高精度温差测量系统的实现
- 格式:pdf
- 大小:117.42 KB
- 文档页数:3
基于32位Σ-△ADC的高精度测温系统设计及误差分析付淑芳;丁炯;杨遂军;俞雄飞;叶树亮【摘要】为了满足反应量热仪中对样品温度的高精度检测要求,以32位Σ-△型模数转换器AD7177-2为核心,设计了基于阻值比较法的铂电阻高精度测温系统,采用电流激励换向技术,消除电路中存在的寄生热电动势及系统漂移对测量的影响;提出了基于阻值标定的共模误差修正方法,提高了测温准确性.实验结果表明:系统在-100~500℃范围内,修正后的测温误差由0.28℃减小至0.01℃,不同环境下的测温精密度优于±0.001℃,满足反应量热仪的测温精度需求.【期刊名称】《仪表技术与传感器》【年(卷),期】2019(000)002【总页数】5页(P99-103)【关键词】Σ-△ADC;铂电阻;阻值比较法;电流激励换向;共模误差修正【作者】付淑芳;丁炯;杨遂军;俞雄飞;叶树亮【作者单位】中国计量大学工业与商贸计量技术研究所,浙江杭州 310018;中国计量大学工业与商贸计量技术研究所,浙江杭州 310018;中国计量大学工业与商贸计量技术研究所,浙江杭州 310018;宁波出入境检验检疫局化学与化学危险品分类鉴定评估中心,浙江宁波 315000;中国计量大学工业与商贸计量技术研究所,浙江杭州310018【正文语种】中文【中图分类】TP2160 引言随着工业的不断发展,高精度测温在化工过程安全检测类仪器研制中起着至关重要的作用。
如反应量热仪主要通过温度检测,分析样品反应过程中的吸放热情况,实现对化工工艺优化及反应过程热危险性进行评估[1]。
如氧弹量热仪通过煤、油品等燃料燃烧前后水温差的高精度测量,实现热值的计量和溯源[2]。
测温精度直接影响此类仪器检测结果的准确性,因而高精度测温系统一直是反应量热仪的研究重点之一。
与热电偶、热敏电阻温度传感器相比,铂电阻因其测温范围宽、线性度好、稳定性高被广泛用于各类高精度测温领域中[3]。
课程设计说明书题目:温度控制系统的设计与实现学生姓名:学院:电力学院系别:自动化专业:自动化班级:指导教师:二〇一年一月十四日内蒙古工业大学课程设计(论文)任务书课程名称:计算机控制系统课程设计学院:电力学院班级:自动化07-3班学生姓名:石鑫学号:指导教师:刘磊李志明摘要温度控制系统是一种典型的过程控制系统,在工业生产中具有极其广泛的应用。
温度控制系统的对象存在滞后,它对阶跃信号的响应会推迟一些时间,对自动控制产生不利的影响,因此对温度准确的测量和有效的控制是此类工业控制系统中的重要指标。
温度是一个重要的物理量,也是工业生产过程中的主要工艺参数之一,物体的许多性质和特性都与温度有关,很多重要的过程只有在一定温度范围内才能有效的进行,因此,对温度的精确测量和可靠控制,在工业生产和科学研究中就具有很重要的意义。
本文阐述了过程控制系统的概念,介绍了一种温度控制系统建模与控制,以电热水壶为被控对象,通过实验的方法建立温度控制系统的数学模型,采用了PID算法进行系统的设计,达到了比较好的控制目的。
关键词:温度控制;建模;自动控制;过程控制;PIDAbstractIn industrial production with extremely extensive application, temperature control system is a typical process control system.Temperature control system has the larger inertia. It is the response signal to step off some of time.And it produces the adverse effect to the temperature measurement. The control system is the important industrial control index. Temperature is an important parameters in the process of industrial production. Also it is one of the main parameters of objects, many properties and characteristics of temperature, many important process only under certain temperature range can efficiently work. Therefore, the precise measurement of temperature control, reliable industrial production and scientific research has very important significance.This paper discusses the concept of process control system and introduces a kind of temperature control system .The electric kettle is the controlled object, PID algorithm is used for system design,through experience method to get the model of temperature control system and we can get the controlied response well.Keywords:Temperature control; Mathematical modeling; Automatic control;Process control; PID目录第一章概述..........................................................................................................................................1.1 题目背景及应用意义...........................................................................................................1.2 本文内容及工作安排 (1)第二章系统组成及被控对象分析(被控对象数学建模) (3)2.1 系统组成 (3)2.1 被控对象分析(被控对象数学建模) (5)第三章控制策略设计及仿真研究 (11)3.1 控制策略设计 (11)3.2 仿真研究 (15)第四章控制策略实现 (18)4.1 组态环境下控制策略编程实现 (18)4.2 力控软件 (18)4.3 运行结果分析 (20)第五章总结 (22)参考文献 (23)第一章概述1.1 题目背景及应用意义在近四十年的时间里,电子计算机的发展经历了从电子管、晶体管、中小规模集成电路到大规模集成电路这样四个阶段,尤其是随着半导体集成技术的飞跃发展,七十年代初诞生了一代新型的电子计算机——微型计算机,使得计算机应用日益广泛;目前,计算机应用已渗透到各行各业,达到了前所未有的普及程度。
基于DSP TMS320F2812和DS18B20的温度测量系统设计摘要:本文介绍了一种基于TI公司DSP TMS320F2812 的高精度温度测量系统的设计。
该系统采用TMS320F2812为微处理器,配合高精度DS18B20数字温度传感器和外部扩展的模数转换器采集温度数据,并经过滤波算法处理控制输出,能够得到比较精确的温度值。
主要介绍了系统的结构、工作原理、软硬件的设计,并对系统设计的特点进行了详细的说明。
关键词: TMS320F2812;DS18B20;温度测量;模数转换1 概述温度在航空、航天领域中是个重要的物理量,由于温度变化对设备可能产生影响,包括降低系统的成像质量,影响分辨率,因此,在这些系统中对温度的实时采集测量十分重要。
以传统的单片机为核心的温度测量控制系统,由于受到处理器自身硬件资源和速度的限制,硬件电路设计复杂,数据实时处理能力差,温度测量时间长。
而随着计算机技术尤其是招超大规模集成电路技术的发展,具有更强处理能力的DSP芯片,以其运算速度快、实时性强、功耗低、抗干扰能力强等特点,越来越多地被应用。
采用了DS18B20数字温度传感器、外部扩展ADC模数转换器,使用内部集成外设功能的DSP TMS320F2812 微处理器作为整个系统的核心控制单元,简化了硬件电路设计;在温度采集控制软件上采用“通道滤波”温度采集控制算法,使得温度采集具有速度快、精度高的特点。
2 系统方案设计温度测量系统设计以DSP TMS320F2812为中央处理器为核心,采用DS18B20型号数字温度传感器为温度传感器,使用AD7892型号的ADC模数转换器进行A/D 转换,并将采集结果代入温度曲线方程计算出当前温度值,并且将温度值通过通信系统发送到上位机。
高精度温度测量控制系统由两大部分组成,第1部分为以DSP TMS320F2812为核心处理器的数据采集及处理部分,主要由产品温度环境、温度传感器、ADC模数转换器、DSP TMS320F2812、电源构成;第2部分由温度采集处理软件构成,完成对DSP采集到的数据进行分析、处理等任务。
精密测量技术在物理实验中的应用案例在物理学研究领域,精密测量技术是不可或缺的工具。
它们扮演着确保实验数据准确性和可靠性的关键角色。
本文将通过几个实际案例,探讨精密测量技术在物理实验中的应用。
第一个案例是时间测量。
在实验中,精确测量时间是非常重要的,因为时间是许多物理量的基础。
例如,在研究物体运动的速度、加速度或波动的频率时,我们需要准确地测量时间。
一种常用的时间测量工具是高精度的计时器。
通过使用计时器,我们可以测量与事件相关的时间间隔,如反射光束的往返时间或简单机械系统的周期。
这些时间测量数据可以用于进一步分析和研究。
第二个案例是长度测量。
在物理实验中,测量长度是常见任务之一。
无论是测量一个导线的长度,还是确定物体的几何形状,准确的长度测量都是至关重要的。
在很多情况下,常规的尺子和卷尺是不够精确的。
因此,科学家们经常使用光学测量仪器,如干涉测量仪、激光测距仪和显微测量技术。
这些技术可以通过测量光波干涉模式或利用激光束的反射来实现亚微米级甚至纳米级的精度。
除了时间和长度测量,温度测量也是物理实验中的另一个重要方面。
特别是在材料学和热力学研究中,对温度的精确测量至关重要。
实验室中常用的温度测量仪器包括温度传感器和热电偶。
温度传感器可以通过测量物体的热辐射或与物质的热导率相关的电阻来测量温度。
热电偶则利用两种不同金属间的温差所产生的电压来测量温度。
通过使用这些精密测温设备,科学家们可以获得精确的温度数据,从而深入研究材料性质和热力学行为。
最后一个案例是测量物体的质量。
在物理实验中,准确测量物体的质量是实现实验目标的重要步骤。
传统的质量测量方法通常使用天平或弹簧秤。
然而,这些方法在高精度测量时存在一定的误差。
为了获得更准确的质量测量结果,科学家们常常使用精密天平或质量计。
这些设备具有高分辨率和高灵敏度,可以测量微小质量的变化。
例如,在核物理实验中,测量放射性物质的衰变速率需要精确测量物质的质量变化,以便确定衰变常数。
高精度测量系统设计与实现随着科技的不断进步和发展,高精度测量系统在现代工业、生产以及科研等领域中起着越来越重要的作用。
高精度测量系统主要是通过精确测量物体的长度、角度、形状、位置和速度等参数来达到精确控制工艺过程和保证产品质量的目的。
在高精度测量系统的设计与实现中,需要充分考虑各种因素,包括系统的精度、稳定性、可靠性、成本等方面,以便满足用户的实际需求。
一、高精度测量系统的基本原理和组成高精度测量系统主要是由传感器、信号处理器以及数据处理器等几个部分组成。
传感器是测量系统中最为核心的组成部分,主要用来将被测参数转换为电信号输出。
信号处理器主要是对传感器输出的电信号进行放大、滤波等预处理操作。
数据处理器是对信号处理器输出的电信号进行数字化处理,并且进行数据分析、处理等相关操作。
高精度测量系统的设计和实现是由这三个部分紧密组合而成的。
在进行系统的设计和实现时,需要考虑各部分之间的协作,保证高精度测量系统的稳定性、可靠性以及精度。
二、高精度测量系统设计需要考虑的因素在进行高精度测量系统的设计和实现时,需要考虑到诸多因素,包括系统的精度、稳定性、可靠性、成本等方面。
(一) 系统的精度高精度测量系统的精度是最为关键的设计因素之一。
精度主要受以下几个因素影响:1、传感器本身的性能,包括灵敏度、分辨率以及温度稳定性等。
2、环境因素,包括温度、湿度、噪声等。
3、信号处理器与数据处理器的性能。
4、测量的物理量和测量方法等。
(二) 系统的稳定性高精度测量系统的稳定性是指系统在长时间内保持测量精度的能力。
稳定性主要受以下几个因素影响:1、系统所处的环境条件,包括温度、湿度、振动等。
2、传感器的稳定性。
3、信号处理器和数据处理器的稳定性。
4、系统的工作状态,包括系统的启动、运行等情况。
(三) 系统的可靠性高精度测量系统的可靠性主要是指系统在长时间运行过程中不出现故障的概率。
可靠性主要受以下因素影响:1、系统的硬件和软件设计的质量。
基于光纤传感器的温度测量系统设计与实现近几年,温度传感器技术得到了飞速的发展,其中光纤传感技术逐渐成为了各个领域的关注焦点。
光纤传感技术因其特殊的优势,被广泛应用于环境监测、工业制造、航空航天等领域。
本文将重点探讨基于光纤传感器的温度测量系统的设计和实现。
1. 光纤传感器的工作原理光纤传感器是利用光纤的特性对物理量进行检测的一种传感器。
在温度测量中,光纤传感器测量温度的原理是通过测量光在光纤中的传输速度变化来实现的。
当温度变化时,光纤的材料会发生微小的形变,从而导致光的传输速度发生变化,通过测量这种变化可以计算出温度的变化。
2. 温度传感器的分类按照测量原理,温度传感器可以分为接触式和非接触式两种。
接触式温度传感器需要直接接触被测物体,而非接触式温度传感器则可以在不接触被测物体的情况下进行测量。
其中,光纤传感器属于非接触式温度传感器。
3. 基于光纤传感器的温度测量系统设计基于光纤传感器的温度测量系统主要包括光纤传感器、检测装置、数据采集器和显示屏等部分。
在设计系统时,需要考虑到光纤传感器的安装方式、测量范围、检测精度等因素。
(1)光纤传感器的安装方式在测量温度时,光纤传感器需要与被测物体相连,用于传递物体的温度信息。
由于光纤传感器本身具有较高的灵活性和耐高温、耐酸碱等特点,可以采用多种方式进行安装。
一般来说,光纤传感器的安装方式可以分为直接粘贴法、夹持法、包覆法和附着法等。
(2)检测装置的选择检测装置是光纤传感器温度测量系统的核心部分,其性能的好坏直接影响到测量精度。
在选择检测装置时,需要考虑到测量系统的测量范围和精度等因素。
一般来说,检测装置可以选择光纤光谱仪、白光干涉仪、光时域反射法等。
(3)数据采集器的选择数据采集器主要用于采集光纤传感器所测得的温度信息。
在选择数据采集器时,需要考虑到数据采集精度、采样频率、存储容量等因素。
目前常用的数据采集器有万用表、数据采集卡、微处理器等。
(4)显示屏的设计显示屏主要用于显示所采集的温度信息。
如何设计高精度温度传感电路在大多数的工业用测量控制监测体系中,温度测量传感电路的设计都是一个重要的组成部分。
它广泛应用于很多特定的环境控制处理计算中。
一些最常见的传感器可以用于测量绝对温度或者温度变化,例如是电阻式的温度检测检测器(RTD)、二极管传感器、热敏电阻传感器以及热电偶传感器等等。
在这篇文章中,我们将介绍使用这些传感器进行精密温度测量电路设计的要点。
温度传感电路设计包括:正确选择合适的温度感应器以及必要的信号调节器和数字化器件产品,以便更有效地、更准确地测量温度数值。
在我们介绍温度测量系统之前,我们先来看看常见的传统温度传感器温度传感器设计电路的优点及缺点。
传统热电偶传感器设计电路热电偶传感器工作的原理是当温度不同时,两种不同成分的金属的接合点之间产生电压(或称为电动势)。
一个热偶由两种不同的金属端连接而成,相连的其中一端被称为热端。
另一端则被称为冷端,共同连接到温度测试电路。
热端与冷端之间由于温差的差异而导致产生电动势。
这种电动势可以用测量电路测量得到。
图1显示的是一个基本的热电偶传感器电路。
图1:基本的热电偶传感器设计电路热电偶传感器产生的实际电压取决于相对温度之差以及被用于组成热电偶传感器的不同的金属类型。
热电偶的灵敏度和温度测量范围同样与所使用的两种金属有很大关系。
在市面上有许多类型的热电偶传感器出售,它们可以根据所使用的不同金属冷热端来区分:例如,B 型(铂/铑)、J型(铁/镍铜合金)、和K型(镍铬合金/铝镍合金)。
大家可以根据实际应用场合选择合适的热电偶传感器器件。
热电偶传感器的主要优势是他们的鲁棒性(在异常和危险情况下系统恢复正常运转的特性)、宽温范围(零下270摄氏度到零上3000摄氏度)、响应快、封装种类多、成本较低。
而它们的局限主要是精度较低和噪声较大。
电阻式温度检测传感器设计电路电阻式温度检测传感器(RTD)的工作原理是:由于每种金属在不同温度下具有特定的和独特的电阻率特性,所以当温度变化时检测金属电阻的变化,从而得到温度测量数值。
基于STM32的高精度恒温控制系统设计黄琦;韩广源;吴瑞东;刘毅;杨世强;张明江;张建忠【摘要】针对分布式光纤拉曼测温系统中定标光纤和雪崩光电二极管(APD)的温控要求,设计了一套基于STM32的高精度恒温控制系统.系统采用上下位机结构,上位机负责设定温度值和显示温度数据,下位机根据上位机的设定值利用P ID算法对恒温箱的温度进行控制.实验结果表明:在22℃的室温下,定标光纤温度稳定在(10±0.1)℃,APD温度稳定在(5±0.005)℃,上位机可准确反映温度的数值和变化趋势.整套恒温系统能够满足分布式光纤拉曼测温系统的温控要求.%Aiming at the temperature requirements of the calibrating fiber and avalanche photo diode ( APD) in distributed optical fiber Raman temperature sensing system, a constant temperature control system with high precision was designed based on STM32. This system adopted upper and lower computers. The upper computer can set the temperature value and display tempera?ture, meanwhile, the lower computer can control the incubator temperature with the PID algorithm according to the instruction from the upper computer. The experiment results show that the calibrating fiber and the APD can stabilize at(10±0.1)℃ and(5± 0. 005)℃ at room temperature of 22 ℃.respectively, Besides, the upper computer can accurately reflect the temperature value and its variation trend. It is reasonably believed that the complete set of thermostatic device can meet the temperature demands in distributed optical fiber Raman temperature sensing system.【期刊名称】《仪表技术与传感器》【年(卷),期】2017(000)005【总页数】4页(P71-74)【关键词】STM32;高精度;温度;STemwin;PID算法【作者】黄琦;韩广源;吴瑞东;刘毅;杨世强;张明江;张建忠【作者单位】太原理工大学新型传感器与智能控制教育部与山西省重点实验室,山西太原 030024;太原理工大学物理与光电工程学院,光电工程研究所,山西太原030024;太原世诺科技有限责任公司,山西太原 030024;太原理工大学新型传感器与智能控制教育部与山西省重点实验室,山西太原 030024;太原理工大学物理与光电工程学院,光电工程研究所,山西太原 030024;太原理工大学新型传感器与智能控制教育部与山西省重点实验室,山西太原 030024;太原理工大学物理与光电工程学院,光电工程研究所,山西太原 030024;太原世诺科技有限责任公司,山西太原030024;太原理工大学新型传感器与智能控制教育部与山西省重点实验室,山西太原030024;太原理工大学物理与光电工程学院,光电工程研究所,山西太原 030024;太原理工大学新型传感器与智能控制教育部与山西省重点实验室,山西太原 030024;太原理工大学物理与光电工程学院,光电工程研究所,山西太原 030024【正文语种】中文【中图分类】TP273分布式光纤拉曼测温系统是利用后向拉曼散射光的温度效应进行温度探测的新型传感系统[1]。
第60卷第1-2期2021年1月Vol.60No.1-2Jan.2021中山大学学报(自然科学版)ACTA SCIENTIARUM NATURALIUM UNIVERSITATIS SUNYATSENI高精度温度传感、测量与控制技术综述*文明轩,李珏,王成,凌晨,辜凌云,丁延卫“天琴计划”教育部重点实验室,中山大学天琴中心&物理与天文学院,天琴前沿科学中心,国家航天局引力波研究中心,广东珠海519082摘要:空间引力波探测中,高精度温度传感、测量与控制作为探测卫星的关键技术之一,技术指标高,实现难度大。
本文主要针对高精度温度传感、测量与控制,介绍了传统铂电阻和NTC热敏电阻温度传感特性、新型光纤温度传感关键技术以及基于PID的温度控制算法,对温度传感、测量以及控制算法特性进行了分析归纳。
关键词:铂电阻;NTC热敏电阻;光纤光栅;温度传感;温度控制中图分类号:V57文献标志码:A文章编号:0529-6579(2021)01-0146-10Review of high precision temperature sensing,measurement and control technologyWEN Mingxuan,LI Jue,WANG Cheng,LING Chen,GU Lingyun,DING YanweiMOE Key Laboratory of TianQin Mission,TianQin Research Center for Gravitational Physics&School of Physics and Astronomy,Frontiers Science Center for TianQin,CNSA Research Center for Gravitational Waves,Sun Yat-sen University(Zhuhai Campus),Zhuhai519082,ChinaAbstract:In space gravitational wave detection,high precision temperature sensing,measurement and control are some of the key technologies for satellites,with high technical requirements and implementa⁃tion difficulty.This paper mainly focuses on high precision temperature sensing,measurement and con⁃trol,introducing the sensing characteristics of traditional platinum resistance and NTC thermistor temper⁃ature sensors,and new optical fiber temperature sensing and PID temperature control algorithms.The characteristics of temperature sensing,measurement and control algorithms are analyzed and summa⁃rized.Key words:platinum resistance;NTC thermistor;fiber Bragg grating;temperature sensing;temperature controlDOI:10.13471/ki.acta.snus.2020.11.11.2020B127*收稿日期:2020-11-11录用日期:2020-12-29网络首发日期:2021-01-08基金项目:广东省基础与应用基础研究重大项目(2019B030302001);国家自然科学基金(11973100)作者简介:文明轩(1996年),男;研究方向:低噪声温度测量;E-mail:wmx3@李珏(1996年),女;研究方向:光纤温度传感;E-mail:lijue6@(以上两位作者为共同第一作者)通信作者:丁延卫(1976年),男;研究方向:重力/引力卫星总体设计与机热一体化;E-mail:dingyw3@mail.sysu.第1-2期文明轩,等:高精度温度传感、测量与控制技术综述1引言温度作为基本的热力学性质之一,其影响广泛存在于各领域,对温度的传感、测量与控制具有重要意义。
高精度测量系统的研究与应用一、系统概述高精度测量系统主要用于精确测量各种物理量,如分厘米、毫米、微米或纳米级别的长度、角度、电流、电压、温度等指标。
其中,长度测量是使用最广泛的一种测量方式。
高精度测量系统最主要的功能是通过使用先进的传感器技术,以及高精度的测量读数系统,实现对物理量进行高精度测量。
二、系统组成高精度测量系统的组成包括传感器、信号转换、数字显示等多个部分。
其中,传感器负责将被测物理量转化为电信号或其他形式的信号,而经过信号转换后,这些数据可以显示在显示屏上,完成高精度测量。
传感器:高精度测量系统通过使用各种不同类型的传感器来实现对被测对象进行测量。
传感器将被测物理量转换成电信号或其他形式信号,然后通过线缆输出传输给信号转换模块。
信号转换:高精度测量系统的信号转换主要负责将传感器输出的信号进行转换,使其能够被数字显示模块较好地信号化,并输出人类可读的测量数据。
信号转换模块采取不同的技术手段,包括模拟信号转换,ADC(模数转换器)以及DSP(数字信号处理器)等方式。
数字显示:高精度测量系统中的数字显示模块主要负责将经过信号转换器转换后的数字信号,转换为人可读的内容,通过数字显示屏输出,完成对测量结果的展示。
三、测量原理高精度测量系统以精度高、稳定性强为特点,所测出的结果具有高可靠性和重复性。
在测量物理量时,高精度测量系统往往采用不同的方法来确保数据的准确性。
常见的测量方法包括:差分测量法、平均值法、交叉比较法和自校准法等。
差分测量法:差分测量法需要对被测物理量进行多次测量,在每次测量前,预先测量(或测算)一个确定值。
差分测量法的精度主要取决于测量的稳定性和设备精度的均衡度,因此,差分测量法通常用于要求高精度和可靠性的测量。
平均值法:平均值法是基于多个测量值平均计算出得出“平均值”,再对多个测量值进行比较,从而得到稳定性较高的准确值。
平均值法虽然不同于差分测量法,但也存在着局限性:当待测量存在异常值时,平均值法并不是很有效。
温差控制是如何实现的原理温差控制是一种使温度差保持在合适范围内的的控制方法。
这一方法被广泛地应用于生产制造和实验研究中,例如用于半导体物理实验和某些科学实验中。
温差控制的主要原理基于能量守恒定律和热传导定律,它需要一个控制系统来监测和维持温度差。
控制系统中一般包括传感器、比较器、执行器和电路板等部分。
下面将从这几个方面详细介绍温差控制的原理:1. 传感器传感器是温差控制系统中最基本的元件之一,它的作用是测量监测器件之间的温度差。
常用的传感器有瑞利传感器和热电偶。
瑞利传感器是一种高灵敏度的传感器,它能精确地测量温度差,在不同的应用场合下,它的灵敏度与测量范围都是可以调整的。
热电偶则是另外一种常用的传感器,它的原理是利用不同金属之间的伏安效应来测量温度差,通常由两种不同金属焊接而成。
2. 比较器比较器是一种电子元件,它的作用是把传感器的输出与设定值进行比较,从而判断温度差是否在允许范围内。
如果不在范围内,比较器就会发出信号通知执行器进行调整。
常用的比较器有电压比较器和I²C比较器,其中电压比较器主要是将两个电压值进行比较,从而得出输出信号。
I²C比较器应用更广泛的是在比较数字信号的情况下,通过比较输入端的电压,判断输入信号是否符合要求。
3. 执行器执行器的作用是根据比较器信号来输出对应的控制信号,以调整被测体的温度差。
根据被测体的不同,执行器可分为电热丝加热器、热电器,Peltier 冷却器等。
电热丝加热器利用高温电阻线圈产生的热量来达到加热温度和控制温度差的目的。
它的优点是价格便宜,加热迅速,但是容易出现热爆破;热电器是一种能够将热能转换为电能或者将电能转换为热能的材料,它的原理是利用热电效应,通过热电偶的温度差来产生电流,进而驱动执行器进行控制。
但是它的缺点是价格高,控制过程较慢。
还有一种执行器是Peltier冷却器,它是一种利用特殊的电子器件制冷的方法。
在这种方法中,冷凝器和蒸发器被置于一个温差控制环境中,当需要降低某个传感器的温度时,电子单元会把温度较低的面板放在要冷却的传感器上,而把另一个面板放在散热器上,从而可以达到降低温度的目的。
高精度位置测量系统的误差校正与优化引言:高精度位置测量系统在现代科技与工业领域中具有广泛的应用。
然而,由于各种原因,这些系统往往无法完全避免误差的出现。
因此,误差校正与优化成为了提高系统测量精度的关键。
本文将探讨高精度位置测量系统的误差产生原因,以及其校正与优化的方法。
一、误差产生原因1. 仪器本身的误差:高精度位置测量系统中的测量仪器,例如光电编码器、激光测距仪等,它们的制造和使用过程中难免存在一定的误差。
这些误差可能来自传感器的非线性特性、稳定性等方面。
2. 环境因素的影响:高精度位置测量系统的使用环境也会对其测量结果产生一定的影响。
例如,温度变化会导致材料的膨胀和收缩,进而引起系统中的尺寸变化,从而产生测量误差。
3. 测量对象的特性:被测量对象的表面性质、形状、材料等因素也会影响系统的测量结果。
例如,光学系统在测量反射率较低的表面时容易受到散射影响,导致测量误差增大。
二、误差校正方法1. 系统校正:高精度位置测量系统的误差校正可以通过对整个系统进行校准来实现。
校准过程中需要针对各个部件的误差来源进行分析,并进行相应的修正。
例如,对于光电编码器而言,可以通过标定光栅尺来确定刻槽数和分辨率,从而减小刻度误差。
2. 数学模型校正:除了对整个系统进行校准外,还可以利用数学模型进行误差校正。
通过建立系统的数学模型,将实际测量结果与模型进行对比,从而得出误差值,再通过修正算法对测量结果进行校正。
例如,激光测距仪测量时会受到大气折射的影响,可以通过引入大气折射系数来修正测量结果。
三、误差优化方法1. 优化传感器性能:提高传感器的性能可以减小测量误差。
例如,采用高分辨率的光电编码器、高功率的激光发射器等,可以提高系统的测量精度。
2. 环境控制:对测量系统所处的环境进行控制,能够减小环境因素对测量结果的影响。
例如,通过恒温控制,使测量系统在稳定的温度条件下进行测量。
3. 数据处理算法的优化:优化数据处理算法可以提高系统测量的精度。
基于Cu50的精确温度测量系统张志坚;杨雷【摘要】在基于热电阻的温度测量过程中,由于元器件差异和漂移的影响,会大大降低温度测量准确度;针对这一问题,提出了一种自校正技术的4电阻测量法,通过比较4组测量信号的相对大小来求得被测热电阻的电阻值,进而计算出温度值;该方法的优点是可以抵消测量电路中漂移和元器件差异的影响,从而实现在不同的温度环境下的高精度的温度测量;通过计量炉的实测的数据比较,测量误差小于0.063℃,表明了该方法的有效性和正确性.【期刊名称】《计算机测量与控制》【年(卷),期】2014(022)005【总页数】3页(P1355-1356,1367)【关键词】Cu50;温度测量;温漂;自校正【作者】张志坚;杨雷【作者单位】东莞理工学院电子工程学院,广东东莞 523808;东莞理工学院电子工程学院,广东东莞 523808【正文语种】中文【中图分类】TM930.120 引言Cu50是铜热电阻,它的阻值会随着温度的变化而改变。
当Cu50在0℃的时候它的阻值为50Ω,它的阻值会随着温度上升而成匀速增长的。
因其生产方便,价格低廉,采集电路简单等特点而广泛应用了各类温度测量场合[1-2]。
一般此类热电阻常使用惠斯通电桥或开尔文电桥来进行测量[3-5],该方法虽然能保证一定成测量精度,但对温漂的抑制能力较差,不适合于温差较大的场合使用。
因此为了抑制漂移,实现高精度的稳定测量,例如需要实现准确度为±0.2℃,分辨率为0.05℃温度精确测量通常有如下3种方式:(1)通过检测测量电路的自身工作环境来进行温度补偿[6-8];(2)通过采集大量的数据进行分析并使用复杂的算法来拟合修正[9-11];(3)将热电阻的电阻值测量转换为频率或其它参量进行测量[12-13]。
这3种方式虽然最终都能实现温度的高精度测量,但都会增加电路设计的复杂性或是软件处理的繁杂性,特别是不利用大规模的生产使用。
文中提出了一种采用新技术的测温方法,配合简化了的数据处理,能有效地克服温漂的影响,取得了较好的测温效果。