数学人教版七年级下册5.1.3同位角、内错角,同旁内角
- 格式:doc
- 大小:101.50 KB
- 文档页数:5
人教版七年级数学下5.1.3 同位角、内错角、同旁内角教学目标1.理解同位角、内错角、同旁内角的概念;结合图形识别同位角、内错角、同旁内角。
2.通过变式图形的识别,培养学生的识图能力。
3.从复杂图形分解为基本图形的过程中,渗透化繁为简,化难为易的化归思想。
重点:同位角、内错角、同旁内角的概念。
难点:在较复杂的图形中辨认同位角、内错角、同旁内角。
课前准备师:多媒体课件(详见光盘)生:教学设计(一)……………………………………………………教材知识导学型教学过程一、复习回顾,引入新课问题:我们已经知道,两条直线相交组成四个角(如图①),任意两角间都有关系,我们分别称它们为什么角?如图②,当加入一条直线也与AB相交,又会形成多少个角,它们之间又有怎样的数量关系呢?图①图②二、目标导学,探索新知目标导学1:理解同位角的概念,掌握其特点在上面的“三线八角”图中,直线AB、CD是被截直线,EF是截线。
问题1:观察图中的∠1和∠5,它们与截线及两条被截直线在位置上有什么特点?你能给它们起个名字吗?问题2:图中还有其他的同位角吗?并说出他们相对于截线和被截线的位置。
变式图形:图中的∠1与∠2是同位角吗?如果是请指出他们分别是由哪两条直线被哪一条直线所截而形成?图中的∠1与∠2都是同位角。
引导学生观察这些图形的特征,看它们都象哪一个字母?归纳:同位角形如字母“F”型.【教师强调】同位角中的“同”字有两层含义:一同是指两角在截线的同旁,二同是指它们在被截两直线同方。
目标导学2:借助问题串,能自主探索出内错角、同旁内角的概念及特点问题1:观察图中的∠3和∠5,它们与截线及两条被截直线在位置上有什么特点?你能给它们起个名字吗?图中还有其他的同类角吗?并说出他们相对于截线和被截线的【教学备注】【教学说明】学生先独立观察后小组交流从而归纳得出结论。
位置。
问题2:观察图中的∠4和∠5,它们与截线及两条被截直线在位置上有什么特点?你能给它们起个名字吗?图中还有其他的同类角吗?并说出他们相对于截线和被截线的位置。
人教版七年级数学下册5.1.3.《同位角、内错角、同旁内角》说课稿一. 教材分析《同位角、内错角、同旁内角》是人教版七年级数学下册第五章第一节的一个内容。
本节课主要通过探讨同位角、内错角、同旁内角的概念,让学生理解平行线的性质,以及在学习过程中培养学生的观察能力、思考能力和动手实践能力。
二. 学情分析七年级的学生已经掌握了基本的几何知识,对图形的观察和分析有一定的基础。
但是,对于同位角、内错角、同旁内角这些概念,学生可能还比较陌生,需要通过实例和动手操作来加深理解。
此外,学生的空间想象力有待提高,因此,在教学过程中,需要注重培养学生的空间想象能力和逻辑思维能力。
三. 说教学目标1.知识与技能目标:让学生理解同位角、内错角、同旁内角的概念,掌握平行线的性质。
2.过程与方法目标:通过观察、实践、交流等活动,培养学生的空间想象能力、逻辑思维能力和动手实践能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受到数学与生活的紧密联系。
四. 说教学重难点1.教学重点:同位角、内错角、同旁内角的概念及平行线的性质。
2.教学难点:同位角、内错角、同旁内角之间的内在联系,以及如何运用这些知识解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组合作法等,引导学生主动探究、积极思考。
2.教学手段:多媒体课件、几何模型、黑板等,以直观展示和讲解为主,辅以动手实践,提高学生的学习兴趣和效果。
六. 说教学过程1.导入新课:通过展示图片,引导学生观察同位角、内错角、同旁内角的实例,激发学生的学习兴趣。
2.讲解概念:详细讲解同位角、内错角、同旁内角的概念,并通过几何模型展示,让学生直观理解。
3.性质探讨:引导学生探讨平行线之间的同位角、内错角、同旁内角的关系,得出平行线的性质。
4.动手实践:让学生分组进行实践活动,利用几何模型验证平行线的性质,培养学生的动手实践能力。
5.1.3同位角、内错角、同旁内角教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级下册(以下统称“教材”)第五章“相交线与平行线”5.1.3同位角、内错角、同旁内角,内容包括:同位角、内错角、同旁内角的概念及辨识.2.内容解析本节内容主要是学习同位角、内错角、同旁内角的概念,在研究了两条相交直线构成的角(对顶角,邻补角)的基础上进一步探究平面内三条直线相交形成的不共顶点的角的位置关系,主要学习同位角、内错角、同旁内角的概念.它是进一步学习平行线的判定和性质的必要准备.教科书通过两条直线相交的四个角的知识为基础,引出一条直线分别与两条直线相交构成的八个角中,通过分类讨论思想,把不共顶点的两个角的位置关系分为同位角、内错角、同旁内角三类.紧接着,通过一个例题来让学生学习同位角、内错角、同旁内角的概念,教学时可根据情况适当要求学生说明同位角、内错角与同旁内角是哪两条直线被哪一条直线所截得到的,为后面学习平行线的性质与判定做好铺垫.基于以上分析,确定本节课的教学重点为:理解同位角、内错角、同旁内角的概念.二、目标和目标解析1.目标(1)理解同位角、内错角、同旁内角的概念;(2)结合图形识别同位角、内错角、同旁内角;(3)从复杂图形分解为基本图形的过程中,体会化繁为简,化难为易的化归思想.2.目标解析理解同位角、内错角、同旁内角的概念结合图形识别同位角、内错角、同旁内角;通过变式图形的识图训练,培养学生的识图能力;通过例题口答“为什么”,培养学生的推理能力;从复杂图形分解为基本图形的过程中,渗透化繁为简,化难为易的化归思想;从图形变化过程中,培养学生辩证唯物主义观点;通过“三线八角”基本图形,使学生认识几何图形的位置美.三、教学问题诊断分析七年级学生对几何图形的认识有浓厚的兴趣,但相对掌握的几何知识还是较浅显的.特别是“图形、符合、文字”三种语言之间的相互转化.因此,本节课我重点以概念教学为主.通过学生看书、思考、组内交流、汇报、教师评价等形式得出“同位角、内错角、同旁内角”的概念.然后再通过达标练习进行反馈,在反馈中补充和升华,真正使学生达到理解、掌握的目的,从而为后续学习内容做铺垫.基于以上学情分析,确定本节课的教学难点为:从复杂图形分解为基本图形的过程中,体会化繁为简,化难为易的化归思想.四、教学过程设计自学导航三线八角如果有两条直线和另一条直线相交,可以得到几个角?八个角通常说:两条直线被第三条直线所截.如:直线a、b被直线c所截.同位角观察图中∠1和∠5的位置关系.两角的位置分别在直线AB,CD的同一方(上方),并且都在直线EF的同侧(右侧),具有这种位置关系的一对角叫做同位角.∠2和∠6是同位角吗?图中还有没有其他的同位角?标记出它们.∠2和∠6,∠3和∠7,∠4和∠8都是同位角.考点解析考点1:同位角★★★例1.如图,∠1与∠2不是同位角的是()【迁移应用】1.如图,直线a,6被直线c所截,下列各组角是同位角的是()A.∠1与∠2B.∠1与∠3C.∠2与∠3D.∠3与∠42.如图,与∠1是同位角的是()A.∠2B.∠3C.∠4D.∠53.如图_______和∠C是直线BE,CD被直线_____所截形成的同位角,_______和∠C是直线_____,_____被直线AC所截形成的同位角.自学导航内错角观察图中∠3和∠5的位置关系.两角的位置都在直线AB,CD之间,并且分别在直线EF两侧(∠3在直线EF左侧,∠5在直线EF右侧),具有这种位置关系的一对角叫做内错角.图中还有其它内错角吗?∠4和∠6是内错角考点解析考点2:内错角★★★例2.如图下列各组角中,是内错角的是()A.∠1和∠2B.∠2和∠3C.∠1和∠3D.∠2和∠5【迁移应用】1.如图,与∠1是内错角的是()A.∠2B.∠3C.∠4D.∠52.如图,∠1与∠2是由直线______,______被直线______所截形成的内错角.3.如图,∠1的内错角有____个.自学导航同旁内角观察图中∠3和∠6的位置关系.两角的位置都在直线AB,CD之间,并且都在直线EF的同一旁(左侧),具有这种位置关系的一对角叫做同旁内角.图中还有其它同旁内角吗?∠4和∠5是同旁内角考点解析考点3:同旁内角★★★例3.如图,∠C与哪个角是同旁内角?解:∠C与∠EDC,∠DFC,∠ADC,∠ABC是同旁内角.【迁移应用】1.如图,下列两个角是同旁内角的是()A.∠1与∠2B.∠1与∠3C.∠1与∠4D.∠2与∠42.如图,下列结论:①∠2与∠3是内错角;②∠2与∠B是同位角;③∠A与∠B是同旁内角;④∠A与∠ACB不是同旁内角.其中正确的是________.(填序号)3.如图,如果∠1=40°,∠2=100°,那么∠3的同位角等于______,∠3的内错角等于______,∠3的同旁内角等于______.4.如图,∠D与哪个角是同旁内角?解:∠D与∠C,∠CED,∠BED是同旁内角.自学导航同位角、内错角、同旁内角的结构特征:注:上述三类角类似于对顶角都是成对出现.不能说哪个角是同位角、内错角、同旁内角.考点解析考点4:识别“三线八角”★★★★例4.如图,在∠1,∠2,∠3,∠4,∠5和∠B中,______是同位角,_____是内错角,______是同旁内角.解析:为了能正确地识别且防止遗漏,可以把图形分解成基本图形,如图①②③.【迁移应用】1.指出图中各对角的位置关系:(1)∠C和∠D是________角;(2)∠B和∠GEF是______角;(3)∠A和∠D是_______角;(4)∠AGE和∠BGE是_______角;(5)∠CFD和∠AFB是_______角.2.如图,下列说法不正确的是()A.∠1与∠3是对顶角B.∠2与∠6是同位角C.∠3与∠4是内错角D.∠3与∠5是同旁内角3.如图,在∠1,∠2,∠3,∠4,∠5中,同位角、内错角、同旁内角的对数分别是()A.1,1,4B.1,2,4C.2,1,4D.1,1,5考点5:通过同位角、内错角、同旁内角辨别截线、被截直线★★★★例5.填空:(1)如图①,∠1和∠ABC是直线______,______被直线______所截形成的_______角;(2)如图②,∠EDC和_______是直线DE,BC被直线______所截形成的内错角;(3)如图①,如果∠1=∠ABC,那么∠ABC与∠BCF相等吗?∠ABC与∠BCE互补吗?为什么?(3)如果∠1=∠ABC,由对顶角相等,得∠1=∠BCF,那么∠ABC=∠BCF.因为∠1和∠BCE互补,所以∠1+∠BCE=180°.又∠1=∠ABC,所以∠ABC+∠BCE=180°,所以∠ABC与∠BCE互补.【迁移应用】1.如图,根据图形填空:(1)∠FAD和∠____是_____与_____被_____所截形成的同位角;(2)∠FAC和∠____是_____与_____被_____所截形成的同位角;(3)∠CAD和∠______是_____与_____被_____所截形成的内错角;(4)∠FAC和∠______是_____与_____被______所截形成的内错角;(5)∠BAD和∠______是_____与_____被______所截形成的同旁内角;(6)∠CAD和∠______是_____与_____被______所截形成的同旁内角.2.下列各图中,∠1和∠2,∠3和∠4分别是哪两条直线被哪一条直线所截形成的?它们各是什么角?解:图①中的∠1和∠2是直线AB,DC被直线DB所截形成的,它们是内错角;∠3和∠4是直线AD,BC 被直线DB所截形成的,它们是内错角.图②中的∠1和∠2是直线AB,DC被直线BC所截形成的,它们是同位角;∠3和∠4是直线AB,BC被直线AC所截形成的,它们是同旁内角.。
第五章相交线与平行线5.1.3 同位角、内错角、同旁内角1.(2021春·河南洛阳·七年级校考期中)如图所示,图中共有内错角().A.2组B.3组C.4组D.5组【答案】B【分析】根据内错角的定义即可求解.【详解】解:根据内错角的定义可知:直线,被所截,和是一组内错角,和是一组内错角;射线,直线被所截,和是一组内错角;因此内错角有3组.故选B.【点睛】本题考查内错角的识别,解题的关键是掌握内错角的定义.两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角.2.(2022春·七年级统考期末)下列图形中,与是同位角的有()A.①②B.①③C.②③D.②④【答案】B【分析】同位角首先是两条直线被第三条直线所截形成的,其次是同位角在截线的同一侧,在两条被截线的同一方向,根据定义逐一判断即可.【详解】解:①和符合同位角的定义,是同位角;②和不是两条直线被第三条直线所截形成的,不是同位角;③和符合同位角的定义,是同位角;④和不是两条直线被第三条直线所截形成的,不是同位角;即与是同位角的有①③,故选:B.【点睛】本题考查了同位角的定义与识别,理解同位角的形成与相对的位置关系,掌握同位角的边构成“”形是解题的关键.3.(2021春·甘肃庆阳·七年级统考期中)如图,AB和CD相交于点O,则下列结论错误的是()A.∠1与∠2互为对顶角B.∠B与∠1互为同位角C.∠A与∠C互为内错角D.∠B与∠C互为同旁内角【答案】C【分析】根据对顶角、同位角、内错角、同旁内角定义判断求解即可.【详解】解:∠1与∠2互为对顶角,故A正确,不符合题意;∠B与∠1互为同位角,故B正确,不符合题意;∠A与∠C不是内错角,故C错误,符合题意;∠B与∠C互为同旁内角,故D正确,不符合题意;故选:C.【点睛】此题考查了对顶角、同位角、内错角、同旁内角,熟记对顶角、同位角、内错角、同旁内角定义是解题的关键.4.(2021春·广东梅州·七年级校联考期末)如图所示,结论中正确的是()A.和是内错角B.和是同旁内角C.和是同位角D.和是同旁内角【答案】D【分析】根据同位角、内错角、同旁内角的意义结合图形进行判断即可.【详解】解:如图,与并不属于同位角、内错角或同旁内角,因此选项A不符合题意;与是直线与直线被直线所截的同位角,因此选项B不符合题意;与是直线与直线被直线所截的内错角,因此选项C不符合题意;与是直线与直线被直线所截的同旁内角,因此选项D符合题意;故选:D.【点睛】本题考查同位角、内错角、同旁内角的意义,掌握同位角、内错角、同旁内角的意义是正确判断的前提,判断两个角是由哪两条直线被第三条直线所截所得到的角是判断的关键.5.(2022春·江苏·七年级专题练习)如图,直线AD,BE被直线BF和AC所截,则∠1的同位角和∠5的内错角分别是()A.∠2 和∠4B.∠6和∠4C.∠2 和∠6D.∠6和∠3【答案】A【分析】同位角:两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角;内错角:两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角,根据此定义即可得出答案.【详解】解:∵直线AD,BE被直线BF和AC所截,∴∠1与∠2是同位角,∠5与∠4是内错角,故选A.【点睛】本题考查的知识点是同位角和内错角的概念,解题关键是熟记内错角和同位角的定义.6.(2022春·山东聊城·七年级统考阶段练习)如图,直线a、b 被直线c 所截,下列说法不正确的是()A.∠1 和∠4 是内错角B.∠2 和∠3 是同旁内角C.∠1 和∠3 是同位角D.∠3 和∠4 互为邻补角【答案】A【分析】同位角:两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角;内错角:两个角分别在截线的两侧,且在两条被截直线之间,具有这样位置关系的一对角叫做内错角;同旁内角:两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角.【详解】解:A、和不是内错角,此选项符合题意;B、和是同旁内角,此选项不符合题意;C、和是同位角,此选项不符合题意;D、和是邻补角,此选项不符合题意;故选A.【点睛】本题主要考查了同位角,同旁内角,内错角,邻补角,理解同位角,内错角和同旁内角和邻补角的定义是关键.7.(2021春·山东滨州·七年级统考期末)初中第二学期的学习生活已经结束,在你们成长的花季里,一定有很多收获.很高兴和你们合作完成这道考试题.现在我作一个100°的角,你作一个80°的角,下面结论正确的是()A.这两个角是邻补角B.这两个角是同位角C.这两个角互为补角D.这两个角是同旁内角【答案】C【分析】根据互为补角的定义、邻补角的定义、同位角的定义、同旁内角的定义进行判断.【详解】解:一个是的角,另一个是的角,这两个角和等于,这两个角互为补角,这两个角若具备特殊的位置,也可能是邻补角,或同位角,或同旁内角.所以选项、、不一定正确,只有选项是正确的.故选:C.【点睛】本题考查互为补角、邻补角、同位角、同旁内角.解题的关键是灵活掌握补角的定义、邻补角的定义、同位角的定义、同旁内角的定义.8.(2021春·湖南湘西·七年级统考期末)如图所示,若平面上4条两两相交,且无三线共点的4条直线,则共有同旁内角的对数为( )A.12对B.15对C.24对D.32对【答案】C【分析】一条直线与另3条直线相交(不交于一点),有3个交点.每2个交点决定一条线段,共有3条线段.4条直线两两相交且无三线共点,共有条线段.每条线段两侧各有一对同旁内角,可知同旁内角的总对数.【详解】解:平面上4条直线两两相交且无三线共点,共有条线段.又每条线段两侧各有一对同旁内角,共有同旁内角(对.故选:C.【点睛】本题考查了同旁内角的定义.解题的关键是注意在截线的同旁找同旁内角.要结合图形,熟记同旁内角的位置特点.两条直线被第三条直线所截所形成的八个角中,有两对同旁内角.9.(2021春·湖北黄冈·七年级校考阶段练习)如图,直线被直线所截,和__________是同位角,和__________是内错角【答案】【分析】据同位角,内错角,同旁内角的定义判断即可.【详解】解:直线AB、CD被直线EF所截,∠A和∠1是同位角,∠A和∠3是内错角.故答案为:∠1;∠3.【点睛】本题考查了同位角,内错角,同旁内角的定义,熟记定义是解题的关键.10.(2022春·河北保定·七年级统考期中)如图,与∠1是同旁内角的是_____,与∠2是内错角的是_____.【答案】∠5 ∠3【分析】根据同旁内角、内错角的概念:在截线的同旁找同位角和同旁内角,在截线的两旁找内错角.结合题干中图形即可得到答案.【详解】解:如图,与∠1是同旁内角的是∠5,与∠2是内错角的是∠3.故答案为:∠5;∠3.【点睛】本题考查同旁内角和内错角的概念,正确判别内错角和同旁内角是解题关键.11.(2022春·山东济宁·七年级统考期中)如图,有下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的是______(填序号).【答案】①②③【分析】①根据同位角的定义即可判断;②根据同旁内角的定义即可判断;③根据内错角的定义即可判断;④根据同位角的定义即可判断.【详解】①∠A与∠1是同位角,正确;②∠A与∠B是同旁内角,正确;③∠4与∠1不是内错角,故错误;④∠1与∠3不是同位角,故错误.∴正确的是①②,故答案为:①②.【点睛】本题主要考查同位角,内错角,同旁内角的定义,掌握同位角,内错角,同旁内角的定义是解题的关键.12.(2020春·七年级校考课时练习)如图,直线AB、CD被DE所截,则∠1和∠3是_______,∠1和∠5是_____,∠1和_____是同旁内角.【答案】同位角内错角∠2【分析】利用同位角,内错角,同旁内角的定义判断即可.【详解】解:如图所示,直线AB,CD被DE所截,则∠1和∠3是同位角,∠1和∠5是内错角,∠1和∠2是同旁内角,故答案为:同位角;内错角;∠2.【点睛】本题考查了同位角,内错角,同旁内角,熟练掌握各自的定义是解本题的关键.13.(2022春·全国·七年级专题练习)如图,下列结论:①与是内错角;②与是同位角;③与是同旁内角;④与不是同旁内角,其中正确的是___________(只填序号).【答案】①②③.【分析】根据内错角、同位角及同旁内角的性质逐一判断即可.【详解】与是内错角,①正确;与是同位角,②正确;与是同旁内角,③正确;与是同旁内角,④错误;故答案为:①②③.【点睛】本题主要考查了内错角、同位角及同旁内角的判断,熟练掌握相关概念是解题关键. 14.(2021春·江苏南京·七年级南京玄武外国语学校校考阶段练习)如图,(1)∠1 和∠3 是直线_________和_____被直线_____所截而成的_____角;(2)能用图中数字表示的∠3 的同位角是_____;(3)图中与∠2 是同旁内角的角有_____个.【答案】内错 3【分析】同位角的意思是在被截直线同一侧,而且在截线同侧的两个角;内错角的意思是在两被截直线的内侧,且在截线异侧的两个角;同旁内角的意思是在两被截直线的内侧,且在截线同侧的两个角;据此判断即可.【详解】解:(1)∠1和∠3是直线AB和AC被直线DE所截而成的内错角;故答案为:AB、AC、DE、内错;(2)图中与∠3是同位角的角是∠7,故答案为:∠7;(3)图中与∠2 是同旁内角的角有∠6、∠5、∠7,共3个,故答案为:3.【点睛】本题考查了同位角、内错角、同旁内角等知识点,能根据图形找出各对角是解此题的关键.15.(2023秋·广西贵港·七年级统考期末)如图,直线AB、CD相交于点O,OA平分∠EOC.(1)若∠EOC=70°,求∠BOD的度数;(2)若∠EOC=∠EOD,求∠BOD的度数.【答案】(1)35°;(2)36°;【分析】(1)根据角平分线的定义和对顶角相等计算求值即可;(2)由∠EOC+∠EOD=180°和∠EOC=∠EOD求得∠EOC,再结合(1)解答计算求值即可;【详解】(1)解:∵OA平分∠EOC,∴∠AOC=∠EOC,∵∠EOC=70°,∴∠AOC=×70°=35°,∵直线AB、CD相交于点O,∴∠BOD=∠AOC=35°;(2)解:∵∠EOC=∠EOD,∠EOC+∠EOD=180°,∴∠EOD +∠EOD=180°,∴∠EOD =180°,∴∠EOD =108°,∴∠EOC=×108°=72°,∵OA平分∠EOC,∴∠AOC=∠EOC=×72°=36°,∵直线AB、CD相交于点O,∴∠BOD=∠AOC=36°;【点睛】本题考查了相交线,与角平分线有关的角的计算,补角的定义;掌握对顶角的性质是解题关键.16.(2022春·江苏·七年级专题练习)如图,(1)DE为截线,∠E与哪个角是同位角?(2)∠B与∠4是同旁内角,则截出这两个角的截线与被截线是哪些直线?(3)∠B和∠E是同位角吗?为什么?【答案】(1)DE为截线,∠E与∠3是同位角;(2)截出这两个角的截线是直线BC,被截线是直线BF、DE;(3)不是,因为∠B与∠E的两边中任一边没有落在同一直线上,所以∠B和∠E不是同位角;【分析】(1)根据“三线八角”模型,截直线和,得到和为同位角;(2)与是同旁内角,两角的一个边在直线上,截线是直线,被截直线为、;(3)与没有公共边,没有被截直线,因此不是同位角.【详解】解:(1)由图形可知,截线为,被截直线为和根据“三线八角”模型可知和为同位角;(2)与是同旁内角,观察图形可知直线是这两个角的公共边,∴为被截直线,、为被截直线;(3)不是,理由如下:∵与没有公共边∴和不是∴和不是同位角.【点睛】此题主要考查了)若直线被直线所截,则和)若直线被直线所截,则和)和是直线被直线______所截构成的内错角;)和是直线,______被直线所截构成的【答案】(1);(2);(3);(4),同位【分析】(1)根据图形及同位角的概念可直接进行求解;(2)根据图形及内错角的概念可直接进行求解;(3)根据图形及内错角的概念可直接进行求解;(4)根据图形及同位角的概念可直接进行求解.【详解】解:由图可得:(1)若直线被直线所截,则和是同位角;故答案为;(2)若直线被直线所截,则和是内错角;故答案为;(3)和是直线被直线所截构成的内错角;故答案为;(4)和是直线,被直线所截构成的同位角;故答案为,同位.【点睛】本题主要考查内错角及同位角的概念,熟练掌握同位角及内错角的概念是解题的关键.1.(2023秋·河南南阳·七年级校考期末)如图,下列判断:①与是同位角;②与是同旁内角;③与是内错角;④与是同位角.其中正确的是()A.B.C.D.【答案】A【分析】根据同位角、内错角、同旁内角的定义,即两条直线被第三条直线所截,在截线的同旁,被截两直线的同一方的角,这样的两个角称为同位角;两条直线被第三条直线所截,两个角都在被截两条直线之间,并且在第三条直线的两侧,这样的一对角叫做内错角;两条直线被第三条直线所截,两个角都在被截两条直线之间,并且在第三条直线的同侧,这样的一对角叫做同旁内角,进行判断即可.【详解】解:①由同位角的概念得出:与是同位角,正确;②由同旁内角的概念得出:与是同旁内角,正确;③由内错角的概念得出:与不是内错角,错误;④由内错角的概念得出:与是内错角,错误.故正确的有2个,是,故选:A.【点睛】本题考查了同位角、内错角、同旁内角的定义,理解和掌握同位角、内错角、同旁内角的意义是正确判断的前提.2.(2023春·全国·七年级专题练习)下列图中和是同位角的是()A.①②③B.②③④C.①②④D.①②【答案】D【分析】根据同位角的定义,即两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.对每个图进行判断即可.【详解】解:①图中∠1和∠2是同位角,符合题意;②图中∠1和∠2是同位角,符合题意;③图中∠1和∠2不是同位角,不符合题意;④图中∠1和∠2不是同位角,不符合题意;图中是同位角的是①②.故选:D.【点睛】本题考查了同位角的定义,掌握基本概念是解题的关键.3.(2021春·上海奉贤·七年级校考期中)如图,下列说法错误的是()A.∠A与∠AEF是同旁内角B.∠BED与∠CFG是同位角C.∠AFE与∠BEF是内错角D.∠A与∠CFE是同位角【答案】B【分析】本题考查的是两直线相交所成角的问题,根据同位角、同旁内角、内错角定义解答即可【详解】A. ∠A与∠AEF是同旁内角,正确B. ∠BED与∠CFG是同位角,错误C. ∠AFE与∠BEF是内错角,正确D. ∠A与∠CFE是同位角,正确【点睛】本题的关键是掌握同位角、同旁内角、内错角的定义4.(2022秋·八年级课时练习)下列推理正确的是()A.∵∠1+∠2=90°,∠2+∠3=90°,∴∠1+∠3=90°B.∵∠1+∠3=90°,∠3+∠2=90°,∴∠1=∠2C.∵∠1与∠2是对顶角,又∠2=∠3,∴∠1与∠3是对顶角D.∵∠1与∠2是同位角,又∠2与∠3是同位角,∴∠1与∠3是同位角【答案】B【分析】根据对顶角,同位角的概念和等量代换等知识点逐项进行判断即可.【详解】解:A. ∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,不能推出∠1+∠3=90°,故本选项错误;B. ∵∠1+∠3=90°,∠3+∠2=90°,∴∠1=∠2(等量代换),故本选项正确;C. ∵∠1与∠2是对顶角,又∠2=∠3,∴∠1与∠3是对顶角,由对顶角的概念可知本选项错误;D. ∵∠1与∠2是同位角,又∠2与∠3是同位角,∴∠1与∠3是同位角,由同位角的概念可知本选项错误;故选B【点睛】本题考查了等量代换、对顶角,同位角的概念,准确掌握各种概念和性质是关键.5.(2020春·甘肃张掖·七年级校考阶段练习)下列图中∠1和∠2是同位角的是()A.(1)、(2)、(3)B.(2)、(3)、(4)C.(3)、(4)、(5)D.(1)、(2)、(5)【答案】D【分析】根据同位角的定义,对每个图进行判断即可.【详解】(1)图中∠1和∠2是同位角;故本项符合题意;(2)图中∠1和∠2是同位角;故本项符合题意;(3)图中∠1和∠2不是同位角;故本项不符合题意;(4)图中∠1和∠2不是同位角;故本项不符合题意;(5)图中∠1和∠2是同位角;故本项符合题意.图中是同位角的是(1)、(2)、(5).故选D.【点睛】本题考查了同位角,两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.6.(2022春·云南昭通·七年级统考期中)如图:下列四个判断中,正确的个数是().①∠1的内错角只有∠4②∠1的同位角是∠B③∠1的同旁内角是∠3、∠E、∠ACD④图中∠B的同位角共有4个A.1个B.2个C.3个D.4个【答案】C【分析】同位角在截线的同侧,在被截线的同一方向上;内错角在截线的两侧,在被截线的内侧;同旁内角在截线的同侧,在被截线的内侧.【详解】①∠1的内错角只有∠4,正确;②∠1的同位角是∠B,错误;③∠1的同旁内角是∠3、∠E、∠ACD,正确;④图中∠B的同位角有∠ECD、∠ACD、∠FAE、∠FAC共有4个,正确;故①③④正确.故选C.【点睛】本题考查同位角,内错角,同旁内角的概念,要熟记这些概念.7.(2022春·四川绵阳·七年级校考阶段练习)如图所示,下列说法错误的是( )A.∠C与∠1是内错角B.∠2与∠3是内错角C.∠A与∠B是同旁内角D.∠A与∠3是同位角【答案】B【分析】根据同位角,同旁内角,内错角的定义可以得到A、C、D是正确的,∠2与∠3是邻补角,不是内错角.【详解】A、∠C与∠1是内错角,故本选项正确;B、∠2与∠3是邻补角,故本选项错误;C、∠A与∠B是同旁内角,故本选项正确;D、∠A与∠3是同位角,故本选项正确.故选B.【点睛】本题主要考查了同位角,内错角,同旁内角的概念,比较简单.8.(2021春·浙江杭州·七年级期中)下列各图中,∠1,∠2不是同位角的是( )A.B.C.D.【答案】B【分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角进行分析即可.【详解】根据同位角定义可得B不是同位角,故选B.【点睛】此题主要考查了同位角,关键是掌握同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.9.(2022春·湖北黄冈·七年级校考阶段练习)如图,与是内错角的是__________.【答案】【分析】内错角在截线的两侧,在被截线的内侧.【详解】如图所示,与∠C是内错角的是∠2,∠3;故答案是:∠2,∠3.【点睛】本题考查了内错角,解答此类题确定三线八角是关键,可直接从截线入手.10.(2023春·七年级课时练习)如图,直线AF和AC被直线EB所截,∠EBC的同位角是∠EOF,直线DC、AC被直线AF所截,∠FAC同位角是_____.【答案】∠COF.【分析】根据同位角的位置特点进行解答即可.【详解】解:根据同位角的图形特点,可得∠FAC的同位角是∠COF,故答案为∠COF.【点睛】本题考查同位角、内错角、同旁内角的定义;牢记两直线被第三条直线所截,同位角的位置关系是解本题的关键。
人教版七年级数学下册5.1.3.《同位角、内错角、同旁内角》教学设计一. 教材分析人教版七年级数学下册5.1.3.《同位角、内错角、同旁内角》是学生在掌握了角的概念、平行线的性质等基础知识后,进一步学习角与直线的关系。
本节内容通过介绍同位角、内错角、同旁内角的概念,让学生理解在两直线平行的情况下,这些角之间的关系,为后续学习几何图形的判定和计算打下基础。
二. 学情分析七年级的学生已经具备了一定的几何基础知识,对角的概念和平行线的性质有所了解。
但学生在理解和应用这些知识时,可能还存在一定的困难。
因此,在教学过程中,教师需要通过生动的实例、直观的图形和丰富的练习,帮助学生理解和掌握同位角、内错角、同旁内角的概念及应用。
三. 教学目标1.让学生了解同位角、内错角、同旁内角的概念,并能正确识别它们。
2.让学生理解在两直线平行的情况下,同位角、内错角、同旁内角之间的关系。
3.培养学生运用几何知识解决实际问题的能力。
四. 教学重难点1.重点:同位角、内错角、同旁内角的概念及它们之间的关系。
2.难点:如何在实际问题中运用这些知识解决问题。
五. 教学方法1.采用直观演示法,通过展示图形,让学生直观地了解同位角、内错角、同旁内角的概念。
2.采用实例教学法,通过分析实际问题,让学生理解同位角、内错角、同旁内角之间的关系。
3.采用练习法,让学生在实践中巩固所学知识。
4.采用小组合作学习法,培养学生团队合作精神。
六. 教学准备1.准备相关的图形资料和实例问题。
2.准备多媒体教学设备,如投影仪、白板等。
3.准备练习题和测试题。
七. 教学过程1.导入(5分钟)教师通过展示两直线相交的图形,引导学生观察并提问:“请大家观察这些图形,你能发现哪些特殊的角度?”让学生初步了解同位角、内错角、同旁内角的概念。
2.呈现(10分钟)教师通过讲解和展示实例,详细介绍同位角、内错角、同旁内角的概念,并解释它们之间的关系。
例如,当教师展示两直线平行时,同位角相等,内错角相等,同旁内角互补的图形,让学生直观地理解这些概念。
人教版数学七年级下册5.1.3《同位角、内错角、同旁内角》教学设计一. 教材分析人教版数学七年级下册5.1.3《同位角、内错角、同旁内角》是几何部分的重要内容。
这部分内容主要让学生了解同位角、内错角、同旁内角的概念,并掌握它们的性质和应用。
为学生后续学习平行线的性质和判定奠定了基础。
二. 学情分析七年级的学生已具备一定的几何基础,对图形的认知和观察能力有一定的提高。
但学生在理解角度的概念和运用角度解决实际问题方面还需加强。
因此,在教学过程中,要注重引导学生通过观察、思考、交流等方式,掌握同位角、内错角、同旁内角的概念和性质。
三. 教学目标1.知识与技能:让学生掌握同位角、内错角、同旁内角的概念,能运用这些概念解决简单的实际问题。
2.过程与方法:通过观察、思考、交流等途径,培养学生空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神。
四. 教学重难点1.重点:同位角、内错角、同旁内角的概念及性质。
2.难点:运用同位角、内错角、同旁内角解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入概念,激发学生兴趣。
2.互动教学法:引导学生参与讨论,培养学生团队合作精神。
3.实践教学法:让学生动手操作,提高学生的实践能力。
六. 教学准备1.准备相关的生活实例和图片,用于导入和新课呈现。
2.准备练习题,用于巩固和拓展。
3.准备黑板,用于板书重点知识点。
七. 教学过程1.导入(5分钟)利用生活实例引入同位角、内错角、同旁内角的概念。
例如,展示两辆火车从不同轨道相向而行,引导学生观察它们之间的角度变化。
2.呈现(10分钟)呈现教材中关于同位角、内错角、同旁内角的图片和文字,引导学生观察和思考,总结它们的性质。
3.操练(10分钟)让学生分组讨论,每组设计一个实例,运用同位角、内错角、同旁内角的概念解决实际问题。
讨论结束后,各组汇报成果,其他组进行评价。
4.巩固(10分钟)出示练习题,让学生独立完成。
5.1.3 同位角、内错角、同旁内角
一、教学目标:
(一)知识目标
1、理解同位角、内错角、同旁内角的概念.
2、结合图形识别同位角、内错角、同旁内角.
(二)能力目标
1、通过变式图形的识图训练,培养学生的识图能力.
2、通过例题口答“为什么”,培养学生的推理能力.
(三)情感目标
1、从复杂图形分解为基本图形的过程中,渗透化繁为简,化难为易的化归
思想;从图形变化过程中,培养学生辩证唯物主义观点.
2、通过“三线八角”基本图形,使学生认识几何图形的位置美.
二、教学重点:同位角、内错角、同旁内角的概念
三、教学难点:在较复杂的图形中辩认同位角、内错角、同旁内角
教学过程:导学展练
导:一、复习巩固,引入新课
直线AB、EF相交于O小于平角的角有几个?有几对对顶角?有几对邻补角?
(设计说明:本节课是研究两条直线被第三条直线所截成的不共顶点的角的位置关系,它是以两条直线相交构成的四个角的知识为基础的,因此复习两线相交所成的四角的相关知识可起到承上启下的作用。
)
学:二、探索与思考
如果我们再加一条直线CD与EF相交,会出现什么情况呢?
如图,直线AB、CD与EF相交(或两条直线AB、CD被第三条直线EF所截)
展:二、探索与思考
如果我们再加一条直线CD与EF相交,会出现什么情况呢?
如图,直线AB、CD与EF相交(或两条直线AB、CD被第三条直线EF所截)可以构成8个角,俗称“三线八角”,在这八个角中,同一顶点上两个角的关系
前面已经学过,今天我们来研究不同顶点两个角的关系。
三、合作交流,探索新知
(一)探索同位角的概念
问题1:观察图中的∠1和∠5,它们与截线及两条被截直线在位置上有什么特点?你能给它们起个名字吗?
学生先独立观察后小组交流从而归纳得出:
这两个角(1)分别在被截直线AB、CD的上方,(2)都在截线EF的右侧,它们相对于截线和被截线的位置都是相同的,因此可称它们为同位角。
问题2:图中还有其他的同位角吗?并说出他们相对于截线和被截线的位置。
∠2与∠6,∠3与∠7,∠4与∠8也是同位角
∠2与∠6分别在直线AB、CD的上方,并且都在直线EF的左侧
∠3与∠7分别在直线AB、CD的下方,并且都在直线EF的左侧
∠4与∠8分别在直线AB、CD的下方,并且都在直线EF的右侧
注意:同位角中的“同”字有两层含义:一同是指两角在截线的同旁,二同是指它们在被截两直线同方。
练习:变式图形:图中的∠1与∠2是同位角吗?如果是请指出他们分别是由哪两条直线被哪一条直线所截而形成?
图中的∠1与∠2都是同位角。
引导学生观察这些图形的特征,看它们都象哪一个字母?
得出结论:在形如字母“F”的图形中有同位角
(设计说明:利用问题串引导学生自主探究,让学生在探究中了解概念的形成,在合作交流中辨是非从而加深学识对知识的理解。
)
(二)借助问题串学生自主探索内错角、同旁内角的概念
问题1:观察图中的∠3和∠5,它们与截线及两条被截直线在位置上有什么特点?你能给它们起个名字吗?图中还有其他的同类角吗?并说出他们相对于
截线和被截线的位置。
问题2:观察图中的∠4和∠5,它们与截线及两条被截直线在位置上有什么特点?你能给它们起个名字吗?图中还有其他的同类角吗?并说出他们相对于
截线和被截线的位置。
待学生自主学习完成后,由学生归纳完善得出:
∠3和∠5这两个角(1)都在被截线AB、CD之间,(2)分别在截线EF 的两侧,称之为内错角。
图中的∠4和∠6也是内错角。
∠4和∠5这两个角(1)都在被截线AB、CD之间,(2)都在截线EF的同旁,称之为同旁内角。
图中的∠3和∠6也是同旁内角。
变式图形:图中的∠1与∠2哪些是内错角?哪些是同旁内角?是内错角的图形有什么共同特征都象哪一字母?是同旁内角的图形有什么共同特征都象哪一字母?
第(1)(2)(3)(4)图中的∠1与∠2都是内错角,它们都形如“Z”字,第(5)(6)(7)(8)图中的∠1与∠2都是同旁内角,它们都形如“U”字。
(三)概念深化
问题1:同位角和同旁内角在位置上有什么相同点和不同点? 内错角和同旁内角在位置上有什么相同点和不同点?
问题2:这三类角的共同特征是什么?
对于上述问题以小组为单位展开讨论,学生间相互评议,教师对学生讨论过程中所发表的意见进行评判,归纳总结:
四、应用
(一)例1、如图,直线DE、BC被直线AB所截,
(1)∠l与∠2,∠1与∠3,∠1与∠4各是什么关系的角?
(2)如果∠1=∠4,那么∠1和∠2相等吗?∠1和∠3互补吗?为什么?
(二)例2、如图,直线DE截AB ,AC,构成8个角,指出
所有的同位角,内错角,同旁内角
(1)分析:两条直线是AB,AC,截线是DE,所以8个角中
同位角:∠2与∠5,∠4与∠7,∠1与∠8, ∠6和∠3
内错角:∠4与∠5,∠1与∠6, 同旁内角:∠1与∠5,∠4与∠6
(2)变式:∠A与∠8是哪两条直线被第哪条直线所截的角?它们是什么关系的角?(AB与DE 被AC所截,是内错角)
∠A与∠5呢?(AB与DE 被AC所截,是同旁内角)
∠A与∠6呢?(AB与DE 被AC所截,是同位角)
(三) 巩固训练 熟练技能(设计说明:通过以下的识图训练,巩固学生所学知识,训练学生的识图能力。
)
四、小结:
本节课你有哪些收获?你还有哪些疑惑?
练:五、自我检测:
1、、如图1所示:
(1)∠1,∠2,∠3,∠4,∠5,∠6是直线 、
被第三条直线 所截而成的。
(2)∠2的同位角是 ,∠1的同位角是 。
(3)∠3的内错角是 ,∠4的内错角是 。
(4)∠6的同旁内角是 ,∠5的同旁内角是 ,
(5)∠4与∠A 是同旁内角吗?为什么?
如图1
2、如图,直线 、 被 所截,∠1与∠2是内错角,
直线 、 被 所截,∠1与∠B 是同位角;
直线 、 被 所截,∠3和∠B 是同位角。
A B
C E F 1 3 4 5 6 2 如图2
六、作业:
1、找出图中所有的同位角、内错角、同旁内角。
2、∠4和 是同位角,它们是直线 和 被直线 所截。
∠4和 是内错角,它们是直线 和 被直线 所截。
∠4和 是同旁内角,它们是直线
和 被直线 所截。
3、说出下列各对角是哪两条直线被哪一条直
线所截而得到的什么角?
(1)∠1与∠2,∠1与∠3,∠3与∠4,∠2与∠4
(2)∠5与∠8,∠5与∠7,∠6与∠7,∠6与∠8
(3)∠9与∠10,∠11与∠12,∠9与∠11,∠10与∠12,∠B 与∠13
七、板书
5.1.3同位角、内错角、同旁内角
同位角特征:同上、同右”、“同上、同左”“同下、同右”
或“同下、同左”的特征,字母F 的图形
内错角特征:内错角具有“同内、异侧”的特征,字母Z
的图形
同旁内角特征:同旁内角具有“同内、同侧”的特征。
字
母U 的图形 B A C D E F 1 2 3 4 1 B 2 3 A B C D E 1 2 4 3。