11认识三角形(第2课时)
- 格式:doc
- 大小:42.00 KB
- 文档页数:2
人教版数学四年级下册第五单元《三角形的认识》(第2课
时)教案
一、教学目标
1.能够认识、描述和绘制不同位置的三角形。
2.能够用图形工具绘制和标出三角形的各边、角。
二、教学重点
1.认识和描述不同位置的三角形。
2.绘制三角形图形并标出各边、角。
三、教学难点
1.区分和描述三角形的不同位置与属性。
2.熟练使用图形工具绘制三角形。
四、教学准备
1.课件:三角形的图片和示例
2.黑板、彩色粉笔
3.学生课桌上的绘图工具
4.学生练习册
五、教学过程
1. 导入新知识
教师在黑板上绘制一个三角形,并引导学生观察,并让学生讨论三角形的特点。
2. 学习新知识
1.介绍不同位置的三角形:等边三角形、等腰三角形等。
2.演示如何绘制不同位置的三角形,并标出各边、角。
3.让学生在练习册上尝试绘制和描述各种三角形。
3. 练习与巩固
让学生进行练习,绘制几个不同位置的三角形,并交流彼此的画法,并纠正错误。
4. 拓展知识
学生可以尝试在其他几何图形中找出三角形,并描述其特点。
5. 课堂小结
教师对本节课所学内容进行小结,并让学生总结三角形的特点和绘制方法。
六、作业布置
布置作业:完成练习册上的练习题,绘制指定的不同位置的三角形。
七、教学反思与改进
教师可以根据学生的表现和理解情况,适时调整教学方法和内容,使学生更好地掌握三角形的基本知识。
以上为本节课的教学内容,希望同学们能够认真学习,掌握相关知识。
《认识三角形》第2课时教学设计4、总结归纳,定义:(1)三条边各不相等的三角形叫作不等边三角形(2)有两条边相等的三角形叫作等腰三角形(3)三条边都相等的三角形叫作等边三角形等边三角形和等腰三角形之间有什么关系?(等边三角形是特殊的等腰三角形)5、我们可以把三角形按照三边情况进行分类(不等边三角形三角形按边分类]笠殛—缶等腰三角形I等腰二角形I等边三角形(二)三角形的三边关系。
1、探究活动1:如下图,点A为小明家,点B为学校,点C为邮局,小明想:我要到学校怎么走呀?哪一条路最近呀?为什么?学生讨论后个别回答,然后师生共同小结。
路线1:从A到C再到B的路线走;路线2:沿线段AB走请问:路线1、路线2哪条路程较短,你能说出根据吗?解:路线2较短;两点之间线段最短。
≡由此可以得到:4- BOAB ÷BO AC ÷ AR > RO2、议一议:(1)在同一个三角形中,任意两边之和与第三边有什么大小关系?(2)在同一个三角形中,任意两边之差与第三边有什么大小关系?(3)三角形三边有怎样的不等关系?通过动手实验(数学课本第85页“做一做”)同学们可以得到哪些结论? 理由是什么?3、探究活动2:做一做分别量出下面三个三角形的三边长度,并填入空格内。
Z∖ N 2(1) (2) (3)⑴a=,b=, C=。
(2) a=,b=,C=O⑶a=,b=,C=O根据你的测量结果,计算三角形的任意两边之差,并与第三边比较,完成填空:(1) a- b c,c- b a,c- a b⑵b—a c, c-a b,b—c a。
⑶a- c b,a— b c,b—c a。
你能得到什么结论?再画一些三角形试一试。
得出结论:三角形任意两边之差小于第三边。
4、归纳总结三角形任意两边之和大于第三边。
三角形任意两边之差小于第三边。
(三)典例分析1、例I有两根长度分别为5cm和8cm的木棒,用长度为2cm的木棒与它们能摆成三角形吗?为什么?长度为13Cm的木棒呢?解:取长度为2cm的木棒时,由于2+5=7<8,出现了两边之和小于第三边的情况,所以它们不能摆成三角形.取长度为13cm的木棒时,由于5+8=13, 出现了两边之和等于第三边的情况,所以它们也不能摆成三角形。
1.1认识三角形(第2课时)
【教学目标】
知识目标:1、使学生知道三角形的角平分线、中线与高线的定义,并能熟练地画出这两种线段
2、能应用三角形的角平分线、中线与高线的性质解决简单的数学问题
能力目标:培养学生形成观察辨别、全面分析、归纳概括等数学方法,培养学生的思维方法和良好的思维品质。
情感目标:通过提问、讨论等多种教学活动,树立自信、自强、自主感,激发学习数学的兴趣,增强学好数学的信心。
【教学重点、难点】
教学重点、难点:三角形的角平分线、中线的定义及画图是本节课的重点,利用三角形的角平分线和中线的性质解决有关的计算问题是本节难点。
【教学过程】
一、创设情景,引入新课
引出概念:在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间
的线段叫做三角形的角平分线。
(
二、合作交流,探讨结论
请同学回答下面的问题
在一个三角形中有几条角平分线?请每位同学在不同类型的三角形中画一画,与同伴交流你发现了什么?
在此过程中,教师可以用几何画板制作的动画演示,在锐角三角形、钝角三角形、直
角三角形中三条角平分线的特点。
(三条线都在三角形的内部,三条线相交于一点)
任意画一个∆ABC,用刻度尺画BC的中点D,连结A D
引出概念:在三角形中,连结一个顶点与它对边中点的线段,叫做这个三角形的中线。
(让学的中线的形状也是线段生理解三角形)
三角形的角平分线、中线、高线用几何语言表达方式:如图在∆ABC中,∠BAD=∠
CAD,AD是∆ABC的角平分线;在∆ABC中,D是BC
∆ABC中BC边上的中线。
三、应用概念,解决问题
范例1 如图AE是∆ABC的角平分线,已知∠B=450∠C=600
求下列角的大小∠BAE ; ∠AEB
首先让学生仔细观察图形,分析已知条件,教师作好引导
四、巩固练习
请学生课内练习1、2教师分析总结
五、作业布置
课后请同学做好书本中的作业。