永磁电机磁路计算基础
- 格式:ppt
- 大小:552.50 KB
- 文档页数:46
现代永磁电机调速理论第3章磁路计算磁路计算的目的是通过计算磁路中的磁通、磁势和磁场分布等参数,来确定电机的磁路结构。
在磁路计算中会用到磁场分析、磁路闭合等理论和方法。
下面分别介绍这些理论和方法。
首先,磁场分析是磁路计算的基础。
通过磁场分析可以确定电机中的磁通分布情况,包括主磁通和漏磁量。
磁场分析可以采用有限元法、解析法等方法。
有限元法是一种常用的数值计算方法,能够有效地解决磁场分析问题。
解析法是基于磁场的解析解,可以得到更准确的结果,但计算复杂度较高。
其次,磁路闭合是磁路计算中另一个重要的理论。
在电机中,为了保持磁场稳定和有效,磁路必须是闭合的。
磁路闭合可以通过磁路连接和磁路绕组来实现。
磁路连接是指磁路中不同部分通过磁性材料连接在一起,形成一个闭合回路;磁路绕组是指通过绕制线圈和导线来形成磁路中的回路。
磁路闭合是保证电机正常运行和提高效率的重要手段。
最后,磁路计算还需要考虑材料的磁性能和磁性参数。
磁性材料是电机中的重要组成部分,其磁化特性和磁导率等参数会影响电机的性能和效率。
磁性材料包括铁芯材料和永磁材料两种。
铁芯材料具有较高的磁导率和良好的导磁性能,能够有效地传导磁通和提高磁场强度。
永磁材料则具有较高的剩磁和矫顽力,能够产生强磁场并保持稳定。
总之,磁路计算是现代永磁电机调速理论中的重要内容,通过磁场分析、磁路闭合和材料磁性能的考虑,可以确定电机的基本参数和结构,进而影响到电机的性能和效率。
磁路计算对于电机设计和优化具有重要的指导意义。
永磁电机设计计算手册第一章永磁电机基础知识概述1.1 永磁电机的发展历史永磁电机是利用永磁材料产生永磁场,通过与电流的相互作用产生转矩从而实现动力传递的一种电动机。
永磁电机的历史可以追溯到 19 世纪初,当时英国科学家 Faraday 通过实验最早发现磁场与导体之间的相互作用。
随后,人们利用永磁材料和电流相互作用的原理,逐渐发展出了永磁电机的原型,并不断进行改进,使其性能不断提升。
20 世纪以来,随着先进材料和技术的不断发展,永磁电机在各个领域都得到了广泛应用,并成为电动机领域的重要一员。
1.2 永磁电机的分类永磁电机可以根据永磁材料的不同以及结构形式的不同进行分类。
按照永磁材料的不同,永磁电机可以分为硬磁永磁电机和软磁永磁电机两大类。
硬磁永磁电机采用永磁材料为NdFeB 等硬磁材料,具有较高的磁场强度和稳定性;而软磁永磁电机采用永磁材料为SmCo 等软磁材料,具有较高的抗腐蚀性和较低的磁场强度。
按照结构形式的不同,永磁电机可以分为平内磁式、平外磁式、内转子外定子式等多种形式。
1.3 永磁电机的工作原理永磁电机的工作原理主要是通过永磁材料产生的永磁场与电流之间的相互作用,产生电磁转矩,从而实现动力传递。
永磁电机一般由定子、转子、永磁体、绕组等部件组成。
当给定子绕组通电产生磁场时,永磁体的永磁场与定子绕组的磁场相互作用,产生电磁转矩,从而驱动转子运动。
1.4 永磁电机的优点与传统的电磁电机相比,永磁电机具有体积小、重量轻、效率高、响应快、寿命长等诸多优点。
首先,永磁电机采用永磁材料产生永磁场,无需外部电流激励,因此没有电励磁损耗,效率更高。
其次,永磁电机由于采用永磁材料,所以具有较小的体积和重量,适合于一些对重量和体积要求较高的场合。
此外,永磁电机具有瞬时响应快、寿命长、维护方便等优点。
因此,在诸如汽车、家电、工业生产等领域得到了广泛应用。
1.5 永磁电机的应用领域永磁电机由于其体积小、重量轻、效率高、响应快等优点,因此在各个领域都得到了广泛应用。
1.1 磁路结构和设计计算永磁发电机与励磁发电机的最大区别在于它的励磁磁场是由永磁体产生的。
永磁体在电机中既是磁源,又是磁路的组成部分。
永磁体的磁性能不仅与生产厂的制造工艺有关,还与永磁体的形状和尺寸、充磁机的容量和充磁方法有关,具体性能数据的离散性很大。
而且永磁体在电机中所能提供的磁通量和磁动势还随磁路其余部分的材料性能、尺寸和电机运行状态而变化。
此外,永磁发电机的磁路结构多种多样,漏磁路十分复杂而且漏磁通占的比例较大,铁磁材料部分又比较容易饱和,磁导是非线性的。
这些都增加了永磁发电机电磁计算的复杂性,使计算结果的准确度低于电励磁发电机。
因此,必须建立新的设计概念,重新分析和改进磁路结构和控制系统;必须应用现代设计方法,研究新的分析计算方法,以提高设计计算的准确度;必须研究采用先进的测试方法和制造工艺。
1.2 控制问题永磁发电机制成后不需外界能量即可维持其磁场,但也造成从外部调节、控制其磁场极为困难。
这些使永磁发电机的应用范围受到了限制。
但是,随着MOSFET、IGBTT等电力电子器件的控制技术的迅猛发展,永磁发电机在应用中无需磁场控制而只进行电机输出控制。
设计时需要钕铁硼材料,电力电子器件和微机控制三项新技术结合起来,使永磁发电机在崭新的工况下运行。
1.3 不可逆退磁问题如果设计和使用不当,永磁发电机在温度过高(钕铁硼永磁)或过低(铁氧体永磁)时,在冲击电流产生的电枢反应作用下,或在剧烈的机械振动时有可能产生不可逆退磁,或叫失磁,使电机性能降低,甚至无法使用。
因而,既要研究开发适合于电机制造厂使用的检查永磁材料热稳定性的方法和装置,又要分析各种不同结构形式的抗去磁能力,以便在设计和制造时采用相应措施保证永磁式发电机不会失磁。
1.4成本问题由于稀土永磁材料目前的价格还比较贵,稀土永磁发电机的成本一般比电励磁式发电机高,但这个成会在电机高性能和运行中得到较好的补偿。
在今后的设计中会根据具体使用的场合和要求,进行性能、价格的比较,并进行结构的创新和设计的优化,以降低制造成本。
永磁电机各种电感的基础知识一、什么是自感和互感安培定律告诉我们,磁场产生的根本原因是电流——既可以是导体中的电流,也可以是永磁体中的环形电流。
也就是说,我们现在有一个线圈,给它通电之后,就会产生磁场,如下图所示:那问题就来了,线圈本身就处于自身产生的磁场中,是不是也就意味着线圈中也会产生磁通(磁链)?——答案是显而易见的,但如何来描述呢?磁通这个量对于我们来说不直观,也不好测量,既然磁通是由电流产生的那我们是不是可以借助电流来表示呢?——媒介就是电感(inductance)!所以电感的定义就是:单位是Henry(亨利),一位美国物理学家,他其实和法拉第几乎同时独立的发现了电磁感应现象,只不过呢,法拉第更早的发表了成果,就赢得了冠名权。
我们通常说的电感,严格来说应该叫自感(self inductance),即线圈自己对自己产生磁通的能力。
既然有自感,就会有互感(mutual inductance),即两个线圈之间互相产生磁通的能力。
电感为什么重要?——因为它表征了在某个特定的结构中电流产生磁场的能力,而电流是我们非常熟悉的量,如果电感确定了,我们就能很容易去研究磁场的性质,在电机中尤其如此。
二、什么是磁动势我们知道,电感的定义是由磁通(多匝为磁链)来定义的,要计算线圈电感,要首先计算线圈通电后产生的磁场,并由此计算磁链。
我们假设有以下“理想电机”:∙电机内磁路为线性,铁芯中的磁滞和涡流损耗可以忽略;∙气隙磁场的高次谐波可以忽略;∙定、转子表面光滑,齿、槽影响可以用卡式系数修正;∙直轴和交轴气隙可以不等,但是气隙的比磁导可以用平均值加二次谐波来表示;注意最后一条假设非常重要,后面我们会说。
上图表示一个定子槽内有两极整距线圈的情况,其中为流出,为流入。
由安培环路定理,我们知道其磁动势分布为:磁动势的幅值为:对方波进行傅里叶级数分析,可知其可由1、3、5,...等奇次谐波组成,其中1次谐波也称之为基波,其幅值为:上面分析的是一对极情况,现在假设是对极,每相绕组总匝数为,则A相基波幅值为:上面分析时绕组都认为是整距,且每极每相只有一个槽,实际电机很少这种情况,大多每极下面是多槽的,而且还是短距:我们一般用一个绕组因数来对基波磁动势进行修正,其幅值为:三、如何计算永磁同步电机的相电感及互感前面我们计算了基波磁动势的幅值,则其沿定子分布为:有了磁势,如果我们也能知道磁导(磁阻的倒数),那就能计算气隙磁密了。
(一) PMSM 的数学模型交流电机是一个非线性、强耦合的多变量系统。
永磁同步电机的三相绕组分布在定子上,永磁体安装在转子上。
在永磁同步电机运行过程中,定子与转子始终处于相对运动状态,永磁体与绕组,绕组与绕组之间相互影响,电磁关系十分复杂,再加上磁路饱和等非线性因素,要建立永磁同步电机精确的数学模型是很困难的。
为了简化永磁同步电机的数学模型,我们通常做如下假设:1) 忽略电机的磁路饱和,认为磁路是线性的;2) 不考虑涡流和磁滞损耗;3) 当定子绕组加上三相对称正弦电流时,气隙中只产生正弦分布的磁势,忽略气隙中的高次谐波;4) 驱动开关管和续流二极管为理想元件;5) 忽略齿槽、换向过程和电枢反应等影响。
永磁同步电机的数学模型由电压方程、磁链方程、转矩方程和机械运动方程组成,在两相旋转坐标系下的数学模型如下:(l)电机在两相旋转坐标系中的电压方程如下式所示:d d s d d c q q q s q q c d di u R i L dt di u R i L dt ωψωψ⎧=+-⎪⎪⎨⎪=++⎪⎩其中,Rs 为定子电阻;ud 、uq 分别为d 、q 轴上的两相电压;id 、iq 分别为d 、q 轴上对应的两相电流;Ld 、Lq 分别为直轴电感和交轴电感;ωc 为电角速度;ψd 、ψq 分别为直轴磁链和交轴磁链。
若要获得三相静止坐标系下的电压方程,则需做两相同步旋转坐标系到三相静止坐标系的变换,如下式所示。
cos sin 22cos()sin()3322cos()sin()33a d b q c u u u u u θθθπθπθπθπ⎛⎫ ⎪-⎛⎫⎪⎛⎫ ⎪⎪=--- ⎪ ⎪⎪⎝⎭ ⎪⎪⎝⎭ ⎪+-+⎝⎭(2)d/q 轴磁链方程: d d d f q q qL i L i ψψψ=+⎧⎪⎨=⎪⎩ 其中,ψf 为永磁体产生的磁链,为常数,0f r e ωψ=,而c r p ωω=是机械角速度,p 为同步电机的极对数,ωc 为电角速度,e0为空载反电动势,其值为每项倍。
永磁电动机计算公式大全精讲
1.电磁计算公式
a.磁通计算公式
磁通(Φ)是永磁电动机中一个重要的参数,可以根据磁感应强度(B)和磁路面积(A)进行计算,计算公式为:
Φ=B*A
b.磁动势计算公式
磁动势(F)是永磁电动机中另一个重要的参数,可以根据磁通(Φ)和磁路长度(l)进行计算,计算公式为:
F=Φ*l
c.磁感应强度计算公式
磁感应强度(B)是永磁电动机中磁场的一个参数,可以根据磁动势(F)和磁路长度(l)进行计算,计算公式为:
B=F/l
d.磁场强度计算公式
磁场强度(H)是永磁电动机中另一个磁场参数,可以根据磁动势(F)和磁路截面积(S)进行计算,计算公式为:
H=F/S
e.磁阻计算公式
磁阻(Rm)是永磁电动机中磁路的一个参数,可以根据磁动势(F)和磁通(Φ)进行计算,计算公式为:
Rm=F/Φ
f.霍尔电流计算公式
If=Ic*Kh
2.机械计算公式
a.功率计算公式
功率(P)是用来表示电动机的输出能力的参数,可以根据电流(I)和电压(V)进行计算,计算公式为:
P=I*V
b.转速计算公式
转速(N)是永磁电动机中旋转的速度,可以根据输入电压(V)和电磁转矩系数(k.Tm)进行计算,计算公式为:
N=V/(k*Tm)
c.负载计算公式
负载(TL)是指电动机所承受的外部负荷,可以根据输出功率(P)和转速(N)进行计算,计算公式为:
TL=P/N
以上是永磁电动机的计算公式的简要介绍,涵盖了电磁计算和机械计算的关键公式。
根据具体的设计要求和参数,可以使用这些公式进行计算和分析,以便更好地理解和优化永磁电动机的性能。
永磁同步电机是一种应用广泛的电动机类型,它具有高效率、高功率因数和良好的动态性能等优点,逐渐成为工业和交通运输领域的主力电机之一。
在永磁同步电机的工作过程中,反电动势是一个重要的物理现象,它与电机的磁链密切相关。
了解和计算永磁同步电机的反电动势对于电机的设计、控制和性能优化具有重要意义。
1. 反电动势的定义反电动势是指当永磁同步电机转子绕组中感应出电动势时,这个电动势的方向与外加电压或电流方向相反。
换言之,反电动势是由电机运动产生的,它产生的方向与电机转子相对于磁场的运动方向相反。
在电机运行过程中,反电动势会产生一定的电磁力,影响电机的性能和运行状况。
2. 磁链的计算在永磁同步电机中,磁链是一个关键参数,它代表了磁场的强度,直接影响着电机的性能和输出特性。
磁链的计算需要考虑电机的结构、材料、工作状态等多个因素,一般可以通过下面的公式进行计算:Φ = B * A其中,Φ代表磁链,B代表磁场强度,A代表截面积。
磁链的计算是永磁同步电机反电动势计算的基础,它为电机性能的分析和设计提供了重要的依据。
3. 反电动势的计算永磁同步电机的反电动势计算涉及多个因素,包括磁链、转子速度、感应电动势等。
一般情况下,可以通过下面的公式进行计算:E = k * Φ * ω其中,E代表反电动势,k代表比例系数,Φ代表磁链,ω代表转子角速度。
通过这个公式,可以计算出永磁同步电机在不同工作状态下的反电动势大小,从而为电机控制和性能优化提供参考。
4. 反电动势的影响反电动势对永磁同步电机的性能和控制具有重要的影响。
反电动势与电机的转速成正比,当电机转速增加时,反电动势也会增加,这会对电机的输出特性和调速性能产生影响。
反电动势还会影响电机的启动和制动过程,需要在控制系统中考虑其影响因素,以实现稳定、高效的运行。
永磁同步电机的反电动势计算是电机设计和性能优化中的重要内容,它需要综合考虑磁链、转速、电机结构等多个因素,通过合理的计算和分析,可以更好地理解电机的工作原理和特性,为电机的应用和控制提供可靠的技术支持。
永磁同步电机磁链计算永磁同步电机是一种使用永磁体作为励磁源的同步电机。
它具有高效率、高功率因数、高转矩密度等优点,在工业应用中得到广泛使用。
磁链计算是永磁同步电机设计过程中的重要环节,它关系到电机的性能和工作效果。
磁链是指通过电机磁路的磁力线,它是永磁同步电机的重要特性之一。
磁链的大小和分布对电机的性能有着直接的影响。
在永磁同步电机的设计中,磁链的计算是非常重要的一步。
永磁同步电机的磁链计算可以通过磁路分析的方法来实现。
磁路分析是一种通过计算磁路中磁通量的方法,来确定磁场分布和磁链大小的技术手段。
在磁路分析中,首先需要确定永磁体的磁场分布。
永磁体是永磁同步电机中的关键部件,它产生了稳定的磁场,为电机的正常运行提供了磁力。
在磁路分析中,可以通过永磁体的磁场分布来计算磁链的大小。
需要确定电机的磁路参数。
磁路参数包括电机的磁导率、磁阻和磁通量等。
通过计算这些参数,可以得到电机磁路中的磁链分布。
根据电机的工作条件和要求,可以确定磁链的大小和分布。
磁链的大小可以通过磁链密度来表示,它是单位面积上的磁通量。
磁链的分布可以通过磁场线来表示,磁场线是磁力线的可视化展示。
在永磁同步电机的设计中,磁链的计算是一个复杂的过程。
它需要考虑到电机的工作条件、磁路参数、永磁体的特性等因素。
同时,磁链的计算也需要考虑到电机的性能和效果,使得电机能够在设计要求下正常运行。
永磁同步电机的磁链计算是电机设计过程中的重要环节。
通过磁路分析的方法,可以确定电机磁路中的磁链分布,从而为电机的设计和性能提供参考。
磁链的计算需要考虑多个因素,包括电机的工作条件、磁路参数和永磁体的特性等。
只有在计算准确的基础上,才能设计出满足要求的永磁同步电机。
(一) PMS M的数学模型交流电机是一个非线性、强耦合的多变量系统。
永磁同步电机的三相绕组分布在定子上,永磁体安装在转子上。
在永磁同步电机运行过程中,定子与转子始终处于相对运动状态,永磁体与绕组,绕组与绕组之间相互影响,电磁关系十分复杂,再加上磁路饱和等非线性因素,要建立永磁同步电机精确的数学模型是很困难的。
为了简化永磁同步电机的数学模型,我们通常做如下假设:1) 忽略电机的磁路饱和,认为磁路是线性的;2) 不考虑涡流和磁滞损耗;3) 当定子绕组加上三相对称正弦电流时,气隙中只产生正弦分布的磁势,忽略气隙中的高次谐波;4) 驱动开关管和续流二极管为理想元件;5) 忽略齿槽、换向过程和电枢反应等影响。
永磁同步电机的数学模型由电压方程、磁链方程、转矩方程和机械运动方程组成,在两相旋转坐标系下的数学模型如下:(l)电机在两相旋转坐标系中的电压方程如下式所示:d d s d d c q q q s q q c d di u R i L dt di u R i L dt ωψωψ⎧=+-⎪⎪⎨⎪=++⎪⎩其中,R s为定子电阻;u d、uq 分别为d 、q 轴上的两相电压;i d、iq 分别为d、q 轴上对应的两相电流;Ld 、Lq 分别为直轴电感和交轴电感;ωc为电角速度;ψd 、ψq 分别为直轴磁链和交轴磁链。
若要获得三相静止坐标系下的电压方程,则需做两相同步旋转坐标系到三相静止坐标系的变换,如下式所示。
cos sin 22cos()sin()3322cos()sin()33a d b q c u u u u u θθθπθπθπθπ⎛⎫ ⎪-⎛⎫⎪⎛⎫ ⎪⎪=--- ⎪ ⎪⎪⎝⎭ ⎪⎪⎝⎭ ⎪+-+⎝⎭(2)d/q轴磁链方程: d d d f q q qL i L i ψψψ=+⎧⎪⎨=⎪⎩ 其中,ψf 为永磁体产生的磁链,为常数,0f r e ωψ=,而c r p ωω=是机械角速度,p为同步电机的极对数,ωc 为电角速度,e0为空载反电动势,其值为每项绕倍.(3)转矩方程:32e d q q d T p i i ψψ⎡⎤=-⎣⎦ 把它带入上式可得:3()233()22e f q d q d q f q d q d q T p i L L i i p i p L L i i ψψ⎡⎤=+-⎣⎦=+- 对于上式,前一项是定子电流和永磁体产生的转矩,称为永磁转矩;后一项是转 子突极效应引起的转矩,称为磁阻转矩,若Ld=Lq ,则不存在磁阻转矩,此时,转矩方程为:32e f q t q T p i k i ψ== 这里,t k 为转矩常数,32t f k p ψ=. (4)机械运动方程: m e m L d T J B T dtωω=++ 其中,m ω是电机转速,L T 是负载转矩,J 是总转动惯量(包括电机惯量和负载惯量),B 是摩擦系数.(二) 直线电机原理永磁直线同步电机是旋转电机在结构上的一种演变,相当于把旋转电机的定子和动子沿轴向剖开,然后将电机展开成直线,由定子演变而来的一侧称为初级,转子演变而来的一侧称为次级。
永磁同步电机磁链计算永磁同步电机是一种将电能转化为机械能的设备,其中磁链的计算是非常重要的一步。
磁链是指磁场通过导磁体的总通量,它是永磁同步电机工作的基础。
在计算永磁同步电机的磁链时,需要考虑磁链的产生和磁链的分布。
首先,磁链的产生是由永磁体和电流产生的磁场相互作用形成的。
永磁体产生的磁场是一个恒定的磁场,而电流产生的磁场是一个可控制的磁场。
当永磁体和电流的磁场相互作用时,就会产生一个磁链。
磁链的分布是指磁链在永磁同步电机中的分布情况。
磁链的分布受到永磁体和电流的磁场分布以及电机的结构和工作状态的影响。
磁链的分布会影响电机的性能和效率。
对于永磁同步电机的磁链计算,可以采用有限元分析方法或解析方法。
有限元分析方法是一种基于数值计算的方法,可以通过离散化电机结构和磁场方程,求解得到电机中的磁链分布。
解析方法是一种基于解析计算的方法,可以通过对电机结构和磁场方程的简化和近似,求解得到电机中的磁链分布。
在磁链计算中,需要考虑电机的结构和工作状态的影响。
电机的结构包括永磁体的形状和位置、导磁体的形状和位置以及线圈的形状和位置等。
电机的工作状态包括电机的电流和转速等。
这些因素会对磁链的分布产生影响,因此在计算磁链时需要考虑这些因素。
磁链的计算对于永磁同步电机的设计和优化非常重要。
通过计算磁链,可以了解电机中磁场的分布情况,从而评估电机的性能和效率。
在电机设计过程中,可以通过调整电机的结构和工作状态,来优化磁链的分布,从而提高电机的性能和效率。
永磁同步电机的磁链计算是电机设计和优化的重要一步。
通过计算磁链,可以了解电机中磁场的分布情况,从而评估电机的性能和效率。
在电机设计过程中,可以通过调整电机的结构和工作状态,来优化磁链的分布,从而提高电机的性能和效率。