指数函数经典教案
- 格式:doc
- 大小:392.49 KB
- 文档页数:7
一、教学目标1. 知识与技能:- 理解指数函数的概念及其图像特点。
- 掌握指数函数的性质,包括单调性、奇偶性和周期性。
- 学会求指数函数的值域和定义域。
2. 过程与方法:- 通过实例分析,引导学生观察、比较和归纳指数函数的性质。
- 通过小组合作,培养学生的探究能力和团队协作精神。
3. 情感态度与价值观:- 培养学生对数学学习的兴趣,激发学生的求知欲。
- 引导学生认识到数学在生活中的应用价值。
二、教学重点与难点1. 教学重点:- 指数函数的概念及其图像特点。
- 指数函数的性质,特别是单调性和周期性。
2. 教学难点:- 理解指数函数的周期性。
- 应用指数函数的性质解决实际问题。
三、教学过程(一)导入新课1. 回顾幂的概念,引导学生思考幂的运算规律。
2. 提出问题:是否存在一种函数,其定义域和值域均为实数集,且满足特定的运算规律?(二)新课讲授1. 指数函数的定义:- 引入指数函数的概念,以自然对数为例,解释指数函数的构成。
- 通过实例展示指数函数的图像,分析其特点。
2. 指数函数的性质:- 单调性:通过比较指数函数的斜率,引导学生理解指数函数的单调性。
- 奇偶性:分析指数函数的定义域和值域,判断其奇偶性。
- 周期性:通过实例分析,引导学生理解指数函数的周期性,并掌握求周期的方法。
3. 指数函数的应用:- 通过实例展示指数函数在生活中的应用,如人口增长、细菌繁殖等。
- 引导学生运用指数函数的性质解决实际问题。
(三)巩固练习1. 基础练习:判断指数函数的性质,如单调性、奇偶性和周期性。
2. 应用练习:运用指数函数解决实际问题。
(四)课堂小结1. 回顾本节课所学内容,强调指数函数的定义、性质和应用。
2. 引导学生总结学习指数函数的方法和技巧。
四、作业布置1. 完成课后习题,巩固所学知识。
2. 搜集生活中指数函数的实例,并进行分析。
五、教学反思1. 教师在教学过程中,应注重引导学生主动探究,培养学生的思维能力。
精讲高中数学:指数函数教案一、教学目标1. 了解指数函数的定义和性质;2. 掌握指数函数的基本运算法则;3. 能够解决涉及指数函数的简单问题;4. 培养学生的逻辑思维和推理能力。
二、教学内容1. 指数函数的定义:介绍指数函数的基本概念和符号表示;2. 指数函数的性质:讲解指数函数的增减性、奇偶性和周期性;3. 指数函数的图像:通过绘制指数函数的图像来观察其特点;4. 指数函数的运算法则:介绍指数函数的乘法法则、除法法则和幂法则;5. 指数函数的应用:通过实际问题来应用指数函数的知识。
三、教学过程1. 导入新课:通过引入一个实际问题,让学生体会指数函数的重要性和应用价值;2. 指数函数的定义和性质:讲解指数函数的定义和基本性质,引导学生进行思考和讨论;3. 指数函数的图像:通过绘制指数函数的图像,让学生观察其特点,加深对指数函数的理解;4. 指数函数的运算法则:介绍指数函数的运算法则并通过练题进行巩固;5. 指数函数的应用:通过解决实际问题,让学生应用指数函数的知识,并培养他们的解决问题的能力;6. 总结与拓展:对本节课的内容进行总结,并提供一些拓展练题供有兴趣的学生进一步。
四、教学资源1. 教科书:提供相关的知识点和例题;2. 幻灯片:用于展示图像和重点知识点;3. 黑板和白板:用于讲解和解题过程;4. 计算器:辅助计算指数函数的值。
五、教学评估1. 课堂练:通过课堂练题,检查学生对指数函数的理解程度;2. 个人作业:布置一些个人作业,让学生巩固和拓展所学内容;3. 小组讨论:组织小组讨论,让学生互相交流和分享解题方法。
六、教学反思本节课通过引入实际问题和图像展示的方式,激发了学生的兴趣,同时通过练题和应用问题的解决,培养了学生的解决问题的能力。
但在教学过程中,发现部分学生对指数函数的概念理解还不够深入,需要更多的实例和练来帮助他们巩固。
因此,在今后的教学中,会增加更多的练和实例,以提高学生的效果。
高中数学指数函数教案教学目标:1. 了解指数函数的定义及性质;2. 掌握指数函数的基本运算规则;3. 能够解决一些简单的指数函数相关问题。
教学重点:1. 指数函数的定义和性质;2. 指数函数的基本运算规则。
教学难点:1. 指数函数的应用问题解决。
教学准备:1. 黑板、彩色粉笔、擦拭布;2. 讲义、习题册。
教学过程:一、导入(5分钟)引导学生回顾乘方的概念,并提出乘方中底数为正数而指数为正整数时的运算规则。
二、学习指数函数(25分钟)1. 提出指数函数的定义,并解释指数函数的性质。
2. 讲解指数函数的图像、定义域和值域。
3. 引导学生观察指数函数的性质,讨论指数函数的增减性和奇偶性。
三、探索指数函数的基本运算规则(20分钟)1. 讲解指数幂的乘法和除法规则。
2. 给学生一些练习题,让他们熟练掌握指数函数的基本运算规则。
四、应用(15分钟)1. 联系实际问题,让学生解决一些与指数函数相关的应用问题。
2. 带领学生一起讨论解题思路和方法。
五、总结(5分钟)1. 总结本节课学习的内容:指数函数的基本性质和运算规则。
2. 帮助学生巩固所学,并提出下节课的预习内容。
教学延伸:1. 引导学生自主探索更复杂的指数函数问题,并尝试解决。
2. 鼓励学生进行更多的练习,加深对指数函数的理解和掌握。
教学反思:1. 对课堂教学过程中学生的学习情况和思维习惯进行及时的观察和分析,及时调整教学方法和策略。
2. 鼓励学生发表自己的观点,促进课堂气氛的活跃和互动。
指数函数图像与性质教学设计精选10篇指数函数及其性质教学设计解读篇一《2.1.2 指数函数及其性质(2 》教学设计【学习目标】1.知识与技能①.熟练掌握指数函数概念、图象、性质。
②.掌握指数函数的性质及应用。
③.理解指数函数的简单应用模型, 认识数学与现实生活及其他学科的联系。
2.情感、态度、价值观①让学生了解数学来自生活,数学又服务于生活的哲理。
②培养学生观察问题,分析问题的能力。
③体会具体到一般数学讨论方式及数形结合的思想;3.过程与方法让学生通过观察函数图象,进而研究指数型函数的性质, 主要通过小组讨论、小组展示、及时评价完成整个导学过程【学习重点】熟练掌握指数函数的的概念,图象和性质及指数型增长模型。
【学习难点】用数形结合的方法从具体到一般地探索、指数型函数的图象,性质。
【导学过程】教学内容师生互动设计意图互查每组两名同学互查识记内容教师提问记忆方法,学生回答,其他同学可以相互借鉴。
复习指数函数的图象及性质,为本节课中的内容储备知识基础。
展系吗?→请用一句话概括下图是指数函数2x y =, 3xy =, 0.3x y =, 0.5x y =的图象,请指出它们各自对应的图象。
教师随时点评,引导,欣赏,鼓励。
每组选派一名代表课堂上展示交流成果,组内同学补充。
其他同学可让学生从图象直观的理解指数函数,从变化中找到不变的规律,提高学生的总结归纳能示交流结论:针对展示交流成果提出问题,进一步加深理解。
力教学内容师生互动设计意图展示交流探究二:指数形式的函数定义域、值域:求下列函数的定义域、值域:(121 x y =+,(2y =,(3 1 4 2x y-=.首先提问给出的三个函数是否是指数函数,加深学生对指数函数概念的理解。
学生小组讨论,交流。
每组选派一名代表课堂上展示交流成果,组内同学补充。
其他同学可针对展示交流成果提出问题,进一步加深理解。
所给函数虽然不是指数函数,但是由指数函数得到的复合函数,其性质与指数函数密切相关,通过训练能够培养学生的创造性思维能力。
《指数函数》教案及说明教学目标:1.了解指数函数的概念及特点。
2.掌握指数函数的基本性质和运算法则。
3.能够应用指数函数解决实际问题。
教学准备:1.教材:《数学》教科书指数函数相关知识。
2.教具:黑板、彩色粉笔、教案、课件。
3.学具:纸、笔、计算器。
教学内容:一、指数函数的概念1.引入-贴近生活:指数函数在生活中的应用,如化学反应速率、人口增长、传染病传播等。
2.定义-初步认识:引导学生理解指数函数的定义,即$f(x)=a^x$,其中$a$为底数,$x$为指数。
3.图像-形象认识:通过绘制不同底数的指数函数图像,让学生感受指数函数的特点。
二、指数函数的性质1.增减性质-探索规律:让学生探究当底数大于1或小于1时指数函数的增减规律。
2.奇偶性质-分析对称:引导学生分析指数函数的奇偶性质及对称性。
3.单调性-推理结论:通过图像和实例讨论指数函数的单调性。
三、指数函数的运算1.指数运算-灵活应用:介绍指数运算的基本法则,如底数相同指数相加、乘法规则等。
2.对数运算-运用技巧:引导学生掌握对数运算与指数运算的关系,解决相关问题。
四、应用题训练1.实际问题-连接生活:设计一些实际问题让学生应用指数函数解答,如投资增长、疾病传播等。
2.综合题目-巩固训练:布置一些综合性的题目,检验学生对指数函数的理解和运用能力。
教学过程:一、引入1.通过引入生活中的例子,引起学生对指数函数的兴趣。
2.提出问题:你知道指数函数是什么吗?它有什么特点?二、概念讲解1.讲解指数函数的定义及表达形式。
2.通过示例让学生理解指数函数的意义。
三、性质探究1.讨论指数函数的增减性、奇偶性和单调性。
2.通过实例和图像展示不同性质的指数函数。
四、运算规律1.教授指数运算基本规则,让学生掌握指数函数的运算方法。
2.引导学生理解对数运算与指数运算之间的关系。
五、应用题训练1.分组讨论实际问题,并给出解法。
2.布置应用题训练,让学生巩固所学内容。
指数函数说课教案一、教学目标1. 理解指数函数的定义和性质2. 掌握指数函数的图像和特点3. 能够应用指数函数解决实际问题二、教学内容1. 指数函数的定义2. 指数函数的性质3. 指数函数的图像4. 实际问题中的应用三、教学重点与难点1. 重点:指数函数的定义和性质2. 难点:指数函数的图像和实际问题中的应用四、教学方法1. 讲授法:讲解指数函数的定义、性质和图像2. 案例分析法:分析实际问题中的应用3. 互动教学法:引导学生参与讨论和解答问题五、教学过程1. 导入:引入指数函数的概念,激发学生兴趣2. 新课导入:讲解指数函数的定义和性质3. 案例分析:分析实际问题中的应用4. 图像展示:展示指数函数的图像,引导学生观察和分析5. 练习与讨论:布置练习题,组织学生讨论和解答问题6. 总结与归纳:总结指数函数的特点和应用,强调重点和难点7. 作业布置:布置课后作业,巩固所学知识六、教学评估1. 课堂问答:通过提问了解学生对指数函数定义和性质的理解程度。
2. 练习题:设计一些关于指数函数的练习题,检查学生对知识的掌握和应用能力。
3. 小组讨论:让学生分组讨论指数函数的图像和实际问题中的应用,通过小组合作促进学生之间的交流和学习。
七、教学资源1. 教学PPT:制作精美的PPT,展示指数函数的定义、性质和图像。
2. 实际问题案例:收集一些与指数函数相关的实际问题,用于课堂分析和讨论。
3. 练习题库:准备一定量的练习题,包括选择题、填空题和解答题,用于课堂练习和课后作业。
八、教学进度安排1. 第1周:介绍指数函数的定义和性质。
2. 第2周:讲解指数函数的图像和特点。
3. 第3周:分析实际问题中的应用。
4. 第4周:进行练习和讨论,巩固所学知识。
九、教学反思在教学过程中,要注意观察学生的反应和学习情况,及时调整教学方法和进度,以提高学生的学习效果。
对于学生的反馈和问题,要认真对待并及时给予解答和指导。
要不断更新和完善教学资源,保持教学内容的新颖性和实用性。
《指数函数的概念》教案一、教学目标:1. 理解指数函数的定义和基本性质。
2. 学会运用指数函数解决实际问题。
3. 培养学生的数学思维能力和解决问题的能力。
二、教学内容:1. 指数函数的定义与表达式2. 指数函数的性质3. 指数函数的应用三、教学重点与难点:1. 重点:指数函数的定义、性质及应用。
2. 难点:指数函数在实际问题中的应用。
四、教学方法:1. 采用问题驱动法,引导学生主动探究指数函数的定义和性质。
2. 用实例讲解指数函数在实际问题中的应用,提高学生的学习兴趣。
3. 利用数形结合法,帮助学生直观地理解指数函数的性质。
五、教学过程:1. 引入:通过生活中的实例,如细胞分裂、放射性衰变等,引导学生思考指数增长的特点。
2. 讲解:介绍指数函数的定义、表达式,并通过PPT展示指数函数的图像,让学生直观地感受指数函数的性质。
3. 实践:让学生分组讨论,每组选取一个实际问题,运用指数函数进行解决,并分享解题过程和答案。
4. 总结:对本节课的内容进行总结,强调指数函数的性质和应用。
5. 作业:布置相关练习题,巩固所学内容。
教案仅供参考,具体实施时可根据实际情况进行调整。
六、教学评价:1. 评价指标:学生对指数函数定义的理解、指数函数性质的掌握以及实际问题中的应用能力。
2. 评价方法:课堂练习、小组讨论、课后作业和考试。
3. 评价内容:a. 指数函数的定义及其表达式;b. 指数函数的单调性、奇偶性、周期性等性质;c. 运用指数函数解决实际问题的能力。
七、教学资源:1. PPT课件:展示指数函数的图像、实例及应用;2. 练习题:涵盖指数函数的定义、性质和应用;3. 实际问题案例:用于引导学生运用指数函数解决实际问题;4. 小组讨论工具:如白板、彩笔等。
八、教学进度安排:1. 课时:2课时(90分钟);2. 教学环节:引入(10分钟)、讲解(40分钟)、实践(25分钟)、总结(10分钟)、作业布置(5分钟)。
指数函数教案(优秀5篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如合同协议、条据文书、策划方案、总结报告、党团资料、读书笔记、读后感、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!指数函数教案(优秀5篇)作为一名优秀的教育工作者,时常要开展教案准备工作,教案有助于顺利而有效地开展教学活动。
《指数函数的概念》教案一、教学目标1. 理解指数函数的定义和性质。
2. 掌握指数函数的图像和特征。
3. 能够运用指数函数解决实际问题。
二、教学内容1. 指数函数的定义:指数函数是一种形式的函数,形如f(x) = a^x,其中a 是底数,x 是指数。
2. 指数函数的性质:底数a > 1 时,函数随着x 的增大而增大;底数0 < a < 1 时,函数随着x 的增大而减小。
3. 指数函数的图像:指数函数的图像通常是一条曲线,当底数a > 1 时,曲线向上凸起;当底数0 < a < 1 时,曲线向下凸起。
4. 指数函数的应用:解决实际问题中涉及增长、衰减、人口增长等方面的问题。
三、教学重点与难点1. 重点:指数函数的定义和性质。
2. 难点:指数函数的图像和应用。
四、教学方法1. 讲授法:讲解指数函数的定义、性质和图像。
2. 案例分析法:分析实际问题,运用指数函数解决。
3. 互动讨论法:引导学生提问、思考、交流。
五、教学过程1. 引入:通过生活实例,如人口增长、放射性衰变等,引导学生思考指数函数的应用。
2. 讲解:讲解指数函数的定义、性质和图像,结合实例进行分析。
3. 练习:让学生绘制指数函数的图像,观察和分析函数特征。
4. 应用:运用指数函数解决实际问题,如人口增长预测、放射性物质衰减等。
六、教学评价1. 评价指标:学生对指数函数定义、性质和图像的理解程度,以及运用指数函数解决实际问题的能力。
2. 评价方法:课堂提问、练习题、小组讨论、课后作业等。
3. 评价结果:根据学生的表现,给予及时反馈,鼓励优点,指出不足,促进学生的学习进步。
七、教学资源1. 教材:指数函数的相关章节。
2. 课件:用于展示指数函数的定义、性质和图像。
3. 练习题:用于巩固所学知识,提高解题能力。
4. 实际问题案例:用于引导学生运用指数函数解决实际问题。
八、教学进度安排1. 第一课时:介绍指数函数的定义和性质。
指数函数教案(精选多篇) 第一篇:指数函数教案.doc一.思考题1.学来回答其变化的过程和答案2.通过ppt来讲解思考题二、问题1.直接说出指数函数2.同学来思考问题23.给出指数函数的概念三.例题1.念下题目,叫学生思考几秒钟,请学生来回答。
2.对学生的回答进行分析四.思考1.第一个思考,引导学生说出图像的做法,2.请学生来画出4个图像3.对图像进行补充4.从函数的三要素来分析图像的性质5.从图像上的到恒过的点及单调性6.进行底数互为倒数的函数图像的比较、得到对称的性质(换算)7.进行底数不同大小的比较,说明其大小的变化五.例题先思考,再请同学来回答,再进行点评六、总结七、布置作业第二篇:《指数函数概念》教案《指数函数概念》教案(一)情景设置,形成概念1、引例1:折纸问题:让学生动手折纸观察:①对折的次数x与所得的层数y之间的关系,得出结论y=2x②对折的次数x与折后面积y之间的关系(记折前纸张面积为1),得出结论y=(1/2)x引例2:《庄子。
天下篇》中写到:“一尺之棰,日取其半,万世不竭”。
请写出取x次后,木棰的剩留量与y与x的函数关系式。
2、形成概念:形如y=ax(a>0且a≠1)的函数称为指数函数,定义域为x∈r。
提出问题:为什么要限制a>0且a≠1?这一点让学生分析,互相补充。
分a﹤=0,a=1讨论。
1)a<0时,y=(-3)x对于x=1/2,1/4,??(-3)x无意义。
2)a=0时,x>0时,ax=0;x≤0时无意义。
3)a=1时,a= 1=1是常量,没有研究的必要。
(二)发现问题、深化概念问题:判断(转载需注明来源:)下列函数是否为指数函数。
1)y=-3x2)y=31/x3) y=31+x4) y=(-3)x5) y=3-x=(1/3) x1、1)ax的前面系数为1;2)自变量x在指数位置;3)a>0且a≠1。
指数函数教案(精选多篇)第一篇:指数函数教案.doc一.思考题1.来回答其变化的过程和答案2.过ppt来讲解思考题二、问题1.接说出指数函数2.学来思考问题23.出指数函数的概念三.例题1.下题目,叫学生思考几秒钟,请学生来回答。
2.学生的回答进行分析四.思考1.第一个思考,引导学生说出图像的做法,2.学生来画出4个图像3.图像进行补充4.函数的三要素来分析图像的性质5.图像上的到恒过的点及单调性6.行底数互为倒数的函数图像的比较、得到对称的性质(换算)7.行底数不同大小的比较,说明其大小的变化五.例题先思考,再请同学来回答,再进行点评六、总结七、布置作业第二篇:《指数函数概念》教案《指数函数概念》教案(一)情景设置,形成概念1、引例1:折纸问题:让学生动手折纸观察:①对折的次数x与所得的层数y之间的关系,得出结论y=2x②对折的次数x与折后面积y之间的关系(记折前纸张面积为1),得出结论y=(1/2)x引例2:《庄子。
天下篇》中写到:“一尺之棰,日取其半,万世不竭”。
请写出取x次后,木棰的剩留量与y与x的函数关系式。
2、形成概念:形如y=ax(a>0且a≠1)的函数称为指数函数,定义域为x∈r。
提出问题:为什么要限制a>0且a≠1?这一点让学生分析,互相补充。
分a﹤=0,a=1讨论。
1)a<0时,y=(-3)x对于x=1/2,1/4,??(-3)x无意义。
2)a=0时,x>0时,ax=0;x≤0时无意义。
3)a=1时,a= 1=1是常量,没有研究的必要。
(二)发现问题、深化概念问题:判断下列函数是否为指数函数。
1)y=-3x2)y=31/x3) y=31+x4) y=(-3)x5) y=3-x=(1/3) x1、1)ax的前面系数为1; 2)自变量x在指数位置; 3)a>0且a≠1。
2、问题中4)y=(-3)x的判定,引出上面讨论的问题:即指数函数的概念中为什么要规定a>0且a≠1。
第一章:指数函数的引入1.1 指数函数的概念引导学生回顾有理数的乘方运算,引入指数函数的概念。
通过实际例子,让学生理解指数函数是形如y = a^x 的函数,其中a 是底数,x 是指数。
1.2 指数函数的性质讲解指数函数的单调性,即当a > 1 时,函数随着x 的增加而增加;当0 < a < 1 时,函数随着x 的增加而减少。
讲解指数函数的平移性质,即当x 增加b 个单位时,函数图像向左平移b 个单位;当y 增加c 个单位时,函数图像向上平移c 个单位。
第二章:指数函数的图像与性质2.1 指数函数的图像通过绘制指数函数的图像,让学生直观地理解指数函数的特点。
讲解指数函数图像的渐近线,即当x 趋向于正无穷时,函数值趋向于正无穷;当x 趋向于负无穷时,函数值趋向于0。
2.2 指数函数的性质讲解指数函数的奇偶性,即当a 为正偶数时,函数为偶函数;当a 为正奇数时,函数为奇函数。
讲解指数函数的周期性,即当a 为有理数时,函数具有周期性;当a 为无理数时,函数无周期性。
第三章:指数函数的应用通过实际例子,讲解指数函数在增长率和衰减率中的应用,如人口增长、放射性衰变等。
引导学生运用指数函数解决实际问题,如预测未来的人口数量。
3.2 指数函数的优化讲解指数函数在优化问题中的应用,如最大值和最小值的求解。
引导学生运用指数函数解决实际问题,如最大化投资收益。
第四章:指数函数与其他函数的关系4.1 指数函数与对数函数的关系讲解指数函数与对数函数的互为反函数的关系,即如果y = a^x,则x = log_a(y)。
通过实际例子,让学生理解指数函数和对数函数在实际问题中的应用,如解方程、计算复合利息等。
4.2 指数函数与多项式函数的关系讲解指数函数与多项式函数的合成关系,即如果y = a^x,则y = f(g(x))。
通过实际例子,让学生理解指数函数和多项式函数在实际问题中的应用,如函数图像的合成。
第五章:指数函数的综合应用5.1 指数函数在几何中的应用讲解指数函数在几何中的应用,如计算指数函数的导数、求解极值等。
《指数函数》的优秀教案•相关推荐《指数函数》的优秀教案(精选7篇)作为一名人民教师,常常要根据教学需要编写教案,教案是保证教学取得成功、提高教学质量的基本条件。
教案应该怎么写才好呢?下面是小编整理的《指数函数》的优秀教案,欢迎大家分享。
《指数函数》的优秀教案篇1教学目标:1.进一步理解指数函数的性质;2.能较熟练地运用指数函数的性质解决指数函数的平移问题;教学重点:指数函数的性质的应用;教学难点:指数函数图象的平移变换.教学过程:一、情境创设1.复习指数函数的概念、图象和性质练习:函数y=ax(a0且a1)的定义域是_____,值域是______,函数图象所过的定点坐标为.若a1,则当x0时,y1;而当x0时,y1.若00时,y1;而当x0时,y1.2.情境问题:指数函数的性质除了比较大小,还有什么作用呢?我们知道对任意的a0且a1,函数y=ax的图象恒过(0,1),那么对任意的a0且a1,函数y=a2x1的图象恒过哪一个定点呢?二、数学应用与建构例1解不等式:(1);(2);(3);(4).小结:解关于指数的不等式与判断几个指数值的大小一样,是指数性质的运用,关键是底数所在的范围.例2说明下列函数的图象与指数函数y=2x的图象的关系,并画出它们的示意图:(1);(2);(3);(4).小结:指数函数的平移规律:y=f(x)左右平移y=f(x+k)(当k0时,向左平移,反之向右平移),上下平移y=f(x)+h(当h0时,向上平移,反之向下平移).练习:(1)将函数f(x)=3x的图象向右平移3个单位,再向下平移2个单位,可以得到函数的图象.(2)将函数f(x)=3x的图象向右平移2个单位,再向上平移3个单位,可以得到函数的图象.(3)将函数图象先向左平移2个单位,再向下平移1个单位所得函数的解析式是.(4)对任意的a0且a1,函数y=a2x1的图象恒过的定点的坐标是.函数y=a2x—1的图象恒过的定点的坐标是.小结:指数函数的定点往往是解决问题的突破口!定点与单调性相结合,就可以构造出函数的简图,从而许多问题就可以找到解决的突破口.(5)如何利用函数f(x)=2x的图象,作出函数y=2x和y=2|x2|的图象?(6)如何利用函数f(x)=2x的图象,作出函数y=|2x—1|的图象?小结:函数图象的对称变换规律.例3已知函数y=f(x)是定义在R上的奇函数,且x0时,f(x)=1—2x,试画出此函数的图象.例4求函数的最小值以及取得最小值时的x值.小结:复合函数常常需要换元来求解其最值.练习:(1)函数y=ax在[0,1]上的最大值与最小值的和为3,则a等于;(2)函数y=2x的值域为;(3)设a0且a1,如果y=a2x+2ax—1在[—1,1]上的最大值为14,求a的值;(4)当x0时,函数f(x)=(a2—1)x的值总大于1,求实数a的取值范围.三、小结1.指数函数的性质及应用;2.指数型函数的定点问题;3.指数型函数的草图及其变换规律.四、作业:课本P55—6,7.五、课后探究(1)函数f(x)的定义域为(0,1),则函数的定义域为。
初中数学指数函数教案教学目标:1. 理解指数函数的概念和性质。
2. 学会求解指数函数的相关问题。
3. 能够运用指数函数解决实际问题。
教学重点:1. 指数函数的概念和性质。
2. 指数函数的实际应用。
教学难点:1. 指数函数的性质的理解和应用。
教学准备:1. 教学课件或黑板。
2. 指数函数的相关例题和练习题。
教学过程:一、导入(5分钟)1. 引入指数函数的概念,通过举例说明指数函数的定义和表达形式。
2. 引导学生思考指数函数与幂函数的关系。
二、新课讲解(15分钟)1. 讲解指数函数的性质,包括单调性、奇偶性、周期性等。
2. 通过示例和练习题,让学生理解和掌握指数函数的性质。
3. 讲解指数函数的实际应用,如人口增长、放射性衰变等。
三、课堂练习(15分钟)1. 让学生独立完成练习题,巩固对指数函数的理解和应用。
2. 引导学生思考指数函数在其他领域的应用,如金融、医学等。
四、总结和反思(5分钟)1. 让学生总结指数函数的概念和性质。
2. 引导学生思考指数函数在实际问题中的应用和意义。
教学延伸:1. 进一步学习对数函数,理解指数函数和对数函数的关系。
2. 探索指数函数在其他领域的应用,如计算机科学、物理学等。
教学反思:本节课通过导入、新课讲解、课堂练习和总结反思等环节,让学生学习了指数函数的概念和性质,并了解了指数函数在实际问题中的应用。
在教学过程中,要注意引导学生主动参与,鼓励他们提出问题和解决问题。
同时,也要注重练习题的设置,让学生通过实际操作巩固对指数函数的理解。
高一数学指数函数教案汇总6篇高一数学指数函数教案汇总6篇教案对于老师是重要的。
学习可以说很枯燥,记公式做题,做大量的类型题。
这时候,如果教师有一份明确的说课稿,将会大大提升教学效率,下面小编给大家带来关于高一数学指数函数教案,希望会对大家的工作与学习有所帮助。
高一数学指数函数教案篇1教学目标:(1)知识与技能:了解集合的含义,理解并掌握元素与集合的“属于”关系、集合中元素的三个特性,识记数学中一些常用的的数集及其记法,能选择自然语言、列举法和描述法表示集合。
(2)过程与方法:从圆、线段的垂直平分线的定义引出“集合”一词,通过探讨一系列的例子形成集合的概念,举例剖析集合中元素的三个特性,探讨元素与集合的关系,比较用自然语言、列举法和描述法表示集合。
(3)情感态度与价值观:感受集合语言的意义和作用,培养合作交流、勤于思考、积极探讨的精神,发展用严密谨慎的集合语言描述问题的习惯。
教学重难点:(1)重点:了解集合的含义与表示、集合中元素的特性。
(2)难点:区别集合与元素的概念及其相应的符号,理解集合与元素的关系,表示具体的集合时,如何从列举法与描述法中做出选择。
教学过程:【问题1】在初中我们已经学习了圆、线段的垂直平分线,大家回忆一下教材中是如何对它们进行定义的[设计意图]引出“集合”一词。
【问题2】同学们知道什么是集合吗请大家思考讨论课本第2页的思考题。
[设计意图]探讨并形成集合的含义。
【问题3】请同学们举出认为是集合的例子。
[设计意图]点评学生举出的例子,剖析并强调集合中元素的三大特性:确定性、互异性、无序性。
【问题4】同学们知道用什么来表示一个集合,一个元素吗集合与元素之间有怎样的关系[设计意图]区别表示集合与元素的的符号,介绍集合中一些常用的的数集及其记法。
理解集合与元素的关系。
【问题5】“地球上的四大洋”组成的集合可以表示为{太平洋、大西洋、印度洋、北冰洋},“方程(x-1)(x+2)=0的所有实数根”组成的集[设计意图]引出并介绍列举法。
教案:初中指数函数教学目标:1. 了解指数函数的定义和特点。
2. 学会用指数函数表示和解决实际问题。
3. 掌握指数函数的图像和性质。
教学重点:1. 指数函数的定义和特点。
2. 指数函数的图像和性质。
教学难点:1. 理解指数函数的定义和特点。
2. 掌握指数函数的图像和性质。
教学准备:1. PPT课件。
2. 几何画板。
教学过程:一、导入(5分钟)1. 引入指数函数的概念,通过举例说明指数函数的用途和实际意义。
2. 引导学生思考指数函数的定义和特点。
二、探究指数函数的定义和特点(15分钟)1. 学生分组讨论,总结指数函数的定义和特点。
2. 教师引导学生归纳总结,得出指数函数的定义和特点。
三、学习指数函数的图像和性质(15分钟)1. 教师利用PPT课件和几何画板展示指数函数的图像,引导学生观察和分析。
2. 学生分组讨论,总结指数函数的性质。
3. 教师引导学生归纳总结,得出指数函数的性质。
四、应用指数函数解决实际问题(15分钟)1. 教师提出实际问题,引导学生用指数函数表示和解决。
2. 学生分组讨论,提出解决方案。
3. 教师引导学生归纳总结,得出解决实际问题的方法。
五、巩固练习(10分钟)1. 教师提出练习题,学生独立完成。
2. 教师选取部分学生的作业进行讲解和点评。
六、总结和反思(5分钟)1. 教师引导学生总结本节课的学习内容和收获。
2. 学生提出问题和建议。
教学延伸:1. 进一步学习指数函数的应用,如人口增长、放射性物质衰变等。
2. 探索指数函数与其他函数的关系和联系。
教学反思:本节课通过导入、探究、学习、应用、巩固和总结的过程,使学生掌握了指数函数的定义、特点、图像和性质。
在教学过程中,教师引导学生积极参与、分组讨论、独立思考,提高了学生的动手能力和合作意识。
同时,通过实际问题的解决,使学生体会到了数学与生活的紧密联系。
但在教学过程中,也发现部分学生对指数函数的理解和应用仍有困难,需要在今后的教学中加强引导和辅导。
指数函数教案:轻松掌握数学难点教学目标:1. 理解指数函数的定义和性质;2. 学会运用指数函数解决实际问题;3. 提高数学思维能力和解决问题的能力。
教学内容:一、指数函数的定义与性质1. 引入指数函数的概念;2. 讲解指数函数的性质;二、指数函数的图像与性质1. 绘制常见指数函数的图像;2. 分析指数函数图像的性质;3. 引导学生通过图像理解指数函数的单调性、奇偶性等性质。
三、指数函数的实际应用1. 引入实际应用问题;2. 讲解如何运用指数函数解决实际问题;3. 引导学生练习运用指数函数解决实际问题。
四、指数函数的求解与变换1. 讲解指数函数的求解方法;2. 讲解指数函数的变换规律;3. 引导学生运用求解和变换方法解决实际问题。
五、巩固练习与拓展提高1. 设计针对性练习题;2. 引导学生进行小组讨论和合作解答;教学资源:1. 教学PPT;2. 指数函数图像资料;3. 练习题和答案。
教学过程:1. 引入新课:通过生活实例或问题引入指数函数的概念;2. 讲解与演示:讲解指数函数的定义与性质,展示指数函数的图像;3. 练习与讨论:设计练习题,引导学生进行自主学习和小组讨论;5. 拓展提高:引导学生运用指数函数解决实际问题,提高解决问题的能力。
教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况;2. 练习题解答:评估学生练习题的完成情况,检查理解程度;3. 实际问题解决:评估学生在解决实际问题时的运用能力;4. 小组讨论:评估学生在小组讨论中的合作意识和解决问题的能力。
六、指数函数的求解与变换(续)1. 进一步讲解指数函数的求解方法,包括指数方程和指数不等式的求解;2. 引导学生掌握指数函数的变换规律,如复合函数的求解和函数图像的平移;3. 通过例题和练习题,巩固学生对指数函数求解与变换的掌握。
七、指数函数与对数函数的关系1. 介绍指数函数与对数函数的互为反函数的关系;2. 讲解指数函数和对数函数在数学和实际应用中的相互转化;3. 引导学生通过举例理解指数函数和对数函数的联系与区别。
指数函数的图像和性质教案设计第一章:指数函数的定义与性质1.1 指数函数的定义引导学生回顾函数的概念,引入指数函数的定义。
通过实际例子,让学生理解指数函数的形式和特点。
1.2 指数函数的性质分析指数函数的单调性,奇偶性,周期性等基本性质。
通过图表和实际例子,让学生直观地理解指数函数的性质。
第二章:指数函数的图像2.1 指数函数图像的特点引导学生绘制简单的指数函数图像,观察其特点。
分析指数函数图像的渐近线和拐点等特殊点。
2.2 指数函数图像的应用通过实际例子,让学生了解指数函数图像在实际问题中的应用,如人口增长、放射性衰变等。
第三章:指数函数的导数3.1 指数函数的导数公式引导学生回顾导数的基本概念,引入指数函数的导数公式。
通过例题和练习,让学生掌握指数函数的导数计算方法。
3.2 指数函数的单调性分析指数函数的单调性,引导学生理解导数与单调性的关系。
通过实际例子,让学生了解如何利用导数判断指数函数的单调性。
第四章:指数函数的极限4.1 指数函数的极限定义引导学生回顾极限的概念,引入指数函数的极限定义。
通过实际例子,让学生理解指数函数在趋近于无穷大或无穷小时的极限值。
4.2 指数函数的极限性质分析指数函数的极限性质,如单调性和连续性。
通过练习题,让学生掌握指数函数极限的计算方法。
第五章:指数函数的应用5.1 指数函数在实际问题中的应用通过实际例子,让学生了解指数函数在实际问题中的应用,如人口增长、放射性衰变等。
引导学生运用指数函数解决实际问题,培养学生的应用能力。
5.2 指数函数在其他学科中的应用引导学生了解指数函数在其他学科中的应用,如物理学中的放射性衰变、生物学中的种群增长等。
培养学生的跨学科思维和综合运用能力。
第六章:指数函数与对数函数的关系6.1 对数函数的定义引导学生回顾对数函数的概念,引入对数函数的定义。
通过实际例子,让学生理解对数函数的形式和特点。
6.2 指数函数与对数函数的关系分析指数函数与对数函数的互为反函数关系。
教学目标:1. 知识与技能:理解指数函数的概念,掌握指数函数的基本性质,能够运用指数函数的性质解决实际问题。
2. 过程与方法:通过观察、分析、归纳等方法,培养学生逻辑思维和抽象思维能力。
3. 情感态度与价值观:激发学生对数学学习的兴趣,培养学生的数学素养,提高学生的审美情趣。
教学重点:1. 指数函数的定义及性质。
2. 指数函数图像的绘制。
3. 指数函数的应用。
教学难点:1. 指数函数性质的证明。
2. 指数函数图像的绘制与识别。
教学准备:1. 多媒体课件。
2. 练习题。
教学过程:一、导入1. 复习幂函数的性质,引导学生思考幂函数与指数函数的关系。
2. 提出问题:什么是指数函数?指数函数有哪些性质?二、新课讲解1. 指数函数的定义:形如f(x) = a^x(a > 0,a ≠ 1)的函数叫做指数函数。
2. 指数函数的性质:(1)当a > 1时,函数f(x) = a^x在实数集R上单调递增;(2)当0 < a < 1时,函数f(x) = a^x在实数集R上单调递减;(3)当a = 1时,函数f(x) = a^x在实数集R上恒等于1;(4)当a ≠ 1时,函数f(x) = a^x在实数集R上不存在极值。
3. 指数函数图像的绘制:(1)确定函数的增减性;(2)求出函数的零点;(3)求出函数的拐点;(4)根据函数的增减性和拐点,绘制函数图像。
三、课堂练习1. 练习一:判断下列函数是否为指数函数。
2. 练习二:求下列函数的零点、极值和拐点。
3. 练习三:绘制下列函数的图像。
四、课堂小结1. 回顾本节课所学内容,总结指数函数的定义、性质和图像绘制方法。
2. 强调指数函数在实际生活中的应用。
五、布置作业1. 完成课后练习题。
2. 预习下一节课内容。
教学反思:本节课通过引入幂函数,引导学生理解指数函数的概念,并通过观察、分析、归纳等方法,使学生掌握指数函数的基本性质。
在课堂练习环节,通过实际操作,使学生能够熟练地绘制指数函数图像。
一、回忆知识点1 正整数指数函数2 指数概念的扩充练习1. 计算:122121(2)()248n n n ++-⋅的结果 2. 若13107310333,384,[()]n a a a a a -==⋅求的值 3、化简1111132168421212121212-----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭4、44366399a a ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭3 指数函数1.知识与技能(1)理解指数函数的概念和意义;(2)2x y =与1()2xy =的图象和性质; (3)理解和掌握指数函数的图象和性质;(4)指数函数底数a 对图象的影响;(5)底数a 对指数函数单调性的影响,并利用它熟练比较几个指数幂的大小(6)体会具体到一般数学讨论方式及数形结合的思想;重点:(1)指数函数的概念和性质及其应用.(2)指数函数底数a 对图象的影响;(3)利用指数函数单调性熟练比较几个指数幂的大小难点:(1)利用函数单调性比较指数幂的大小(2)指数函数性质的归纳,概括及其应用.讲课重点1.指数函数定义:一般地,函数xy a =(a >0且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域为R .例题:2、指数函数的性质和图像单调性(2) (1/3)-2/3, 2 -3/5 .比较大小 奇偶性指数函数指数函数是高中数学中的一个基本初等函数,有关指数函数的图象与性质的题目类型较多,同时也是学习后续数学内容的基础和高考考查的重点,本文对此部分题目类型作了初步总结,与大家共同探讨.1.比较大小例1 已知函数2()f x x bx c =-+满足(1)(1)f x f x +=-,且(0)3f =,则()x f b 与()xf c 的大小关系是_____.分析:先求b c ,的值再比较大小,要注意x x b c ,的取值是否在同一单调区间内.解:∵(1)(1)f x f x +=-,∴函数()f x 的对称轴是1x =.故2b =,又(0)3f =,∴3c =. ∴函数()f x 在(]1-,∞上递减,在[)1+,∞上递增. 若0x ≥,则321x x ≥≥,∴(3)(2)x x f f ≥; 若0x <,则321x x <<,∴(3)(2)x xf f >.综上可得(3)(2)x x f f ≥,即()()x x f c f b ≥. 评注:①比较大小的常用方法有:作差法、作商法、利用函数的单调性或中间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论.2.求解有关指数不等式例2 已知2321(25)(25)x x a a a a -++>++,则x 的取值范围是___________.分析:利用指数函数的单调性求解,注意底数的取值范围.解:∵2225(1)441a a a ++=++>≥, ∴函数2(25)x y a a =++在()-+,∞∞上是增函数, ∴31x x >-,解得14x >.∴x 的取值范围是14⎛⎫+ ⎪⎝⎭,∞. 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与1的大小,对于含有参数的要注意对参数进行讨论.3.求定义域及值域问题例3 求函数216x y -=-的定义域和值域.解:由题意可得2160x --≥,即261x -≤,∴20x -≤,故2x ≤. ∴函数()f x 的定义域是(]2-,∞. 令26x t -=,则1y t =-,又∵2x ≤,∴20x -≤. ∴2061x -<≤,即01t <≤.∴011t -<≤,即01y <≤. ∴函数的值域是[)01,.评注:利用指数函数的单调性求值域时,要注意定义域对它的影响.4.最值问题例4 函数221(01)x x y aa a a =+->≠且在区间[11]-,上有最大值14,则a 的值是_______. 分析:令x t a =可将问题转化成二次函数的最值问题,需注意换元后t 的取值范围.解:令x t a =,则0t >,函数221x x y a a =+-可化为2(1)2y t =+-,其对称轴为1t =-.∴当1a >时,∵[]11x ∈-,, ∴1x a a a ≤≤,即1t a a≤≤. ∴当t a =时,2max (1)214y a =+-=.解得3a =或5a =-(舍去);当01a <<时,∵[]11x ∈-,, ∴1x a a a ≤≤,即1a t a≤≤, ∴ 1t a =时,2max 11214y a ⎛⎫=+-= ⎪⎝⎭,解得13a =或15a =-(舍去),∴a 的值是3或13. 评注:利用指数函数的单调性求最值时注意一些方法的运用,比如:换元法,整体代入等.5.解指数方程例5 解方程223380x x +--=.解:原方程可化为29(3)80390x x ⨯-⨯-=,令3(0)x t t =>,上述方程可化为298090t t --=,解得9t =或19t =-(舍去),∴39x =,∴2x =,经检验原方程的解是2x =. 评注:解指数方程通常是通过换元转化成二次方程求解,要注意验根.6.图象变换及应用问题例6 为了得到函数935x y =⨯+的图象,可以把函数3x y =的图象( ).A .向左平移9个单位长度,再向上平移5个单位长度B .向右平移9个单位长度,再向下平移5个单位长度C .向左平移2个单位长度,再向上平移5个单位长度D .向右平移2个单位长度,再向下平移5个单位长度分析:注意先将函数935x y =⨯+转化为235x t +=+,再利用图象的平移规律进行判断. 解:∵293535x x y +=⨯+=+,∴把函数3x y =的图象向左平移2个单位长度,再向上平移5个单位长度,可得到函数935xy =⨯+的图象,故选(C ).评注:用函数图象解决问题是中学数学的重要方法,利用其直观性实现数形结合解题,所以要熟悉基本函数的图象,并掌握图象的变化规律,比如:平移、伸缩、对称等.课时二例1、化简下列各式(其中各字母均为正数).(指数幂的化简和求值)(1)(a 23·b -1)-12·a -12·b 136a ·b 5; (2)56a 13·b -2·(-3a -12b -1)÷(4a 23·b -3)12. [审题视点] 熟记有理数指数幂的运算性质是化简的关键.解 (1)原式=a -13b 12·a -12b 13a 16b 56=a -13-12-16·b 12+13-56=1a. (2)原式=-52a -16b -3÷(4a 23·b -3)12=-54a -16b -3÷⎝⎛⎭⎫a 13b -32 =-54a -12·b -32=-54·1ab 3=-5ab 4ab 2.化简结果要求 (1)若题目以根式形式给出,则结果用根式表示;(2)若题目以分数指数幂的形式给出,则结果用分数指数幂表示;(3)结果不能同时含有根号和分数指数幂,也不能既有分母又有负指数幂.例2、已知函数f (x )=⎝⎛⎭⎫1a x -1+12·x 3(a >0且a ≠1).(指数函数的性质) (1)求函数f (x )的定义域;(2)讨论函数f (x )的奇偶性;(3)求a 的取值范围,使f (x )>0在定义域上恒成立.[审题视点] 对解析式较复杂的函数判断其奇偶性要适当变形;恒成立问题可通过求最值解决.解 (1)由于a x -1≠0,且a x ≠1,所以x ≠0.∴函数f (x )的定义域为{x |x ∈R ,且x ≠0}.(2)对于定义域内任意x ,有f (-x )=⎝⎛⎭⎫1a -x -1+12(-x )3 =⎝⎛⎭⎫a x 1-a x +12(-x )3=⎝⎛⎭⎫-1-1a x -1+12(-x )3 =⎝⎛⎭⎫1a x -1+12x 3=f (x ), ∴f (x )是偶函数.(3)当a >1时,对x >0,由指数函数的性质知a x >1,∴a x -1>0,1a x -1+12>0. 又x >0时,x 3>0,∴x 3⎝⎛⎭⎫1a x -1+12>0, 即当x >0时,f (x )>0.又由(2)知f (x )为偶函数,即f (-x )=f (x ),则当x <0时,-x >0,有f (-x )=f (x )>0成立.综上可知,当a >1时,f (x )>0在定义域上恒成立.当0<a <1时,f (x )=(a x +1)x 32(a x -1). 当x >0时,1>a x >0,a x +1>0,a x -1<0,x 3>0,此时f (x )<0,不满足题意;当x <0时,-x >0,f (-x )=f (x )<0,也不满足题意.综上可知,所求a 的取值范围是a >1.(1)判断此类函数的奇偶性,常需要对所给式子变形,以达到所需要的形式,另外,还可利用f (-x )±f (x ),f (x )f (-x )来判断. (2)将不等式恒成立问题转化为求函数值域问题,是解决恒成立问题的常用方法.例3、 设f (x )=e -x a +a e-x 是定义在R 上的函数.(指数函数的性质) (1)f (x )可能是奇函数吗?(2)若f (x )是偶函数,试研究其在(0,+∞)的单调性.解 (1)假设f (x )是奇函数,由于定义域为R ,∴f (-x )=-f (x ),即e x a +a e x =-⎝⎛⎭⎪⎫e -x a +a e -x , 整理得⎝⎛⎭⎫a +1a (e x +e -x )=0, 即a +1a=0,即a 2+1=0显然无解. ∴f (x )不可能是奇函数.(2)因为f (x )是偶函数,所以f (-x )=f (x ),即e x a +a e x =e -x a +a e-x , 整理得⎝⎛⎭⎫a -1a (e x -e -x )=0, 又∵对任意x ∈R 都成立,∴有a -1a=0,得a =±1. 当a =1时,f (x )=e -x +e x ,以下讨论其单调性,任取x 1,x 2∈(0,+∞)且x 1<x 2,则f (x 1)-f (x 2)=e x 1+e -x 1- e x 2-e -x 2=(e x 1-e x 2)(e x 1+x 2-1)e x 1+x 2, ∵x 1,x 2∈(0,+∞)且x 1<x 2,∴e x 1+x 2>1,e x 1-e x 2<0,∴e x 1+x 2-1>0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),∴函数f (x )=e -x a +a e-x , 当a =1时在(0,+∞)为增函数,同理,当a =-1时,f (x )在(0,+∞)为减函数例4、(2009·山东)函数y =e x +e -xe x -e -x 的图象大致为( ).(指数函数的图像)[审题视点] 函数图象的判断要充分利用函数的性质,如奇偶性、单调性.解析 y =e 2x +1e 2x -1=1+2e 2x -1,当x >0时,e 2x -1>0且随着x 的增大而增大,故y =1+2e 2x -1>1且随着x 的增大而减小,即函数y 在(0,+∞)上恒大于1且单调递减,又函数y 是奇函数,故选A.答案 A利用指数函数的图象和性质可研究复合函数的图象和性质,比如:函数y =a x -1a x +1,y =e x -e -x 2,y =lg(10x -1)等.高考链接和模拟考试1.(2011·山东)若点(a,9)在函数y =3x 的图象上,则tana π6的值为( ).A .0 B.33C .1 D. 3 解析 由题意有3a =9,则a =2,∴tan a π6=tan π3= 3. 答案 D2.(2012·郴州五校联考)函数f (x )=2|x -1|的图象是( ).解析 f (x )=⎩⎪⎨⎪⎧ 2x -1,x ≥1,⎝⎛⎭⎫12x -1,x <1,故选B. 答案 B3.若函数f (x )=12x +1,则该函数在(-∞,+∞)上是( ). A .单调递减无最小值 B .单调递减有最小值C .单调递增无最大值D .单调递增有最大值解析 设y =f (x ),t =2x +1,则y =1t,t =2x +1,x ∈(-∞,+∞) t =2x +1在(-∞,+∞)上递增,值域为(1,+∞).因此y =1t在(1,+∞)上递减,值域为(0,1). 答案 A4.(2012·天津一中月考)已知a 12+a -12=3,则a +a -1=______;a 2+a -2=________. 解析 由已知条件(a 12+a -12)2=9.整理得:a +a -1=7 又(a +a -1)2=49,因此a 2+a -2=47.答案 7 47练习作业 【训练1】 计算:(1)0.027-13-⎝⎛⎭⎫-17-2+⎝⎛⎭⎫27912-()2-10; (2)1-214⎛⎫ ⎪⎝⎭(4ab -1)30.1-2(a 3b -3)12. 答案:(1)-45,(2)425。