.3] [10.2.4][10.2.10] 2 已知波方程,求波的频率、振幅、速度、波长比较法、演绎法1 [10.2.5] 3 计时起点改变对波方程形式的影响比较法、等效法1 [10.2.6] 4 由已知条件求固体中传播横波和纵波的波速建模法、演绎法1 [10.3.1] 5 已知纵波在流体中的波速,求流体的体积模量演绎法、比较法1 [10.3.2] 6 已知两列波,求波叠加最强(或弱)的位置或叠加后的波行为演绎法、比较法、叠加法2 [10.5.2][10.5.3] 7 已知入射波方程,求反射波方程比较法、演绎法3 [10.5.4][10.5.5] [10.5.6] 8 波的干涉的应用演绎法、比较法1 [10.5.9] 9 驻波在弦振动中的应用演绎法、比较法2 [10.5.10][10.5.11] 10 开普勒效应的应用比较法、演绎法4 [10.6.1][10.6.2] [10.6.3][10.6.4] 《流体力学》单元中的习题分析序号题型思维方法习题数对应习题题号1 求静止流体内某点(处)的压强演绎法、叠加法4 [11.2.1][11.2.2] [11.2.4][11.2.5] 2 求静止流体内压强(或压力)分布微元法、极限法、建模法、演绎法、叠加法4 [11.2.3][11.2.7] [11.2.8][11.2.10] 3 求相对于非惯性系静止的流体的压强分布微元法、极限法、建模法、等效法、演绎1 [11.2.6] 法、叠加法4 伯努利方程与连续性原理的应用建模法、演绎法、综合法3 [11.4.3][11.4.4] [11.4.5] 5 动量定理在运动流体对挡壁的压力求解中的应用微元法、演绎法1 [11.5.1] 。
力学(第二版)漆安慎习题解答第八章弹性体的应力和应变第八章 一、基本知识小结⒈弹性体力学研究力与形变的规律;弹性体的基本形变有拉伸压缩形变和剪切形变,弯曲形变是由程度不同的拉伸压缩形变组成,扭转形变是由程度不同的剪切形变组成。
⒉应力就是单位面积上作用的内力;如果内力与面元垂直就叫正应力,用σ表示;如果内力方向在面元内,就叫切应力,用τ表示。
⒊应变就是相对形变;在拉压形变中的应变就是线应变,如果l 0表示原长,Δl 表示绝对伸长或绝对压缩,则线应变ε= Δl /l 0;在剪切形变中的应变就是切应变,用切变角ψ表示。
⒋力与形变的基本规律是胡克定律,即应力与应变成正比。
在拉压形变中表示为 σ= Yε,Y 是由材料性质决定的杨氏模量,在剪切形变中表示为 τ= Nψ,N 是由材料性质决定的切变模量。
⒌发生形变的弹性体具有形变势能:拉压形变的形变势能密度 2210εY E p =, 剪切形变的形变势能密度 2210ψN E p =。
⒍梁弯曲的曲率与力偶矩的关系 312Ybhk τ=⒎杆的扭转角与力偶矩的关系 lNR C C 2,4πϕτ==二、思考题解答8.1作用于物体内某无穷小面元上的应力是面元两侧的相互作用力,其单位为N.这句话对不对?答:不对,应力为作用于该无穷小面元两侧单位面积上的相互作用内力,其单位为或。
其面元法向分量称正应力,切向分量称切应力。
8.2(8.1.1)式关于应力的定义当弹性体作加速运动时是否仍然适用?答:适用,(8.1.1)式中的是面元两侧的相互作用内力,它与作用于物体上的外力和物体的运动状态有关。
8.3牛顿第二定律指出:物体所受合力不为零,则必有加速度。
是否合力不为零,必产生变形,你能否举出一个合力不为零但无形变的例子?答:不一定,物体是否发生形变应看物体内应力是否为零,应力为零,则不形变。
自由落体运动,物体受重力作用,但物体内部应力为零,则不发生形变。
8.4胡克定律是否可叙述为:当物体受到外力而发生拉伸(压缩)形变时,外力与物体的伸长(压缩)成正比,对于一定的材料,比例系数是常数,称作该材料的杨氏模量?答:不对。
首先形变应在弹性限度内,其次杨氏模量只与材料的形状有关,而比例系数不但与材料性质有关,还与材料的形状(横截面)有关,即与材料的横截面有关,对一定性质的材料,随截面的不同而变,两者是不同的。
8.5如果长方体体元的各表面上不仅受到剪切应力而且受到正应力,剪切应力互等定律是否还成立?答:正应力不改变未施加前各面的力矩,剪切应力互等定律仍然成立。
8.6是否一空心圆管比同样直径的实心圆棒的抗弯能力要好?答:不是,一个实心管可视为由许多半径不同的空心管组成的,对于相同材料、同样直径的空心管和实心管的抗弯能力显然实心圆管比同样直径的空心圆棒的抗弯能力要好。
8.7为什么自行车辐条要互相交叉?为什么有些汽车车轮很粗的辐条不必交叉?答:自行车辐条很细且很长,它不能依靠垂直辐条提供很大的抗扭曲力矩和瓦圈的抗形变能力,交叉后的辐条利用了拉伸、压缩车轮的抗扭能力和瓦圈的抗变形能力,而车轮的辐条很粗,则完全可以提供足够的抗弯力矩8.8为什么自行车轮钢圈横截面常取(a)(b)形状而不采取(c)的形状?答:自行车在承重情况下,钢圈主要是抗变形作用,钢圈截面距中性层越远,抗弯作用越大,(c)截面主要分布在中性层附近,与(a)、(b)比抗弯能力最差。
8.9为什么金属平薄板容易变形,但在平板上加工出凹凸槽则不易变形?答:加工出凹凸槽,相当于增加了板距中性面的材料,减少了距中性面近的材料从而增加了抗弯能力,故不易变形。
8.10用厚度为d 的钢板弯成内径为的圆筒,则下料时钢板长度应为这是为什么?答:用原为的钢板弯成内径为的圆筒时,其中性层的长度正好为,以此长度下料,可使弯曲面内层、外层的应力均匀,使圆筒的坚固性最弱。
8.1.1 一钢杆的截面积为5.0×10-4m 2,所受轴向外力如图所示,试计算A 、B ,B 、C 和C 、D 之间的应力。
N F N F N F N F 44434241103,105,108,106⨯=⨯=⨯=⨯=解:据杆的受力情况,可知杆处于平衡状态。
分别在AB 之间E 处,BC 之间G 处,CD 之间H 处作垂直杆的假想截面S 。
隔离AE 段,由平衡条件,E 处S 面上的内力F=F 1,∴A 、B 之间的应力28100.51061/102.1//44m N S F S F ⨯====-⨯⨯σ 隔离AG 段,由平衡条件,G 处S 面上的内力F=F 2-F 1,∴B 、C 之间压应力28100.510)68(/104.04412m N s F F ⨯-=-=-=-⨯⨯--σ 隔离HD 段,由平衡条件,H 处S 面上的内力F=F 4,∴C 、D 之间的应力28100.51034/106.0//44m N S F S F ⨯====-⨯⨯σ8.1.2 利用直径为0.02m 的钢杆CD 固定刚性杆AB.若CD 杆内的应力不得超过σmax =16×107.问B 处最多能悬挂多大重量?解:隔离AB ,以A 点为轴,由力矩平衡条件,有T W W T 39.0)6.00.1(0.1228.00.18.0=∴+⨯=⨯⨯+隔离CD ,杆CD 应力σ=T/S,∴T=σS=σπ(D/2)2. 杆能承受的最大拉力:47241max 4max 1002.5101602.014.32⨯=⨯⨯⨯⨯==σπD T N B 处能悬挂的最大重量:N T W 4max max 1096.139.0⨯==8.1.3 图中上半段为横截面等于4.0×10-4m 2且杨氏模量为6.9×1010P a 的铝制杆,下半段为横截面等于1.0×10-4m 2且杨氏模量为19.6×1010P a 的钢杆,又知铝杆内允许最大应力为7.8×107P a , 钢杆内允许最大应力为13.7×107P a .不计杆的自重,求杆下端所能承担的最大负荷以及在此负荷下杆的总伸长量。
解:设铝杆与钢杆的长度、横截面、杨氏模量、应力分别为:l 1、S 1、Y 1、σ1,l 2、S 2、Y 2、σ2., 显然,σ1=F/S 1,σ2=F/S 2.设铝杆和钢杆所能承担的最大负荷分别为F 1max ,F 2max ,则N S F 4471max 1max 11012.3100.4108.7⨯=⨯⨯⨯==-σ N S F 4472max 21max 21037.1100.1107.13⨯=⨯⨯⨯==-σ整个杆的最大负荷应取钢杆的最大负荷:N F 4max 1037.1⨯=根据拉伸形变的胡克定律,对于铝杆111max l l S F Y∆=,所以,111max 1S Y l F l =∆;对于钢杆,同样有 222max 2S Y l F l =∆. 整个杆的伸长量是:(max 21F l l l =∆+∆=∆+111S Y l )222S Y lm 3100.1106.190.2100.4109.60.341089.2)(1037.1410410-⨯⨯⨯⨯⨯⨯⨯=+⨯=--8.1.4 电梯用不在一条直线上的三根钢索悬挂。
电梯质量为500kg 。
最大负载极限5.5kN 。
每根钢索都能独立承担总负载,且其应力仅为允许应力的70%,若电梯向上的最大加速度为g/5,求钢索直径为多少?将钢索看作圆柱体,且不计其自重,取钢的允许应力为6.0×108P a .解:设每根钢索承受拉力为T,电梯自重为 W=mg,负荷为W'=m'g.由牛顿第二定律, N W mg W mg g m m W W T gm m a m m W W T 3331311016.4)105.58.9500(4.0)'(4.0)'2.12.1(])'(2.0'[)'(2.0)'('3⨯=⨯+⨯⨯=+=+=+++=+=+=--设钢索直径为D ,每根钢索的应力 2)5.0(D T πσ= mm m T D 15.61015.6)100.67.014.3/(1016.42)/(2383=⨯=⨯⨯⨯⨯==∴-πσ8.1.5 ⑴矩形横截面杆在轴向拉力作用下拉伸应变为ε,此材料的泊松系数为μ,求证杆体积的相对改变为 (V-V 0)/V 0=ε(1-2μ),V 0表示原体即,V 表示形变后体积. ⑵上式是否适用于压缩?⑶低碳钢杨氏模量为Y=19.6×1010P a ,泊松系数μ=0.3,受到的拉应力为σ=1.37P a ,求杆件体积的相对改变。
解:⑴设杆原长为l 0,矩形截面两边原长分别为a 0和b 0,据线应变定义:轴向应变00l l l -=ε,横向应变0001a a a b b b --==ε,所以: 01010)1(,)1(,)1(b b a a l l εεε+=+=+=,由泊松系数定义||1εεμ=,拉伸时,ε>0, ε1<0, ∴ε1=-με))(21(1)1)(21(1)1()1(1)1()1()1()1()1(222210000000010100000000略去高级小项μεεεμεμεεμεεεεε-=-++-=-+-=-++=-+++=-=-l b a l b a l b a l b a l b a abl V V V⑵对于压缩,ε<0, ε1>0, 仍有ε1=-με成立,因此上式对压缩情况仍然适用 ⑶据胡克定律 Y Y /,σεεσ== 121000108.2106.19)3.021(37.1)21(-⨯≈⨯⨯-=-=-Y V V V μσ8.1.6⑴杆受轴向拉力F ,其横截面为S ,材料的重度(单位体积物质的重量)为γ,试证明考虑材料的重量时,横截面内的应力为x x S F γσ+=)(。
⑵杆内应力如上式,试证明杆的总伸长量Yl YS lF l 22γ+=∆证明:⑴建立图示坐标o-x ,在坐标x 处取 一截面S ,隔离o 、x 段杆,由平衡条件,截面S 上的内力 F’=F+γSx ,据应力定义x S F S x S F S F γσγ+===+'⑵考虑x 处的线元dx ,该线元在重力作用下的绝对伸长为dl,据胡克定律, dx Y x YS F Y dx dl dx Ydl ]/)/([/,/γσσ+=== 积分:⎰⎰+=∆∴+='202)(l lYl SY l F l Y YSF l dx x dl γγ8.2.1 在剪切材料时,由于刀口不快,没有切断,该钢板发生了切变。
钢板的横截面积为S=90cm 2.两刀口间的垂直距离为d=0.5cm.当剪切力为F=7×105N 时,求:⑴钢板中的d 切应力,⑵钢板的切应变,⑶与刀口相齐的两个截面所发生的相对滑移。