积分变换 东南大学 第四版第一章4-6节
- 格式:pdf
- 大小:379.58 KB
- 文档页数:29
章节名称:第一章 Fourier 变换 学时安排:8学时教学要求:使学生了解Fourier 变换及其相关概念,会求函数的Fourier 变换、逆变换及其推导一些积分结果。
教学内容:Fourier 积分;Fourier 变换; Fourier 变换的性质;卷积与相关函数 教学重点:Fourier 变换及其性质 教学难点:Fourier 变换的计算与证明 教学手段:课堂讲授 教学过程: 引言1,积分变换: 所谓积分变换,就是通过积分运算,把一个函数变成另一个函数的变化。
一般是含有参变量α的积分⎰=ba dt t K t f F ),()()(αα其中),(b a 为积分域,),(αt K 为积分变换的核,上述变换的实质是把函数类A 中的函数)(t f 变成另一类函数B 中的)(αF 。
(1)当),(),(+∞-∞=b a ,dt et K tj ωω-=),(时,⎰+∞∞--=dt e t f F t j ωω)()(为Fourier 变换;(2)),0(),(+∞=b a stes t K -=),(⎰+∞-=0)()(dt e t f s F st 为Laplace 变换。
)(t f 为象原函数;)(αF 为)(t f 的象函数,在一定条件下,它们是一一对应而变换是可逆的。
2,傅立叶其人:法国数学家、物理学家(1768-1830),主要贡献:傅立叶级数(三角级数)创始人。
1,1807年《热的传播》一文中推导出热传导方程,在解方程时发现解函数可以有由三角函数构成的级数表示,于是提出任一函数可以展开成三角级数的无穷级数;2,1822年,《热的分析》一文研究了热在非均匀加热的固体中分布传播问题,成为分析学在物理中应用的最早例证之一。
傅立叶级数、傅立叶分析等理论也由此创始。
3,傅立叶变换对现代科学技术具有很重要的意义,它在通讯理论、自动控制、电子技术、射电天文、衍射物理等多种学科中有着广泛的应用。
在一定意义上可以说,傅立叶变换起着沟通不同学科领域的作用。
积分变换复习提纲(20学时)——基本内容第一章Fourier变换(一)目的与要求1.熟悉Fourier积分公式与Fourier积分存在定理,理解Fourier变换与逆变换的概念,单位脉冲函数的概念;2.了解周期函数的Fourier级数及其复数形式,Fourier变换的物理意义—频谱,卷积与卷积定理,单位脉冲函数的性质;3.掌握一些函数的Fourier变换与逆变换的求法,Fourier变换与逆变换的性质。
(二)教学内容第一节Fourier积分1.主要内容:傅里叶积分。
2.基本概念和知识点:Fourier积分公式与Fourier积分存在定理。
3.问题与应用(能力要求):熟悉Fourier积分公式与Fourier积分存在定理。
第二节Fourier变换1.主要内容:傅里叶变换。
2.基本概念和知识点:傅里叶变换及其逆变换的概念,单位脉冲函数的性质,Fourier变换的物理意义—频谱。
3.问题与应用(能力要求):理解傅里叶变换及其逆变换的概念,了解单位脉冲函数的性质,Fourier变换的物理意义—频谱。
第三节Fourier变换的性质1.主要内容:傅里叶变换的性质。
2.基本概念和知识点:傅里叶变换的性质。
3.问题与应用(能力要求):掌握傅里叶变换的性质,一些函数的Fourier变换与逆变换的求法。
第四节卷积与相关函数1.主要内容:卷积与相关函数。
2.基本概念和知识点:卷积与相关函数的概念,卷积定理。
3.问题与应用(能力要求):了解卷积与相关函数的概念,卷积定理。
第五节Fourier变换的应用1.主要内容:Fourier变换的应用。
2.基本概念和知识点:微分方程的Fourier变换解法。
3.问题与应用(能力要求):掌握一些微分方程的Fourier变换解法。
(三)课后练习习题一21)2);31),3);4;习题二1;31);7;9;12;习题三2;3;4;7;8;10;112),4) 6),8);习题四16) 8);2;52) 4) 5) 6)。
第一章 傅里叶变换内容提要:一 傅里叶变换定义1定义2定义34傅里叶积分定理二 δ函数型序列的充分条件构成δ1.)(21)(,)(21)(,)()( 为傅里叶积分公式即称则若设:dw e dx e x f t f dw e w F t f dt e t f w F iwt iwx iwt iwt ⎰⎰⎰⎰∞+∞--∞+∞-+∞∞--+∞∞-⎥⎦⎤⎢⎣⎡===ππ=)(t f [])(1-w F ℱ;)()()(21逆变换的傅里叶为Fourier w F dw e w F iwt ⎰+∞∞-=π=)(w F [])(t f ;)()()(变换的傅里叶为Fourier t f dt e t f iwt -+∞∞-⎰=ℱ .)(21)(,)(21)(,)()( 为傅里叶积分公式即称则若设:dw e dx e x f t f dw e w F t f dt e t f w F iwt iwx iwt iwt ⎰⎰⎰⎰∞+∞--∞+∞-+∞∞--+∞∞-⎥⎦⎤⎢⎣⎡===ππ满足如下两个条件:若函数)(t f 限个极值点;类间断点,且至多有有上连续或有有限个第一在即条件上满足狄利克雷在实轴的任何有限区间],[)( ,)(],[)( )b a t f Dirichlet b a t f i .],[)( )的反常积分收敛在区间+∞-∞t f ii .)()(,)(21)]0()0([21)(dt e t f w F dw e w F t f t f t f iwtiwt -∞+∞-∞+∞-⎰⎰==-++其中且的傅里叶变换存在,则函数π函数列的该趋向下,,则在)(的某种趋向下,函数若在参数可积,且满足在实轴的任何有限区间设普通函数βεβϕβ++∞∞→==⎰0,1)()(-dt t f t f ).()( )0)(( ))(1()(1)(t t f t f t f δδβϕβϕβϕββ→>=即:型序列,构成一个型序列几个常用 2δ⎪⎩⎪⎨⎧<<===⎩⎨⎧<<=. 0)0( 1)1(1)( . 0)10( 1)( )1其它,,则令其它,εεεεβεεt t f t f t t f ).()(lim 00t t δδδεεε=→+→+型序列,即时为当.)()1(1)(,1)(,)1(1)( )2(22-2πεεεεδπεw w f w dt t f t t f R +===+=⎰+∞∞构造:显然).()(lim 00w w R δδδεεε=→+→+即型序列,时为当.)cos(21sin )()(,sin ,sin )( )3(-⎰⎰-+∞∞=====RRIR dw wt t Rt Rt Rf t dt tt t tt f ππδππ构造:因为).()(lim t t R IR R δδδ=+∞→+∞→型序列,即时为当.2)1(1)(,2,2)( )4(2222-22πβββδππββw G t t ew f w dt eet f -∞+∞--====⎰构造:因为).()(lim 00w w G δδδβββ=→+→+型序列,即时为当函数的积分3δ).)(()()(lim )()()1-00-0处处无穷次可微,定义:t f dt t f t t dt t f t t ⎰⎰+∞∞→+∞∞-=-+εεδδ三 傅立叶变换的性质四 几个常用函数傅里叶变换对1.线性性质2.位移性质)( t f 若ℱ, )(w F 3.微分性质)( n1k ∑=t f C k k . )(1∑=nk k k w F C ℱ )( )1 a t f ±ℱ ;)( )(为实数a w F e iwa ±t iw et f 0)( )2±.)( )(00为实数w w w F ℱ)( t f k 若),,2,1( )(n k w F k =ℱ)( t f 若ℱ, )(w F )( )1 )(t fn ;)( )()(为自然数n w F iw n ℱ)()( )2t f -it n .)( )()(为自然数n w F n ℱ)( t f 若ℱ)(w F 4.积分性质 则ℱ []).(1)(w F iw t g =).( )10)((lim )(1lim )()(lim)()()2000-00-000t f t f dt t f dtt f t t dt t f t t t t =<<+==-=-+++→+→+∞∞→+∞∞⎰⎰⎰θεθεδδδεεεεε函数的筛选性质:2sin 2τw w E).2( 0),2( )()1⎪⎩⎪⎨⎧><=ττt t E t f ℱ)0( )0( 0)0( )()2>⎩⎨⎧<>=-ββt t e t f t 1iw+βℱ习题1.11. 求下列函数的Fourier 变换. (1)ℱ)]([t f =dt e A t i ⎰-τω0=0τωωt i e i A --=)1(ωτωi e i A --.(2) ℱ)]([t f =dt te e t i t⎰+∞∞---ωcos =dt te t i ⎰+∞+-0)1(cos ω+dt te t i ⎰∞--0)1(cos ω由201cos a a dt te at +=⎰+∞-,2001cos cos aa dt te dt te at at +==⎰⎰+∞-∞-, 可知:ℱ)]([t f =22)1(11)1(11ωωωωi i i i -+-++++=22424ωω-+.2. 求Fourier 逆变换. ℱ)]([1ωF -=ωπωωβd e et i ⎰+∞∞--21=ωωπωβωβd e d e it it ⎰⎰∞-++∞+-+0)(0)([21=⎥⎦⎤⎢⎣⎡∞-++∞++-++-010121)()(ωβωβββπit it e it e it=22221t +ββπ=)(22t +βπβ.3. ℱ)]([t f =⎰--⋅ππωdt e t t i sin=-⎰--ππωt d e t i cos =-⎰---⋅--⋅ππωωωππdt e t i te t i t i cos cos=()⎰-----ππωωωωπt d e i e e t i t i t i sin cos=⎰----⋅+-ππωωωωωdt te i i e e t i t i t i sin )(=⎰---+-ππωωωωdt teeeti ti ti sin 2ℱ)(1w iwπδ+)( )5t u )( )3t δℱ 1)( 2w πδ1)4ℱℱ)]([t f =1sin 22-ωωπi由ℱ)()]([1t f F =-ω可知下面的等式成立.4. 求下列函数的Fourier 积分。