控制工程3系统数学模型
- 格式:pptx
- 大小:535.48 KB
- 文档页数:53
控制⼯程数学模型1 控制系统的数学模型数学模型是描述系统输⼊量、输出量以及内部各变量之间关系的数学表达式,揭⽰了系统结构及其参数与其性能之间的内在关系。
静态数学模型:静态条件(变量各阶导数为零)下描述变量之间关系的代数⽅程。
反映系统处于稳态时,系统状态有关属性变量之间关系的数学模型。
动态数学模型:描述变量各阶导数之间关系的微分⽅程,描述动态系统瞬态与过渡态特性的模型。
也可定义为描述实际系统各物理量随时间演化的数学表达式。
微分⽅程或差分⽅程常⽤作动态数学模型。
对于给定动态系统,数学模型表达不唯⼀。
⼯程上常⽤的有:微分⽅程,传递函数和状态⽅程。
不过对于线性系统,它们之间是等价的。
2 建⽴数学模型的⽅法1. 解析法依据系统及元件各变量之间所遵循的物理规律写出相应的数学关系式,建⽴模型。
2. 实验法⼈为地对系统施加某种测试信号,记录其输出响应,并⽤适当的数学模型进⾏逼近,这种⽅法也称为系统辨识。
3 数学模型的形式1. 时间域微分⽅程差分⽅程状态⽅程(⼀阶微分⽅程组)2. 复数域传递函数结构图3. 频率域频率域4 建⽴数学模型的⼀般步骤⽤解析法列写系统或元件微分⽅程的⼀般步骤是:1. 分析系统⼯作原理和信号传递变换过程,确定系统和各元件的输⼊、输出量。
2. 从系统输⼊端开始,按照信号传递变换过程,依据各变量所遵循的物理学定律,依次列写各元件、部件的动态微分⽅程。
3. 消去中间变量,得到⼀个描述元件或系统输⼊、输出变量之间关系的微分⽅程。
4. 写成标准化形式。
与输⼊有关项放在等式右侧,与输出有关项放在等式左侧,且各阶导数项按降幂排列。
5 控制系统微分⽅程的列写5.1 机械系统在机械系统中,有些构件惯性和刚度较⼤,有些构件惯性较⼩、柔度较⼤。
我们将前者的弹性忽略视其为质量块,将后者的惯性忽略视其为⽆质量弹簧。
这样,机械系统便可以抽象为质量-弹簧-阻尼系统。
1. 质量2. 弹簧3. 阻尼5.1.1 机械平移系统列出各元件的动态微分⽅程:消去中间变量并写成标准形式:式中,m、D、k通常均为常数,故机械平移系统可以由⼆阶常系数微分⽅程描述。
控制基本模型-概述说明以及解释1.引言1.1 概述概述在控制理论和应用中,控制基本模型是指用于描述和分析控制系统的数学模型。
控制基本模型是控制工程师和研究人员研究和设计控制系统时的基础,它提供了系统动力学行为的描述以及控制方法的分析和设计。
控制基本模型可以采用多种形式,包括传递函数模型、状态空间模型和输入-输出模型等。
这些模型通常基于系统动力学方程和输出-输入关系来建立。
通过对模型进行数学分析和仿真实验,我们可以深入了解和预测控制系统的行为,并针对不同的应用需求进行优化设计。
本文将重点介绍控制基本模型的定义和控制方法的介绍。
首先,我们将详细讨论基本模型的定义,包括传递函数模型、状态空间模型和输入-输出模型的基本原理和特点。
然后,我们将介绍一些常用的控制方法,如比例积分微分控制(PID控制),模糊控制和自适应控制等。
这些控制方法可以根据系统的需求和特点来选择和应用。
通过本文的学习,读者将能够理解和掌握控制基本模型的概念和基本原理,了解不同类型的控制方法的适用范围和特点。
同时,读者还将能够应用所学知识来设计和优化控制系统,提高系统的性能和稳定性。
总之,控制基本模型是控制系统设计和分析的基础,具有重要的理论和实际意义。
通过研究和应用控制基本模型,我们可以不断改进和优化控制系统,提高系统的性能和效果。
1.2文章结构1.2 文章结构本文的目的是探讨控制基本模型,并介绍相关的控制方法。
为了更好地组织本文的内容,文章结构如下所示:引言部分将在1.1概述中简要介绍控制基本模型的背景和意义,并在1.3目的中明确阐述本文的研究目标。
正文部分将分为两个小节进行讲解。
首先,在2.1基本模型定义中,我们将详细阐述控制基本模型的定义和内容,包括其在控制系统中的作用和应用领域。
其次,在2.2控制方法介绍中,我们将介绍几种常见的控制方法,包括PID控制器、模糊控制和神经网络控制等,以及它们在控制基本模型中的应用。
结论部分将在3.1总结中对本文进行总结,回顾并强调本文的重点内容和研究成果。
《机械控制工程基础》作业集层次:高起专授课教师:王军平时间:2014年3月31日《机械控制工程基础》目录第一章绪论第二章拉普拉斯变换的数学方法第三章系统的数学模型第四章控制系统的时域分析第五章系统的频率特性第六章系统的稳定性第一章绪论本章重点:1.控制系统的组成及基本要求;本章难点分析系统的控制原理。
题型-分析及问答题1、根据下图所示的电动机速度控制系统工作原理图,完成:(1) 将a,b与c,d用线连接成负反馈状态;(2) 画出系统方框图。
2、下图是仓库大门自动控制系统原理示意图。
试说明系统自动控制大门开、闭的工作原理,并画出系统方框图。
3、下图为工业炉温自动控制系统的工作原理图。
分析系统的工作原理,指出被控对象、被控量和给定量,画出系统方框图。
4、下图是控制导弹发射架方位的电位器式随动系统原理图。
图中电位器1P 、2P 并联后跨接到同一电源0E 的两端,其滑臂分别与输入轴和输出轴相联结,组成方位角的给定元件和测量反馈元件。
输入轴由手轮操纵;输出轴则由直流电动机经减速后带动,电动机采用电枢控制的方式工作。
试分析系统的工作原理,指出系统的被控对象、被控量和给定量,画出系统的方框图。
5、采用离心调速器的蒸汽机转速控制系统如下图所示。
其工作原理是:当蒸汽机带动负载转动的同时,通过圆锥齿轮带动一对飞锤作水平旋转。
飞锤通过铰链可带动套筒上下滑动,套筒内装有平衡弹簧,套筒上下滑动时可拨动杠杆,杠杆另一端通过连杆调节供汽阀门的开度。
在蒸汽机正常运行时,飞锤旋转所产生的离心力与弹簧的反弹力相平衡,套筒保持某个高度,使阀门处于一个平衡位置。
如果由于负载增大使蒸汽机转速ω下降,则飞锤因离心力减小而使套筒向下滑动,并通过杠杆增大供汽阀门的开度,从而使蒸汽机的转速回升。
同理,如果由于负载减小使蒸汽机的转速ω增加,则飞锤因离心力增加而使套筒上滑,并通过杠杆减小供汽阀门的开度,迫使蒸汽机转速回落。
这样,离心调速器就能自动地抵制负载变化对转速的影响,使蒸汽机的转速ω保持在某个期望值附近。