大学物理气体的动理论习题答案
- 格式:pdf
- 大小:103.41 KB
- 文档页数:5
第十一章 气体动理论习题详细答案一、选择题1、答案:B解:根据速率分布函数()f v 的统计意义即可得出。
()f v 表示速率以v 为中心的单位速率区间内的气体分子数占总分子数的比例,而dv v Nf )(表示速率以v 为中心的dv 速率区间内的气体分子数,故本题答案为B 。
2、答案:A解:根据()f v 的统计意义和p v 的定义知,后面三个选项的说法都是对的,后面三个选项的说法都是对的,而只有而只有A 不正确,气体分子可能具有的最大速率不是p v ,而可能是趋于无穷大,所以答案A 正确。
正确。
3、答案: A 解:2rms 1.73RT v v M ==,据题意得222222221,16H O H H H O O O T T T M M M T M ===,所以答案A 正确。
正确。
4、 由理想气体分子的压强公式23k p n e =可得压强之比为:可得压强之比为:A p ∶B p ∶C p =n A kA e ∶n B kB e ∶n C kC e =1∶1∶1 5、 氧气和氦气均在标准状态下,二者温度和压强都相同,而氧气的自由度数为5,氦气的自由度数为3,将物态方程pV RT n =代入内能公式2iE RT n =可得2iE pV =,所以氧气和氦气的内能之比为5 : 6,故答案选C 。
6、 解:理想气体状态方程PV RTn =,内能2iU RT n =(0m M n =)。
由两式得2UiP V =,A 、B 两种容积两种气体的压强相同,A 中,3i =;B 中,5i =,所以答案A 正确。
正确。
7、 由理想气体物态方程'm pV RT M=可知正确答案选D 。
8、 由理想气体物态方程pV NkT =可得气体的分子总数可以表示为PV N kT =,故答案选C 。
9、理想气体温度公式21322k m kT e u ==给出了温度与分子平均平动动能的关系,表明温度是气体分子的平均平动动能的量度。
第十章 气体动理论一、选择题参考答案1. (B) ;2. (B );3. (C) ;4. (A) ;5. (C) ;6. (B );7. (C ); 8. (C) ;9. (D) ;10. (D) ;11. (C) ;12. (B) ;13. (B) ;14. (C) ;15. (B) ;16.(D) ;17. (C) ;18. (C) ;19. (B) ;20. (B) ;二、填空题参考答案1、体积、温度和压强,分子的运动速度(或分子的动量、分子的动能)2、一个点;一条曲线;一条封闭曲线。
3. kT 21 4、1:1;4:1 5、kT 23;kT 25;mol /25M MRT 6、12.5J ;20.8J ;24.9J 。
7、1:1;2:1;10:3。
8、241092.3⨯9、3m kg 04.1-⋅10、(1)⎰∞0d )(v v v Nf ;(2)⎰∞0d )(v v v f ;(3)⎰21d )(212v v v v v Nf m 11、氩;氦12、1000m/s ; 21000m/s13、1.514、215、12M M三、计算题参考答案1.解:氧气的使用过程中,氧气瓶的容积不变,压强减小,因此可由气体状态方程得到使用前后的氧气质量,进而将总的消耗量和每小时的消耗量比较求解。
已知atm 1301=p ,atm 102=p ,atm 13=p ;L 3221===V V V ,L 4003=V 。
质量分布为1m ,2m ,3m ,由题意可得RT Mm V p 11=RT Mm V p 22= RT M m V p 333=所以该瓶氧气使用的时间为h)(6.94000.132)10130(3321321=⨯⨯-=-=-=V p V p V p m m m t 2.解:设管内总分子数为N ,由V NkT nkT p ==有 1210611)(⨯==.kT pV N (个)空气分子的平均平动动能的总和= J 10238-=NkT 空气分子的平均转动动能的总和 = J 106670228-⨯=.NkT 空气分子的平均动能的总和 = J 10671258-⨯=.NkT3.解:(1)根据状态方程RT MRT MV m p RT M m pV ρ==⇒=得 ρp M RT = ,pRT M ρ= 气体分子的方均根速率为1-2s m 49533⋅===ρp M RT v (2)气体的摩尔质量为1-2m ol kg 108.2⋅⨯==-p RTM ρ所以气体为N 2或CO 。
第八章 气体动理论习题解答8-1 设想太阳是由氢原子组成的理想气体,其密度可当成是均匀的。
若此理想气体的压强为1.35×1014 Pa 。
试估计太阳的温度。
(已知氢原子的质量m = 1.67×10-27kg ,太阳半径R = 6.96×108 m ,太阳质量M = 1.99×1030kg )解:mR MVm M mn 3π)3/4(===ρK 1015.1)3/4(73⨯===Mkm R nk p T π8-2 目前已可获得1.013×10-10 Pa 的高真空,在此压强下温度为27℃的1cm 3体积内有多少个气体分子?解:3462310/cm 1045.2103001038.110013.1⨯=⨯⨯⨯⨯===---V kT p nV N 8-3 容积V =1 m 3的容器内混有N 1=1.0×1023个氢气分子和N 2=4.0×1023个氧气分子,混合气体的温度为 400 K ,求: (1) 气体分子的平动动能总和;(2)混合气体的压强。
解:(1)J 1014.41054001038.123)(233232321⨯=⨯⨯⨯⨯⨯=+=-∑N N kT tε(2)Pa kT n p i323231076.21054001038.1⨯=⨯⨯⨯⨯==-∑8-4 储有1mol 氧气、容积为1 m 3的容器以v =10 m/s 的速率运动。
设容器突然停止,其中氧气的80%的机械运动动能转化为气体分子热运动动能。
问气体的温度及压强各升高多少?(将氧气分子视为刚性分子)解:1mol 氧气的质量kg 10323-⨯=M ,5=i 由题意得T R Mv ∆=⋅ν25%80212K 102.62-⨯=∆⇒TT R V p RT pV ∆=⋅∆⇒=νν pa 52.0102.631.82=⨯⨯=∆=∆∴-VTR p 8-5 一个具有活塞的容器中盛有一定量的氧气,压强为1 atm 。
华理工大学大学物理习题之气体动理论习题详解一、选择题1.用分子质量m ,总分子数N ,分子速率v 和速率分布函数()f v 表示的分子平动动能平均值为 [ ](A )0()Nf v dv ∞⎰; (B )201()2mv f v dv ∞⎰;(C )201()2mv Nf v dv ∞⎰;(D )01()2mvf v dv ∞⎰。
答案:B解:根据速率分布函数()f v 的统计意义即可得出。
()f v 表示速率以v 为中心的单位速率区间内的气体分子数占总分子数的比例,而dv v Nf )(表示速率以v 为中心的dv 速率区间内的气体分子数,故本题答案为B 。
2.下列对最概然速率p v 的表述中,不正确的是 [ ](A )p v 是气体分子可能具有的最大速率;(B )就单位速率区间而言,分子速率取p v 的概率最大; (C )分子速率分布函数()f v 取极大值时所对应的速率就是p v ;(D )在相同速率间隔条件下分子处在p v 所在的那个间隔内的分子数最多。
答案:A解:根据()f v 的统计意义和p v 的定义知,后面三个选项的说法都是对的,而只有A 不正确,气体分子可能具有的最大速率不是p v ,而可能是趋于无穷大,所以答案A 正确。
3.有两个容器,一个盛氢气,另一个盛氧气,如果两种气体分子的方均根速率相等,那么由此可以得出下列结论,正确的是 [ ](A )氧气的温度比氢气的高; (B )氢气的温度比氧气的高;(C )两种气体的温度相同; (D )两种气体的压强相同。
答案:Arms v =222222221,16H O H H H O O O T T T M M M T M ===,所以答案A 正确。
4.如下图所示,若在某个过程中,一定量的理想气体的热力学能(内能)U 随压强p 的变化关系为一直线(其 延长线过U —p 图的原点),则该过程为[ ](A )等温过程; (B )等压过程; (C )等容过程; (D )绝热过程。
《大学物理》第8章气体动理论练习题及答案练习1一、选择题1. 在一密闭容器中,储有A、B、C三种理想气体,处于平衡状态。
A种气体的分子数密度为n1,它产生的压强为p1,B种气体的分子数密度为2n1,C种气体的分子数密度为3n1,则混合气体的压强p为( )A. 3p1;B. 4p1;C. 5p1;D. 6p1.2. 若理想气体的体积为V,压强为p,温度为T,一个分子的质量为m,k为玻尔兹曼常量,R为普适气体常量,则该理想气体的分子数为( )A. pVm⁄; B. pVkT⁄; C. pV RT⁄; D. pV mT⁄。
3. 一定量某理想气体按pV2=恒量的规律膨胀,则膨胀后理想气体的温度( )A. 将升高;B. 将降低;C. 不变;D. 升高还是降低,不能确定。
二、填空题1. 解释下列分子动理论与热力学名词:(1) 状态参量:;(2) 微观量:;(3) 宏观量:。
2. 在推导理想气体压强公式中,体现统计意义的两条假设是:(1) ;(2) 。
练习2一、选择题1. 一个容器内贮有1摩尔氢气和1摩尔氦气,若两种气体各自对器壁产生的压强分别为p 1和p 2,则两者的大小关系是 ( )A. p 1>p 2;B. p 1<p 2;C. p 1=p 2;D. 不能确定。
2. 两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数为n ,单位体积内的气体分子的总平动动能为E k V ⁄,单位体积内的气体质量为ρ,分别有如下关系 ( )A. n 不同,E k V ⁄不同,ρ不同;B. n 不同,E k V ⁄不同,ρ相同;C. n 相同,E k V ⁄相同,ρ不同;D. n 相同,E k V ⁄相同,ρ相同。
3. 有容积不同的A 、B 两个容器,A 中装有刚体单原子分子理想气体,B 中装有刚体双原子分子理想气体,若两种气体的压强相同,那么,这两种气体的单位体积的内能E A 和E B 的关系( )A. E A <E B ;B. E A >E B ;C. E A =E B ;D.不能确定。
第十二章 气体动理论12-1 一容积为10L 的真空系统已被抽成1.0×10-5 mmHg 的真空,初态温度为20℃。
为了提高其真空度,将它放在300℃的烘箱内烘烤,使器壁释放出所吸附的气体,如果烘烤后压强为1.0×10-2 mmHg ,问器壁原来吸附了多少个气体分子?解:由式nkT p =,有3202352/1068.15731038.1760/10013.1100.1m kT p n 个⨯≈⨯⨯⨯⨯⨯==-- 因而器壁原来吸附的气体分子数为个183201068.110101068.1⨯=⨯⨯⨯==∆-nV N12-2 一容器内储有氧气,其压强为1.01⨯105 Pa ,温度为27℃,求:(l )气体分子的数密度;(2)氧气的密度;(3)分子的平均平动动能;(4)分子间的平均距离。
(设分子间等距排列)分析:在题中压强和温度的条件下,氧气可视为理想气体。
因此,可由理想气体的物态方程、密度的定义以及分子的平均平动动能与温度的关系等求解。
又因可将分子看成是均匀等距排列的,故每个分子占有的体积为30d V =,由数密度的含意可知d n V ,10=即可求出。
解:(l )单位体积分子数325m 1044.2-⨯==kT p n(2)氧气的密度3m kg 30.1-⋅===RT pM V m ρ(3)氧气分子的平均平动动能J 1021.62321k -⨯==kT ε(4)氧气分子的平均距离m1045.3193-⨯==n d12-3 本题图中I 、II 两条曲线是两种不同气体(氢气和氧气)在同一温度下的麦克斯韦分子速率分布曲线。
试由图中数据求:(1)氢气分子和氧气分子的最概然速率;(2)两种气体所处的温度。
分析:由M RT v /2p =可知,在相同温度下,由于不同气体的摩尔质量不同,它们的最概然速率p v 也就不同。
因22O H M M <,故氢气比氧气的p v 要大,由此可判定图中曲线II 所标13p s m 100.2-⋅⨯=v 应是对应于氢气分子的最概然速率。
第七章 气体动理论7–1 一定量的理想气体,在保持温度T 不变的情况下,使压强由P 1增大到P 2,则单位体积内分子数的增量为_________________。
解:由nkT P =,可得单位体积内分子数的增量为kTP P kT P n 12-=∆=∆ 7–2 一个具有活塞的圆柱形容器中贮有一定量的理想气体,压强为P ,温度为T ,若将活塞压缩并加热气体,使气体的体积减少一半,温度升高到2T ,则气体压强增量为_______,分子平均平动动能增量为_________。
解:设经加热和压缩后气体的压强为P ',则有TV P T PV 22/⨯'=所以P P 4='压强增量为P P P P 3=-'=∆由分子平均平动动能的计算公式kT 23=ε知分子平均平动动能增量为kT 23。
7–3 从分子动理论导出的压强公式来看,气体作用在器壁上的压强,决定于 和 。
解:由理解气体的压强公式k 32εn P =,可知答案应填“单位体积内的分子数n ”,“分子的平均平动动能k ε”。
7–4 气体分子在温度T 时每一个自由度上的平均能量为 ;一个气体分子在温度T 时的平均平动动能为 ;温度T 时,自由度为i 的一个气体分子的平均总动能为 ;温度T 时,m /M 摩尔理想气体的内能为 。
解:kT 21;kT 23;kT i2;RT i M m 27–5 图7-1所示曲线为处于同一温度T 时氦(原子量4)、氖(原子量20)和氩(原子量40)三种气体分子的速率分布曲线,其中曲线(a )是__________气分子的速率分布曲线; 曲线(c )是__________气分子的速率分布曲线。
解:在相同温度下,对不同种类的气体,分子质量大的,速率分布曲线中的最慨然速率p v 向量值减小方向迁移。
可得图7-1中曲线(a )是氩气分子的速率分布曲线,图7-1中曲线(c )是氦气分子的速率分布曲线。
7–6 声波在理想气体中传播的速率正比于气体分子的方均根速率。
5-1 若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻尔兹曼常数,R 为摩尔气体常数,则该理想气体的分子数为( )。
(A )PV m (B )PV kT (C )PV RT (D ) PVmT解:由N p nkT kT V ==得,pVN kT=,故选B 5-2 两个体积相同的容器,分别储有氢气和氧气(视为刚性气体),以1E 和2E 分别表示氢气和氧气的内能,若它们的压强相同,则( )。
(A )12E E = (B )12E E > (C )12E E < (D ) 无法确定 解:pV RT ν=,式中ν为摩尔数,由于两种气体的压强和体积相同,则T ν相同。
又刚性双原子气体的内能52RT ν,所以氢气和氧气的内能相等,故选A 5-3 两瓶不同种类的气体,分子平均平动动能相同,但气体分子数密度不同,则下列说法正确的是( )。
(A )温度和压强都相同 (B )温度相同,压强不同 (C )温度和压强都不同(D )温度相同,内能也一定相等解:所有气体分子的平均平动动能均为32kT ,平均平动动能相同则温度相同,又由p nkT =可知,温度相同,分子数密度不同,则压强不同,故选B5-4 两个容器中分别装有氦气和水蒸气,它们的温度相同,则下列各量中相同的量是( )。
(A )分子平均动能 (B )分子平均速率 (C )分子平均平动动能 (D )最概然速率解:分子的平均速率和最概然速率均与温度的平方根成正比,与气体摩尔质量的平方根成反比,两种气体温度相同,摩尔质量不同的气体,所以B 和D 不正确。
分子的平均动能2i kT ε=,两种气体温度相同,自由度不同,平均动能则不同,故A 也不正确。
而所有分子的平均平动动能均为k 32kT ε=,只要温度相同,平均平动动能就相同,如选C 5-5 理想气体的压强公式 ,从气体动理论的观点看,气体对器壁所作用的压强是大量气体分子对器壁不断碰撞的结果。