27
例2.1:用拉氏变换解微分方程
L ur
i
R C uc
d 2uc du LC 2 RC c uc u r dt dt L[uc (t )] U c ( s ) duc (t ) ] sU c ( s ) U c (0) dt d 2uc (t ) ' L[ ] s 2U c ( s ) sU c (0) U c (0) dt 2 s 2U c ( s ) 0.1s 0.1 L[
2)对于机械转动系统,牛顿定律可以表示为:
J (t ) M (t )
3)化简 4) 标准化
J
d 2 (t ) dt 2
d (t ) M (t ) M f (t ) M (t ) f dt
d 2 (t ) d (t ) J f M (t ) 2 dt dt
电气系统的微分方程
进行拉氏变换,得到变量s的代数方程;
2. 求出输出量拉氏变换函数的表达式; 3. 对输出量拉氏变换函数求反变换,得到输出 量的时域表达式,即为所求微分方程的解。
拉氏(laplace)变换 • 定义:设函数f(t)当t>=0时有定义,而且积分
F ( s ) f (t )e dt
st 0
2)单位斜坡函数
t
0
t
0, f t t ,
t0 t0
L f t L[t ]
0
te
st
1 dt 2 s
几个重要的拉氏变换
f(t) F(s) f(t)
eat f t
df t dt
F(s)
F s a
sF s f 0